Case Report Successful Catheter Ablation of Persistent Electrical Storm late Post Myocardial Infarction by Targeting Purkinje Arborization Triggers

Similar documents
Case Report Substrate Based Ablation of Ventricular Tachycardia Through An Epicardial Approach

Use of Catheter Ablation in the Treatment of Ventricular Tachycardia Triggered by Premature Ventricular Contraction

Case Report Catheter ablation of ventricular tachycardia related to a septo-apical left ventricular aneurysm

Recurrent Implantable Defibrillator Discharges (ICD) Discharges ICD Storm

ΔΠΔΜΒΑΣΙΚΗ ΘΔΡΑΠΔΙΑ ΚΟΙΛΙΑΚΩΝ ΑΡΡΤΘΜΙΩΝ

Catheter ablation of monomorphic ventricular tachycardia. Department of Cardiology, IKEM, Prague, Czech Republic

Electrical Storm in Coronary Artery Disease. Saeed Oraii MD, Cardiologist Interventional Electrophysiologist Tehran Arrhythmia Clinic July 2016

Ventricular tachycardia ablation

Editorial Mapping for the Target Sites of Ablation in Post-infarction Ventricular Tachycardia- Is Sinus Rhythm Sufficient?

Ventricular Arrhythmias

Ventricular arrhythmias in acute coronary syndromes. Dimitrios Manolatos, MD, PhD, FESC Electrophysiology Lab Evaggelismos General Hospital

Sustained monomorphic ventricular tachycardia (VT) due to

Journal of the American College of Cardiology Vol. 61, No. 20, by the American College of Cardiology Foundation ISSN /$36.

The implantable cardioverter defibrillator is not enough: Ventricular Tachycardia Catheter Ablation in Patients with Structural Heart Disease

Mapping and Ablation of Polymorphic Ventricular Tachycardia After Myocardial Infarction

Map-Guided Ablation of Non-ischemic VT. Takashi Nitta Cardiovascular Surgery, Nippon Medical School Tokyo, JAPAN

NAAMA s 24 th International Medical Convention Medicine in the Next Decade: Challenges and Opportunities Beirut, Lebanon June 26 July 2, 2010

The patient with electric storm

Apersistent electrical storm after acute myocardial

Antiarrhythmic Drugs and Ablation in Patients with ICD and Shocks

that number is extremely high. It s 16 episodes, or in other words, it s 14, one-four, ICD shocks per patient per day.

Catheter Ablation of Ventricular Arrhythmias via the Radial Artery in a Patient With Prior Myocardial Infarction and Peripheral Vascular Disease

Girish M Nair. MBBS, Jeffrey S Healey. MD, Elaine Gordon. MD, Syamkumar Divakaramenon MBBS, Carlos A Morillo. MD.

The patient with (without) an ICD and heart failure: Management of electrical storm

Case Report What Next After Failed Septal Ventricular Tachycardia Ablation?

Ventricular tachycardia and ischemia. Martin Jan Schalij Department of Cardiology Leiden University Medical Center

Πρώτης γραμμή θεραπεία η κατάλυση κοιλιακής ταχυκαρδίας στην ισχαιμική μυοκαρδιοπάθεια

Intramural Reentrant Ventricular Tachycardia in a Patient with Severe Hypertensive Left Ventricular Hypertrophy

Title. CitationJournal of Electrocardiology, 43(5): Issue Date Doc URL. Type. File Information.

Ventricular tachycardia Ventricular fibrillation and ICD

Ventricular Tachycardia Substrate. For the ablationist. Stanley Tung, MD FRCPC Arrhythmia Service/St Paul Hospital University of British Columbia

Synopsis of Management on Ventricular arrhythmias. M. Soni MD Interventional Cardiologist

Journal of the American College of Cardiology Vol. 37, No. 2, by the American College of Cardiology ISSN /01/$20.

