Preliminary Studies on the effect of processing methods on the quality of three commonly consumed marine fishes in Nigeria

Similar documents
STUDIES ON FICUS CARPENSIS (FRUIT AND LEAF): PROXIMATE AND MINERAL COMPOSITIONS

The Pharmaceutical and Chemical Journal, 2016, 3(3):1-7. Research Article

International Journal of Agricultural and Food Science

CLARIAS GARIEPINUS AND LATES NILOTICUS HARVESTED

Uttiya Jana and Sarmistha Chakrabarti

F.E.D.I.A.F. FEDIAF, representing the European Pet Food Industry, has published a. Code of Good Labelling Practice for Pet Food which can be freely

NUTRITIONAL CHARACTERISTICS OF THE TWO FERMENTED FISH PRODUCTS - HENTAK AND NGARI OF MANIPUR. CH. SAROJNALINI AND W. VISHWANATH

Journal of Agriculture and Social Research (JASR) VOL. 10, No. 2, 2010

Nutritional quality evaluation of Rice bean flour based Boondi

The extrusion process in full action at Texas A&M University and a sample of fresh expeller.. (Photos: Riaz, Texas A&M)

Effect of Washing on Quality Improvement of Mechanically Deboned Chicken Meat

Formulation and use of Frying Oils

4. Which of the following is not likely to contain cholesterol? (a) eggs (b) vegetable shortening (c) fish (d) veal

OXIDATION AND ANTIOXIDANT PROTECTION IN RAW MATERIALS AND FEEDS

Possibilities and Potentiality to increase blending ratio of Palm Olein with Soft oils in Egyptian market.

4. Determination of fat content (AOAC, 2000) Reagents

Mackerel (Scomber Scrombrus) Oil Extraction and Evaluation as Raw Materials for Industrial Utilization

Frying. PRO Ch. 17 of Fellows

The Effects of Various Milk By-Products on Microbial. Mehmet GÜN, Cemalettin SARIÇOBAN, Hasan İbrahim KOZAN

Int.J.Curr.Microbiol.App.Sci (2016) 5(5):

UNUIGBE 1,OGHUAN OIKI TALABI 1,JUSTINA YETUNDE ADEPOJU 2, OLADEJO THOMAS

FATS & OILS GLOSSARY

A New Method for the Early Detection of Edible Oil Oxidation

Comparative Studies of The Proximate Composition of Three Body Parts of Two Freshwater Prawns Species From Ovia River, Edo State, Nigeria.

CHAPTER 1 INTRODUCTION

Optimization of Vacuum Frying Condition for Shallot

SAMPLE COURSE OUTLINE FOOD SCIENCE AND TECHNOLOGY ATAR YEAR 11

Nutrition of Aquatic Species - Student Notes

THE EFFECT OF VARIOUS SMOKING METHODS ON THE QUALITY OF DIFFERENTLY SALTED Oreochromis niloticus

White Paper: Monitoring Polar Compounds in Fryer Oil

Influence of Initial Moisture Content on Some Proximate Quality Attributes of Packaged Gari in Storage. Adejumo, B. A.

Effects of processing on nutritional value of fish products Assoc. Prof. Sabine Sampels, Ph.D.

BARBADOS FOOD BASED DIETARY GUIDELINES FOR. Revised Edition (2017)

Effect of Soaking Time and Volume of Water on the Ascorbic Acid Content of Three Nigerian Green Leafy Vegetables

Comparative Degradation Effects of Sesame and Soybean Oil during Heating using Microwave Irradiation

EXPERIMENT 9 LIPIDS: DETERMINATION OF FAT IN FRENCH FRIES. a fat molecule. Materials Needed

Application of Acid Solubilization Isoelectric Precipitation to Recover Protein from Low Value Red Meat

Chapter 5: Analysis of water content, total solids & water activity

EVALUATION OF THE NUTRIENT COMPOSITION OF SOME UNCONVENTIONAL FEEDSTUFFS

Volume 8 No December EFFECTS OF DRYING METHODS ON PROPERTIES OF WATER MELON (Citrullus lanatus) SEED OIL

FUTA Journal of Research in Sciences, Vol. 12 (2) 2016:

MATERIALS AND METHODS

DRS 380 RWANDA STANDARD. Macadamia oil for cosmetic industry. Specification. First edition mm-dd. Reference number DRS 380: 2018

Question One: Put True ( ) or False ( X ):

Spirulina as an Additive for Better Nutrition

Preparation of value added products from dehydrated bathua leaves (Chenopodium album Linn.)

A study on formulation, evaluation and analysis of soya-idli

Micronutrients and anti-nutritional contents of selected tropical vegetables grown in SouthEast, Nigeria

Effects of Different Storage Temperature on the Physicochemical Properties of Cooking Oils Available in Nigeria Markets

AMINO ACID PROFILE IN LATVIAN POTATO VARIETIES PREPARED BY VARIOUS COOKING METHODS Irisa Murniece, Daina Karklina, Ruta Galoburda

International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 11, November 2014

ROLE OF ANTIOXIDANTS IN FEED AND EFFECTS ON MEAT QUALITY

Water, Vitamins, & Minerals

MAJOR DIFFERENCES BETWEEN COBRAM ESTATE EXTRA VIRGIN OLIVE OIL, VIRGIN OLIVE OIL AND OLIVE OIL (REFINED BLENDS)

Journal of Food Biosciences and Technology, Islamic Azad University, Science and Research Branch, 3, 41-48, 2013

Asian Journal of Food and Agro-Industry ISSN Available online at

Module 13: Changes occurring in oils and fats during frying

UNIT III NUTRITION FOR SELF AND FAMILY. Ques4. What are nutrients? Give the energy value of energy giving nutrients.

NUTRITIONAL COMPONENTS OF SUPERCRITICAL CARBON DIOXIDE EXTRACTED WHEAT GERM OIL

Routine analysis for fish farming and processing

CHEMICAL ANALYSIS AND SHELF-LIFE STUDIES OF PAPADS PREPARED FROM LEGUME FLOURS

5.0 Summary and conclusion

Prospects of Palm Kernel Cake. use in Cattle Feed

Pelagia Research Library

A to Z of Canine Nutrition

Effects of feeding different levels of sesame oil cake on performance and digestibility of Awassi lambs

Soybean is one of the nature s wonderful nutritional

How to choose your culinary oil

PHYSICO-CHEMICAL AND SENSORY EVALUATION OF DIFFERENT VANASPATI GHEE AVAILABLE IN PAKISTAN

FLEXIBLE DIETING. What it means is, you ll have the choice to take a flexible (yet still calculated) approach to your diet. THE MACRONUTRIENT BASICS

Response of Growing Calves Fed graded Levels of Farm Kernel Meal as Nitrogen Source. By: *Gidado, A. S., **Nasiru M. and **Haruna, U.

Crude Fat Methods in Corn Derived DDGS

Development and Quality Evaluation of Baked Potato Chips in Microwave

The four levels of protein structure are: primary structure, secondary structure, tertiary structure, and quaternary structure.


Comparative studies on the effect of sun, smoke and oven drying methods on the nutrient contents of four wild edible mushrooms in Nigeria

SECTION XE-G: FOOD TECHNOLOGY

Measuring Lipid Oxidation in Foods

PROCESSING AND PRESERVATION OF PAPAYA JAM

Compositional analyses of traditionally fire-treated and dried Mopane worms harvested in Northern and Central regions of Zambia

Substitution of Golden Apple Snail Meal for Fishmeal in Giant Freshwater Prawn, Macrobrachium rosenbergii (de Man) Diets

Assessment of the Quality of Some Edible Vegetable Oils Consumed in Northern Nigeria