Chapter 16: Arrhythmias and Conduction Disturbances

Prophylactic ablation

Review Article Radiofrequency Ablation for Post Infarction Ventricular Tachycardia

Case Report Epicardial Ablation: Prevention of Phrenic Nerve Damage by Pericardial Injection of Saline and the Use of a Steerable Sheath

Indications for catheter ablation in 2010: Ventricular Tachycardia

Title. CitationJournal of electrocardiology, 46(6): Issue Date Doc URL. Type. File Information

Non-Invasive Ablation of Ventricular Tachycardia

Treatment of VT of Purkinje fiber origin: ablation targets and outcome

Electroanatomic Substrate and Outcome of Catheter Ablative Therapy for Ventricular Tachycardia in Setting of Right Ventricular Cardiomyopathy

Atrial fibrillation (AF) is a disorder seen

Conventional Mapping. Introduction

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition

Arrhythmias Focused Review. Sustained Ventricular Tachycardia in Ischemic Cardiomyopathy: Current Management

Novel Approaches to VT Management Glenn M Polin MD

Case Report Figure-8 Tachycardia Confined to the Anterior Wall of the Left Atrium

B. S. N. Alzand & C. C. M. M. Timmermans & H. J. J. Wellens & R. Dennert & S. A. M. Philippens & P. J. M. Portegijs & LM.

Focus on the role of Catheter Ablation: Simple cases Intermediate level Difficult cases (and patients) Impossible (almost )

Advances in Ablation Therapy for Ventricular Tachycardia

TACHYARRHYTHMIAs. Pawel Balsam, MD, PhD

Theroleofcatheterablationinthemanagement of ventricular tachycardia

Post-Infarction Ventricular Arrhythmias Originating in Papillary Muscles

Cardiovascular Surgery

Case Report Catheter Ablation of Long-Lasting Accelerated Idioventricular Rhythm in a Patient with Mild Left Ventricular Dysfunction

APPROACH TO TACHYARRYTHMIAS

ARRHYTHMIAS IN THE ICU

Characteristics of systolic and diastolic potentials recorded in the left interventricular septum in verapamil-sensitive left ventricular tachycardia

Basic Electrophysiology Protocols

Septal Involvement in Patients With Post-Infarction Ventricular Tachycardia

Jun Kim, MD, Tae Ik Park, MD, Sung Gyu An, MD, Han-Cheol Lee, MD, June Hong Kim, MD, Kook Jin Chun, MD, Taek Jong Hong, MD and Yung Woo Shin, MD

NEIL CISPER TECHNICAL FIELD ENGINEER ICD/CRTD BASICS

Ventricular Tachycardia in Structurally Normal Hearts (Idiopathic VT) Patient Information

ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT

How to Ablate Atrial Tachycardia Mechanisms and Approach. DrJo Jo Hai

Management of patients with ventricular

Case Report Coexistence of Atrioventricular Nodal Reentrant Tachycardia and Idiopathic Left Ventricular Outflow-Tract Tachycardia

Electrophysiology of Ventricular Tachycardia: A Historical Perspective

Mechanism of Ventricular Tachycardia Termination by Pacing at Left Ventricular Sites in Patients with Coronary Artery Disease

Ablation of Ventricular Tachycardia in Non-Ischemic Cardiomyopathy

Ankara, Turkey 2 Department of Cardiology, Division of Arrhythmia and Electrophysiology, Yuksek Ihtisas

Visualization of Critical Isthmus by Delayed Potential Mapping

ICD Shocks: How to Avoid? Josef Kautzner Department of Cardiology, Institute for Clinical and Experimental Medicine Prague, Czech Republic

Ventricular arrhythmias

Arrhythmias (II) Ventricular Arrhythmias. Disclosures

Cardiac Arrhythmias in Acute Coronary Syndrome. Roj Rojjarekampai, MD Thammasart Hospital 26/5/59

Isolated Potentials and Pace-Mapping as Guides for Ablation of Ventricular Tachycardia in Various Types of Nonischemic Cardiomyopathy

Catheter Ablation of VT Without Structural Heart Disease 성균관의대 온영근

HOW TO SURVIVE ELECTRICAL STORM

Epicardial substrate ablation for Brugada syndrome

What s new in my specialty?

EHRA Accreditation Exam - Sample MCQs Invasive cardiac electrophysiology

Erik Wissner, MD, F.A.C.C. Asklepios Klinik St. Georg Hamburg, Germany on behalf of the VTACH Study group

Tachycardias II. Štěpán Havránek

Mini-Electrodes Help Identify Hidden Slow Conduction. during Ventricular Tachycardia Substrate Ablation

VT Ablation in Structural Heart Disease Patient Information

The Therapeutic Role of the Implantable Cardioverter Defibrillator in Arrhythmogenic Right Ventricular Dysplasia

Ablation of Ventricular Tachycardia in Patients with Structural Heart Disease

Catheter Ablation for Cardiac Arrhythmias

Ablative Therapy for Ventricular Tachycardia

Catheter ablation of atrial fibrillation: Indications and tools for improvement of the success rate of the method. Konstantinos P.