FATTY ACID COMPONENT OF SENEGAL MANATEE FATS

EXPERIMENT 9 LIPIDS: DETERMINATION OF FAT IN FRENCH FRIES. a fat molecule. Materials Needed

Overview of the food science behind fatty acid technology

Choosing What You Eat and Why. Chapter 1 BIOL1400 Dr. Mohamad H. Termos

Forages, fat, fitness and flavour

Understanding Ingredients. Fats and Oils

Lipids. PBHL 211 Darine Hachem, MS, LD

Pet Food Kibble Preservation 2018 Jim Mann

PROCESSING AND STORAGE OF INSTANT COOKED RICE

The Effect of Temperature and Fat Type on the Physical and Sensory. Properties of Doughnut Holes. By: Amy Wright

Effects of Cow dung and N. P.K Fertilizer at different levels on the Growth performance and Nutrient Composition of Moringa oleifera

Faculty of Food Science and Nutrition, University of Iceland, Eiriksgata 29, 101 Reykjavik, Iceland b

PHYSICOCHEMICAL PROPERTIES OF DEGERMED FLOURS OF RICE (Oryza sativa), MILLET (Eleusine coracana) AND WHEAT Triticun aestivum)

Clinical Nutrition NUTRITION ASSESSMENT LABORATORY INTRODUCTION EQUIPMENT AND INSTRUMENTS: EXPERIMENTS. Page 164

M. N. VENUGOPAL and P. KESHAVANATH College of Fisheries, University of Agricultural Sciences, Manga!ore

The lipid profile of the pallid emperor moth Cirina forda Westwood (Lepidoptera: Saturniidae) caterpillar

INTERMEDIATE 1 1 Food and Diet. These elements are present in compounds - not as free elements.

OIL STABILITY ANALYSIS

Transcription:

BIOKEMISTRI Vol. 21 (No 1), pages 1-7 (June 29) This article is downloadable online in PDF format at http://www.bioline.org.br/bk An international journal published by the Nigerian Society for Experimental Biology Printed in Nigeria Preliminary Studies on the effect of processing methods on the quality of three commonly consumed marine fishes in Nigeria Omolara O. OLUWANIYI* and Omotayo O. DOSUMU Department of Chemistry, University of Ilorin, Ilorin, Nigeria Received 12 December 28 MS/No BKM/28/49, 29 Nigerian Society for Experimental Biology. All rights reserved. --------------------------------------------------------------------------------------------------------------------------------------- Abstract Three commonly available species of marine fishes in Nigeria, Clupea harengus, Scomber scombrus and Trachurus trachurus were subjected to boiling, frying and roasting and their effects on the fishes were observed. Frying reduced the protein content for all the fish types with the effect very pronounced on Clupea harengus and Trachurus trachurus but made fish less susceptible to spoilage. and fried had 62.7 % and 1.6 % protein content respectively, while had 57.3 % and 9.18 %, respectively. The ash content reduced with all the treatment methods for all the fish species except for boiled Scomber scombrus. Boiling in water gave fish with the best nutritive value overall. Scomber scombrus was the most nutritious (in terms of protein and mineral content) of the three and the nutritive value did not diminish with the method of preparation. It is also the most palatable in terms of flavour and texture. Trachurus trachurus had the least protein value and the protein was very unstable to the treatment methods. The third species, Clupea harengus is also rich in protein but the protein content reduced with frying. Frying gave a better result when long-time preservation is of interest but boiling was the better processing method when preservation of nutrient is the focus. The results also showed that Scomber scombrus had the highest oil content (3.3%) followed by Clupea harengus (12.7%) while Trachurus trachurus has the lowest oil content (12.25) and irrespective of the processing method, the order remains unchanged. This work also shows that the effect of a treatment type on a fish sample is dependent on the fish species. The oils obtained from the fried fish samples had the least acid values in all cases, while the oils from the roasted samples had the highest saponification values Keywords: Processing method, nutritive value, marine fishes *To whom correspondence should be addressed. E-mail: laraoluwaniyi@yahoo.com; Tel: +234833947875 1

INTRODUCTION Fishes are a rich source of protein commonly consumed as an alternative source of protein due to the higher cost of meat and other sources of animal protein. Fish has lower cholesterol content when compared with meat 1 and thus often recommended for consumption especially among the adult population. The marine fish is generally cheaper and more abundant when compared with fresh water fishes, which are relatively more expensive in Nigeria. The major constituents of fish are moisture, protein and fat with minerals occurring in trace amount 2. Generally fish contains very little carbohydrate, while the moisture content is very high. In most fish species the moisture content is between 6 8%, protein between 15 26% and 2 13% for fat 3. The fat content of fishes varies with species, age, size and also season. Since fish is not normally consumed raw, various processing methods are employed in preparing them for consumption and some of these processes include boiling, frying, roasting, smoking, which could have varying effects on their nutrient contents, texture and flavour 4. Previous workers had reported the effects of processing methods on different fish types. For example, Greenfield & Kosulwat said the type of food and cooking procedures influence the fat content and other nutrients 5. The fat content of raw fishes can also influence fat exchanges and interactions between the culinary fat and that of the fish during processing 6. Data on the macronutrient content of fish is only available for raw fish and there seems to be a scarcity of information on the processed ones. The need to look at the effect of processing on the nutrient composition of fish is therefore high. This work is thus a preliminary investigation of the effect of some common processing methods boiling, frying and roasting on the macronutrient content and oil qualities of some marine fishes that are commonly consumed in Nigeria as the major source of animal protein for the average individual and family. MATERIALS AND METHODS Materials and Preparation of Sample The fish types used in this study were Clupea harengus (also known as herring or shawa in south western Nigeria), Scomber scombrus (also known as Atlantic mackerel or Titus) and Trachurus trachurus (also known as horse mackerel or kote in south western Nigeria). These fishes were chosen because they are readily available, cheap, affordable and within the reach of an average Nigerian. The fishes were purchased from two popular markets (Oja-Oba and Ipata) in Ilorin, Nigeria. They were thoroughly washed, cut into about 75 g-pieces and washed again with tap and distilled water. The head region was discarded. The samples were then separated into four parts. One part was boiled in water; a second part was deep-fried with vegetable oil in a frying pan while the third part was roasted with heat from hot charcoal. The last part was analyzed raw. All processing methods followed the usual procedures used to prepare fish for table consumption in Nigeria. The boiling was done in distilled water and the water was kept boiling for about 2 minutes until the pieces were well cooked and tender. The deep frying was done in vegetable oil in a pot on hot flame with occasional turning in order to achieve even frying. Frying was achieved within 15 minutes and the temperature was about 24ºC. The roasting was done at 165ºC and it was completed within 15 minutes. All the processing methods were carried out without the addition of any ingredient. All samples were homogenized prior to analysis. Analytical Procedures The recommended methods of the Association of Official Analytical Chemists were adopted for the analyses of the samples 7. Moisture content was determined by heating 2. g of each sample to a constant weight in a crucible placed in an oven maintained at 15ºC. Crude fat was obtained by exhaustively extracting 5. g of each sample in a Soxhlet apparatus using petroleum ether (b.p. 4-6ºC) as the extractant. Crude protein (% total nitrogen x 6.25) was determined by the Kjeldahl method, using 2. g samples. Ash was determined by 2