Case Report Catheter ablation of Atrial Incisional Tachycardia mistaken for Atrial flutter

VENTRICULAR TACHYCARDIA IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment

Arrhythmias and Heart Failure Dr Chris Lang Consultant Cardiologist and Electrophysiologist Royal Infirmary of Edinburgh

ICD THERAPIES: are they harmful or just high risk markers?

Purkinje-related Arrhythmias

ICD: Basics, Programming and Trouble-shooting

Transcription:

www.ipej.org 298 Case Report Successful Catheter Ablation of Persistent Electrical Storm late Post Myocardial Infarction by Targeting Purkinje Arborization Triggers Paul S Thoppil, MD, DM; B Hygriv Rao MD, DM; S. Jaishankar MD, DM; Calambur Narasimhan, MD,DM,AB. Division of Electrophysiology, Department of Cardiology, CARE Hospitals and CARE Foundation, Hyderabad, India. Address for correspondence: Dr C Narasimhan, CARE hospitals and CARE foundation, Exhibition Road, Nampally Hyderabad-500001, India. E-mail:calambur/at/hotmail.com Abstract Drug refractory ventricular tachycardia (VT) occurring as a storm after acute myocardial infarction has grave prognosis. We report a case of a middle-aged lady who presented with drug refractory VT that lead to persistent electrical storm two weeks after an anterior wall myocardial infarction. She underwent a successful catheter ablation of VT followed a few days later by implantation of an AICD. Catheter ablation of the VT could control the persistent electrical storm and the patient was free from a recurrence of VT at three month follow up. Key Words: Electrical storm; Catheter ablation; Purkinje arborization triggers. Introduction The incidence of incessant drug refractory ventricular tachycardia (VT) after a remote myocardial infarction (MI) is quoted to be 10% 1. Presentation as an electrical storm occurs in 1%, and is associated with 50% mortality if it manifests within a week after an acute MI 2. The success rate of catheter ablation of post myocardial infarction VT has steadily increased in recent years on account of improved understanding of the underlying mechanisms that cause ischemic VT. We report a patient who presented in persistent electrical storm two weeks after acute MI and successfully underwent successful catheter ablation of arborizing purkinje triggers near the border-zone of MI where the VT was being initiated. Case Report A 62 years old lady was admitted to an outside facility with evolved anterior wall myocardial infarction and had undergone rescue angioplasty and stenting of single vessel disease in left anterior descending coronary artery (LAD) under cover of Eptifibatide. Ten days after the stenting she developed recurrent episodes of monomorphic VT (at 180/mt, RBBB morphology, North West axis, Figure 1) and presented in an electrical storm unresponsive to multiple antiarrhythmic drugs (IV beta blockers, amiodarone, lidocaine and magnesium), DC shocks, and intraaortic balloon counterpulsation. Overdrive ventricular pacing was performed which was able to restrict VT to around 20 episodes over the previous 24 hr period. The episodes of

Paul S Thoppil, B Hygriv Rao, S. Jaishankar, Calambur Narasimhan, 299 ventricular tachyarrhythmia were poorly tolerated haemodynamically. An echocardiogram during sinus rhythm had revealed regional wall motion abnormalities in LAD territory and severe LV Dysfunction (LVEF 30%). A check angiogram disclosed a patent stent; there was no thrombus or new lesions. Serum biochemistry, arterial blood gas parameters and thyroid profile were normal. She was referred to our center for feasibility of catheter ablation of VT. Figure 1: Twelve lead ECG during VT (Monomorphic VT, at a rate of 180/mt, RBBB morphology, Northwest axis). She underwent an emergency electrophysiology study during which many attempts at cardioversion and overdrive pacing failed to control the storm. Access to the left ventricle was achieved retrogradely across the aortic valve. LV mapping was performed using a nonfluoroscopic electroanatomic system (CARTO, Biosense Webster Inc, USA) and 7.5F Navistar F curve irrigated tip catheter. A bipolar LV voltage map was created to define the scar and border zone of MI. The infarct area was defined during sinus rhythm by electrograms with an amplitude 1.5 mv; dense scars were defined by electrograms with an amplitude 0.5 mv. Once the map was completed, amplitude scale was adjusted (0.2 to 0.5 mv), setting the value for scar at 0.2 mv to identify conducting channels within the scar area. They were marked out as corridors of continuous electrograms differentiated from the surrounding scar tissue by a higher amplitude, bounded by two scar areas, or by one scar area and the mitral annulus, and connected to normal myocardium by at least two sites 3. A large scar at anterolateral wall and apex of LV was mapped and the infarct area was completely encircled. RF lesions were delivered using an irrigated tip catheter at 30 W power, 43 C temperature with an irrigation rate of 20 to 30 ml/min. Whenever a conducting channel was identified along the border zone of scar, a RF lesion was immediately applied to transect the conducting channel. Following the initial ablation of conducting channels and of sites of LV tagged by late diastolic potentials (Figure 2), the VT storm terminated temporarily but the monomorphic VT could still be reinduced on programmed ventricular stimulation during isoprenaline infusion. Pace mapping at various endocardial LV sites did not produce an ideal match of clinical VT and hence that course was not pursued further. A further substrate mapping of LV revealed a discrete Purkinje potential preceding spontaneous ventricular ectopic beat (which was not evident in sinus beats ), suggesting a driver role in the