the incineration 8 of 1. g samples placed in a muffle furnace maintained at 55ºC for 5 hours. The oil extract from each fish sample was concentrated by rotary evaporato and all solvent completely expelled. The oil obtained was analyzed for the acid and saponification values. The acid and saponification values were determined by standard methods of the American Oil Chemists Society, using 1 g sample of oil in each case 9. Results are expressed as mean of triplicate trials. Data were analysed by one way analysis Scomber scombrus Clupea harengus 58.24 ± 2.15 57.81 ± 1.26 44.27 ± 1.48 54.84 ± 2.8 66.12 ± 1.1 57.68 ± 1.59 43.52 ± 2.55 56.71 ± 1.83 of variance. Test of means with p<.5 was adjudge significant under student t test. RESULTS Table 1: Proximate composition (%) of fresh and processed fish samples Fish Sample Moisture Content Oil Content (Moisture free) 44.51 43.39 44.37 3.3 26.62 21.75 31.19 12.7 The results of the proximate compositions of the analyzed fishes are shown in Table 1. Subjection of fish to different preparation method resulted in samples with significantly different moisture content (p= =.1) though there was no significant difference (p=.58) in the moisture content of the different fresh fishes. Table 2 shows the results of the acid and saponification values of oil extracted from the fish samples. Crude Protein (Moisture and Oil free) 66.28 ±. 52.28 ±.44 65.41 ±.22 59.28 ±.22 62.67 ±.33 53.43 ±. 5.61 ±.33 57.27 ±.99 Ash Content (Moisture and Oil free) 7.83 ±.18 9.43 ±.43 5.5 ±. 3.75 ±.25 8.5 ±.11 7.1 ±.1 4.25 ±.25 3. ±. Trachurus trachurus 72.54 ±.42 72.78 ±.45 45.99 ± 1.95 67.21 ±.98 Values are means ± standard deviat 25.94 24.67 27.39 12.25 tions of triplicate determinations. 57.31 ±.22 53.5 ±.87 49.18 ±. 48.45 ±.14 7.89 ±.16 6.25 ±.25 4. ±.5 2. ±.5 Table 2: Acid and saponification values of oil from fish samples Fish Sample Acid Value Saponification Value Scomber scombrus 12.78 14.14 9.59 13.61 129.29 136.18 14.24 196.62 Clupea harengus Trachurus trachurus 19.53 17.63 8.11 12.13 34.18 23.8 8.48 1.17 127.18 78.58 99.26 134.31 121.58 116.78 114.73 17.97 Values are means of triplicate determinations. Moisture content (%) 8 7 6 5 4 3 2 1 Fig 1: Moisture content of fish samples 3

Oil Content (%) 5 4 3 2 1 Fig 2: Oil content of fish samples Figures 1-4 show in graphical form, the proximate composition of the various treated species of fish, while figures 5 and 6 display the comparison between the fishes in term of saponification and acid values. Saponification value 25 2 15 1 7 6 5 Fig 5: Saponification values of the fish oils Crude protein content (%) 5 4 3 2 1 Fig 3: Crude protein content of fish samples Acid value 5 45 4 35 3 25 2 15 1 5 Fig 6: Acid values of the fish oils Ash content (%) 1 9 8 7 6 5 4 3 2 1 Fig 4: Ash content of fish samples DISCUSSION fish samples have the least moisture content (Fig. 1) and this is because the water in the fish forms aqueous/oil mixture during frying and the water is expelled before the frying is accomplished since the boiling point of the oil is far greater than that of water hence the reduction in the moisture content. The moisture contents of the fresh fish types were slightly, but not statistically different (p=.58); S. Scombrus 58.24%, C. Harengus 66.12% and 72.54%. Subjection of fish to different preparation methods resulted in samples with significantly different moisture 4

content (p=.1. The reactions of water/oil with food items particularly at high temperature as obtained during frying and roasting have been shown to affect some nutrients in the food item as well as causing alteration of the structure of the oil and denaturing of the food nutrients 4,5,1 ; hence the significant difference recorded in moisture content after the different processing methods. Roasting usually results in decrease in moisture content giving rise to desirable nonenzymatic browning reactions. Roasting of the fish samples were conducted at 165ºC and frying at 24ºC; and as should be expected, these processing methods resulted in the expulsion of water molecules from the fish samples since these temperatures were higher than the boiling point of water. The reduction in moisture content is an advantage in that it reduced the fishes susceptibility to microbial spoilage, oxidative degradation of polyunsaturated fatty acids and consequently improved the quality of the fishes for longer preservation time 11,12. Boiling did not impart any significant change on the moisture, oil and ash contents of the fish samples (Figs. 1, 2 & 4). In fact fresh and boiled samples had relatively similar moisture content. This might be because the temperature at which the boiling was done was not high enough to cause any morphological change in the fish samples. Roasting however drastically decreased the oil and ash contents of all fish species (Figs. 2 & 4) and it reduced the crude protein content of (Fig. 3). This suggests the possibility of some water soluble proteins being expelled during the high temperature of roasting. Also volatile oil materials in the fish were expelled at this high temperature. The oil content of T. Trachurus was relatively low compared to the oil content of the other two fishes. had the highest oil content which remained fairly constant during boiling and frying but decreased during roasting. Frying increased the oil content of C. harengus. According to previous studies, frying does not always result in an increase in the fat content of food 13,14. Also, Candela et al had reported that different fish species would have different behaviour during the frying process, which should be taken into consideration in determining the total fat intake of a fish meal 14. This could therefore account for the seemingly different behaviours of the fishes to frying. Since fishes are consumed as a major protein source in food, it is very important that the protein content should not be compromised during table preparation. It is significant to note therefore that all the table processing methods reduced the crude protein contents but the reduction did not follow a particular order or fish type. S. Scombrus had the highest crude protein content (66.28%) while T. Trachurus had the least (53.71%) (Fig 3). Disappearance of water soluble amino acids during high temperature of processing may be responsible for the reduction in amino acid content and consequently a reduction in the protein content. The crude protein content of the three fresh fishes are not significantly different (p=.36) neither did the treatment methods significantly (p=.45) affect the protein content. Roasting and frying led to a great reduction in the ash contents of the fish samples with the highest reduction obtained with roasting, followed by frying, but boiling had no effect. This could be as a result of the volatility of the mineral elements at the high temperature involved in roasting and frying. This is reflected in the statistical analysis which showed that treatment methods significantly (p=.) affect the ash content of the fishes but had no significant difference (p=.62) on the ash content of fresh fishes. The ash content of the three fresh fish species ranged between 7.83 and 8.5 which are within the range found in other fish types 16,17. The saponification values of oils extracted from fresh fish samples are close (Table 2): S. Scombus 129.29, C. Harengus 127.18 and T. Trachurus 121.58 but a general increase of these values was observed following roasting of the samples. This may imply that the reduction in oil content of roasted samples (Table 1) was actually as a result of the loss of the volatile, low molecular weight fatty acids leaving behind oil with high molecular weight fatty acids. The high saponification values indicated the presence of high percentage of fatty acids in the oil. Statistical analysis revealed that the saponification values of oils from fresh fishes were not significantly different (p=.239) and the treatment methods 5