Paul S Thoppil, B Hygriv Rao, S. Jaishankar, Calambur Narasimhan, 300 sustenance of the tachycardia (Figure 3). RF lesions were delivered at the LV sites where Purkinje potential preceded the ventricular activation by 30 ms during ventricular ectopic beats and during tachycardia (Figure 4). After this targeted ablation of Purkinje potential triggers, VT became noninducible with aggressive programmed ventricular stimulation during isoprenaline infusion. A single chamber ICD was implanted a week later and she was discharged in a stable condition. No recurrence of VT or ICD shocks occurred in the two month follow-up. Figure 2: Surface ECG and intracardiac tracings during substrate mapping showing late diastolic potentials (Bold Arrows) in MapD catheter. Figure 3: Surface ECG and intracardiac tracings during substrate mapping showing purkinje potential (Bold Arrow) preceding V in first spontaneous ectopic beat, but not detectable in the beat of sinus origin.

Paul S Thoppil, B Hygriv Rao, S. Jaishankar, Calambur Narasimhan, 301 Figure 4: Electroanatomic Bipolar voltage map of LV in RAO projection demonstrating a large scar in anterolateral LV. The voltage map delineates the region of scar border zone. The red tags represent the sites recording late diastolic potentials and pink tags (bold arrows) represents the sites recording discrete Purkinje potentials triggering the VT, which had survived the Infarct (Successful ablation sites). Discussion Electrical storm, defined originally as 3 distinct episodes of VT/VF within 24-hour period that occurs in ICD recipients, can rarely occur in the few weeks following AMI 4 and when becomes persistent, is very difficult to treat. Nademanee et al 2 have pointed out the superiority of sympathetic blockade (left stellate ganglionic blockade and β-blockade) over antiarrhythmic drug therapy (Lidocaine, Procainamide, Bretylium). The 1 week mortality rate with antiarrhythmic drug therapy was significantly higher than with sympathetic blockade (82% Vs 22%) 2. In the same study the 1 year VF-free survival for sympathetic blockade group was 67% versus 5% for antiarrhythmic drug therapy group but the VT burden during follow up was not clearly stated. The overall morality rate of patients with electrical storm after AMI remains still high even with antiarrhythmic drug therapy and sympathetic blockade. SMASH-VT trial results revealed that after substrate based catheter ablation there was 65% reduction in delivery of therapy for VT in patients with a history of AMI who received ICDs for the secondary prevention of sudden death 5. The acute success rate of catheter ablation of recurrent VT after myocardial infarct by combined contact and non contact mapping has been reported to range between 67% and 77% 6. RF ablation of VT soon after myocardial infarction is more difficult and often challenging, but a need for an attempt at ablation always exists since the mortality rate remains high even with combination antiarrhythmic drug therapy and left stellate ganglionic blockade. Both activation mapping and approaches during sinus rhythm have been shown to be effective methods for ablation of VT. Previous studies conducted on arrhythmias soon after experimental acute myocardial infarction have suggested different kinds of mechanisms responsible for its