did not significantly (p=.31) alter the saponification values. Oil of fresh Trachurus trachurus had a very high acid value (34.2) relative to the other two (12.8 and 19.5) suggesting high content of fatty acids which comprise of essential fatty acids and other fatty acids necessary for human development. These fatty acids reduced drastically when fish samples are subjected to frying and roasting. The acid values of oils from fried fish samples were low and similar compared to highly different values obtained for oils from other treatment methods. The low acid values recorded for the fried and roasted samples can be because frying and roasting reduce hydrolysis but boiling does not. This hydrolysis resulted in the reactions of the hydroxyl and carbonyl groups of the acids in the oil 1,14 thereby reducing the fatty acid content of the oil. High moisture content (which was obtainable with the fresh and boiled samples) led to hydrolysis when temperature increased and this further led to the breakdown of essential fatty acids and reaction of the alkyl group of the fatty acids resulting in the production of undesirable, offflavour hexanal and other rancidity products 4,18,19. Low moisture content is in keeping with the preservation of the quality of the fish and prevention from spoilage. The lower the acid value, the higher the chances of keeping the quality of the oil, thereby giving oil with higher resistance to lipase action and rancidity, consequently better fish. fish is the least susceptible to degradation due to less moisture content. The ANOVA showed that there are no significant differences (p=.98 and.332) in the acid values of oils from both fresh and processed fishes (Fig. 1). We conclude from the results of all the processing methods examined for preparation of fish for human consumption that frying is the best when preservation of the fish is of priority but when nutrient conservation is the focus, boiling is a better option. REFERENCES 1.Harris, W. S. (1997) n-3 fatty acids and serum lipoproteins: human studies. American Journal of Clinical Nutrition 65:1645S-1654S. 2.Holland, B., Brown, J. and Buss, D. H. (1993) Fish and fish products; the third supplement to McCance & Widdowson s The composition of foods 5 th edition, HMSO, London. 3. Pearson, D. and Cox, H. E. (1976) The Chemical Analysis of Foods (7 th edition) Churchill Livingstone. pp 575. 4.Eriksson, C. E. (1987) Oxidation of lipids in food systems. In: Autoxidation of unsaturated lipids. HWS Chan (Ed). Academic press, London. pp 27-231. 5.Greenfield, H. and Kosulwat, S. (1991) Nutrient composition of Australian fresh retail sausages and the effects of cooking on fat content. J. Sci. Food Agric. 57: 65 75. 6.Sanchez-Muniz, F. J., Viejo, J. M. and Medina, R. (1992) Deep frying of sardines in different culinary fats; Changes in the fatty acids composition of sardines and frying fats. J. Agric. Food Chem. 4: 2252 2256. 7.AOAC (1984) Association of Official Analytical Chemists. Official methods of analysis (14th ed.) Arlington, VA. 8.Kjeldahl, J. (1883) Determination of protein nitrogen in food products. Encyclopedia of Food Science 1883: 439 441. 9.AOCS (1979) Official and Tentative Methods of the American Oil Chemists Society. Vol.1, AOCS, Champaign, IL. 1.Kubow, S. (1992) Routes of formation and toxic consequences of lipid oxidation products in foods. Free Radical Biol. Med. 12: 63-81 11.Frankel, E. N. (1991) Recent advances in lipid oxidation. J. Sci. Food Agric. 54: 495-511. 12.Allen, J. C. (1987) Industrial aspects of lipids oxidation: In Recent Advances in Chemistry and Technology of Fats and Oil. Hamilton RJ, Bhati A, Eds; Elsevier; London pp31-39. 13.Makinson, J. H., Greenfield, H., Wong, M. L. and Willis, R. B. H. (1987) Fat uptake during deep-fat frying of coated and uncoated foods. J. Food Compos. Anal. 1:93 11. 14.Candella, M., Astiasaran, I. and Bello J. (1998) Deep-fat frying modifies high fat fish lipid fraction. J. Agric. Food Chem. 46: 2793 2796. 6

15.Gardner, H. W. (1989) Oxygen radical chemistry of polyunsaturated fatty acids. Free Radical Biol. Med. 7: 65-86. 16.Adeyeye, E. I. and Adamu, A. S. (25) Chemical composition and food properties of Gymnarchus niloticus (trunk fish). Biosci. Biotech. Res. Asia. 3: 265-272. 17.Aremu, M. O. and Ekunode, O. E. (28) Nutritional Evaluation and Functional Properties of Clarias lazera (African catfish) from River Tammah in Nasarawa State, Nigeria. American Journal of Food Technology. 3: 264-274. 18.Felker, P. (1979) Mesquite: An all-purpose leguminous arid land tree. In: Ritchie G. A (ed). New agricultural Crops. AAAS Symposium. 38: 89-125. 19.Choge, S. K., Pasiecznik, N. M., Harvey, M., Wright, J., Awan, S. Z. and Harris, P. J. C. (27) Prosopis pods as human food, with special reference to Kenya. Water SA 33:419-424 (Special Edition) 7