Paul S Thoppil, B Hygriv Rao, S. Jaishankar, Calambur Narasimhan, 302 occurrence. They include enhanced automaticity of subendocardial Purkinje fibers that survived myocardial infarction 7, triggered activity arising from delayed afterdepolarizations 8, and reentry 9. The damaged border zone area of the scar resulting from MI has been demonstrated to play a crucial role in forming the substrate that sustains macro-reentry and monomorphic VT 10,11. In such a VT, activation and entrainment mapping allows determination of the critical isthmus of slowed conduction that sustains VT and thus facilitates successful ablation of VT. Activation mapping during the arrhythmia was technically challenging in our patient as she became haemodynamically unstable during sustained VT. Mapping could be performed by ventricular pacing at constant cycle length (550 ms) and later by substrate mapping once VT terminated to sinus rhythm. Ablation after prolonged activation mapping and pace-mapping of endocardial LV was not successful in producing sustained sinus rhythm. It was only after application of RF lesions at the LV sites which demonstrated purkinje potentials preceding ventricular activation that a stable sinus rhythm could be achieved and no VT could be reinduced. Interestingly, the Purkinje fibers have been demonstrated as capable of surviving transmural infarction in experimental models, leading to a speculation that their proximity to the endocardium allows imbibition of nutrients from intracavitary blood 7. The surviving Purkinje fibers that cross the border zone of the MI demonstrate triggered activity, heightened automaticity, and supernormal excitability, which when coupled with prolongation of the action potential duration in this area, may result in the milieu for triggering VT 12,13. Incessant ventricular tachyarrhythmia soon after MI leading to drug-resistant electrical storm is a rare but technically challenging entity. A search for various triggers that initiate refractory VT should be meticulously made to enhance the success rates of catheter ablation of the VT and to use it as a bailout therapy in these patients. References 1. DO Donnell, JP Bourke, R Anilkumar, E Simeonidou, SS.Furniss. Radiofrequency ablation of post infarction VT. European Heart Journal. 2002; 23:1699-1705. 2. Koonlawee Nademanee, Richard Taylor, WE Bailey, DE Rieders, EM Kosar. Treating Electrical Storm: Sympathetic Blockade versus Advanced Cardiac Life Support-Guided Therapy. Circulation. 2000; 102:742-747. 3. Corrado Carbucicchio, Matteo Santamaria, Nicola Trevisi, et al. Catheter Ablation for the Treatment of Electrical Storm in Patients With Implantable Cardioverter-Defibrillators. Circulation. 2008; 117:462-469. 4. DV Exner, SL Pinski, George Wyse, Ellen Graham, et al. Electrical Storm Presages Nonsudden Death: The Antiarrhythmics Versus Implantable Defibrillators (AVID) Trial. Circulation. 2001; 103:2066-2071. 5. Vivek Y Reddy, Mathew R Ronalds, PN Allison, W Richardson, Mark E Josephson et al. Prophylactic catheter ablation for prevention of Defibrillator therapy. N Engl J Med 2007; 357:2657-65. 6. HU Klemm, Rodolfo Ventura, Daniel Steven, Christin Johnsen. Catheter Ablation of Multiple Ventricular Tachycardias After Myocardial Infarction Guided by Combined Contact and Noncontact Mapping. Circulation 2007; 115:2697-2704. 7. Friedman PL, Stewart JR, Fenoglio JJ, Wit AL. Survival of subendocardial Purkinje fibers

Paul S Thoppil, B Hygriv Rao, S. Jaishankar, Calambur Narasimhan, 303 after extensive myocardial infarction in dogs: in vitro and in vivo correlations. Circ Res. 1973; 33:597-611. 8. El-Sherif N, Gough WB, Zeiler RH, Mehra R. Triggered ventricular rhythms in 1-day-old myocardial infarction. Circ Res 1983; 52:566. 9. El-Sherif N, Mehra R, Gough WB, Zeiler RH. Ventricular activation patterns of spontaneous and induced ventricular rhythms in canine one-day-old myocardial infarction: Evidence for focal and reentrant mechanisms. Circ Res 1982; 51:52. 10. Stevenson WG, Khan H, Sager P, et al. Identification of re-entry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation 1993; 88:1647-70. 11. Soejima K, Suzuki M, Maisel WH et al. Catheter ablation in patients with multiple and unstable ventricular tachycardias after myocardial infarction: short ablation lines guided by reentry circuit isthmuses and sinus rhythm mapping. Circulation 2001; 104:664-9. 12. Arnar DO, Bullinga JR, Martins JB. Role of the Purkinje system in spontaneous ventricular tachycardia during acute ischemia in a canine model. Circulation 1997; 96: 2421-9. 13. Kupersmith J, Li ZY, Maidonado C et al. Marked action potential prolongation as a source of injury current leading to border zone arrhythmogenesis. Am Heart J 1994; 127:1543-53.