Subclinical Hypothyroidism: When to Treat, When to Watch

Similar documents
Supplementary Online Material

Subclinical Hypothyroidism Something or Nothing? E. Chester Ridgway University of Colorado SOM August 1-2, 2008

Prospective Observation of 5-Year Clinical Course of Subclinical Hypothyroidism in Korean Population

HYPERTHYROIDISM IS A COMmon

Management of Common Thyroid Disorders

Management of Common Thyroid Disorders

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

HYPOTHYROIDISM is more common in the elderly. Predictors of Thyroid Hormone Initiation in Older Adults: Results From the Cardiovascular Health Study

Subclinical thyroid disorders. Mario Skugor M.D. FACE Associate Professor of Medicine CCLCM of CWRU Cleveland Clinic

Subclinical hypothyroidism is biochemically defined as an elevated

Thyroid Disease in Cardiovascular Patients

Journal of Medical Science & Technology

Thyroid disease is a common medical problem. The

Thyroid in the elderly. Akbar Soltani M.D. Endocrinology and Metabolism Research Center (EMRC) Shariati Hospital

SUBCLINICAL HYPOTHYROIDISM

Mastering Thyroid Disorders. Douglas C. Bauer, MD UCSF Division of General Internal Medicine

Subclinical Hypothyroidism In Women: Will Screening And Early Detection Reduce Hyperlipidemia?

Vol.2 No.2 {us Taiwan Geriatr Gerontol

Thyroid Dysfunction Associated with Coronary Heart Disease Barghchi E and Azizi F.

Disorders of Thyroid Function

concentration in young people.

None. Thyroid Potpourri for the Primary Care Physician. Evaluating Thyroid Function. Disclosures. Learning Objectives

Journal of Internal Medicine 2006; 260: doi: /j x

Underactive Thyroid. Diagnosis, Treatment & Controversies

American Thyroid Association Guidelines for Detection of Thyroid Dysfunction

Hyperthyroidism and hypothyroidism are common

Records after duplicates removed (n = 2274) Records screened (n = 2274) Full-text articles assessed for eligibility (n = 16)

Project Title: Effectiveness of Screening and Treatment of

Update In Hypothyroidism

CARDIOVASCULAR DISEASE IS

SCREENING FOR THYROID DYSFUNCTION U S P S T F R E C O M M E N D A T I O N S T A T E M E N T M A R I A S T U R L A 8 M A Y 2015

Author Manuscript Faculty of Biology and Medicine Publication

Reference intervals are derived from the statistical distribution of values in the general healthy population.

CARDIOVASCULAR DISEASES

Common Issues in Management of Hypothyroidism

Thyroid disease and vascular risk

2008, Editrice Kurtis

Screening for Thyroid Disease

Michaela Granfors, Helena Åkerud, Anna Berglund, Johan Skogö, Inger Sundström-Poromaa, and Anna-Karin Wikström

Investigation of thyroid dysfunction is more likely in patients with high psychological morbidity

Page 1. Understanding Common Thyroid Disorders. Cases. Topics Covered

A study of subclinical hypothyroidism treated with alternate day fixed dose thyroxine therapy

Some Issues in the Management of Hypothyroidism

Should every pregnant woman be screened for thyroid disease?

The Clinical Consequences and Diagnosis of Hypothyroidism

Is the Combination of Thyroxine and Triiodothyronine Better than T4 alone for Hypothyroidism? ESEO Alexandria 2017

Subclinical Hypothyroidism

Diagnostic Significance of Subclinical Hypothyroidism in Health Check-ups

ORIGINAL INVESTIGATION. that levels of thyrotropin within the reference range are positively and linearly

ISSN X (Print) Original Research Article

The alteration of serum soluble CD40 ligand levels in overt and subclinical hypothyroidism

Effect of Subclinical Thyroid Disease on Cardiac Function in Patients on Thyroid Replacement Therapy as Assessed by Radionuclide Ventriculography

SUBCLINICAL OR MILD THYROID

Study of correlation of TFTs and thyroid antibodies with lipid abnormalities and ECG changes in Hypothyroidism

Holistic Medicine for the 21 st Century

Thyroid Hot Topics. AACE Atlanta, GA January 26-27, 2018

Disclosures. Clinical Dilemmas in Thyroid Disease 10/11/ yo healthy active man with abnormal thyroid tests CASE 1. None. Case Based Discussion

Clinical THYROIDOLOGY

Subclinical Thyroid Dysfunction, Cardiac Function, and the Risk of Heart Failure

Natural History and Comorbidities of Subjects with Subclinical Hyperthyroidism: Analysis at a Tertiary Hospital Setting

Sanjay B. Dixit, M.D. BHS Endocrinology Associates November 11, 2017

Department of Pediatrics, Tokai University School of Medicine, Isehara, Kanagawa , Japan

Assessment of the Cardiovascular Risk in Subclinical Hypothyroidism

Hypothyroidism and Hyperthyroidism. Paul V. Tomasic, MD, MS, FACP, FACE Nevada AACE EFNE & Annual Meeting October 6, 2018

Thyroid Status, Disability and Cognitive Function, and Survival in Old Age

Subclinical hypothyroidism (SCH) is defined by mildly

Supplementary Online Content

Screening for mild thyroid failure at the periodic health examination: a decision and costeffectiveness

Cardiovascular complications of thyroid dysfunction

Lothian Guidance for Diagnosis and Management of Thyroid Dysfunction in Pregnancy

Evaluation of maternal thyroid function during pregnancy: the importance of using gestational age-specific reference intervals

Subclinical Hypothyroidism and the Alterations of Lipid Profile as a Cardiovascular Risk Factor

Esther Briganti. Fetal And Maternal Health Beyond the Womb: hot topics in endocrinology and pregnancy. Endocrinologist and Clinician Researcher

Discontinuation of Smoking Increases the Risk for Developing Thyroid Peroxidase Antibodies and/or Thyroglobulin Antibodies: A Prospective Study

~lj SUBCLINICAL HYPOT1:0IDISM AND POTENTIAL CONSEQUENCES SOHEESUTTON,RN,BSN

Hypothyroidism in pregnancy. Nor Shaffinaz Yusoff Azmi Jabatan Perubatan Hospital Sultanah Bahiyah Kedah

Subclinical Hypothyroidism and Cardiovascular Disease

Original article : Correlation of Lipid level in Thyroid Disorder Patients: A Case Control Study

Lecture title. Name Family name Country

HYPOTHYROIDISM IS ONE OF

Clinical efficacy of therapeutic intervention for subclinical hypothyroidism during pregnancy

Variation in treatment strategies of Swiss general practitioners for subclinical hypothyroidism in older adults

Hypothyroidism in Women

Testosterone Therapy in Men An update

Changes in the prevalence of hypothyroidism.

A STUDY ON PREVALANCE OF HYPOTHYROIDISM IN DIABETICS. 1.Assistant Professor,Dept of Gen. Medicine, National Institute of Medical Sciences(NIMS),Jaipur

THE OCCURRENCE OF various abnormalities in brain

Author Manuscript Faculty of Biology and Medicine Publication

Lothian Guidance for Diagnosis and Management of Thyroid Dysfunction in Pregnancy.

SUBCLINICAL THYR ROID DYSFUNCTION

The Presence of Thyroid Autoantibodies in Pregnancy

Thyroid Function and Mortality in Older Men: A Prospective Study

Thyroid disease symptoms during early pregnancy do not identify women with thyroid hypofunction that should be treated

Prevalence of thyroid autoimmunity and subclinical hypothyroidism in persons with chronic kidney disease not requiring chronic dialysis

Hypothyroidism. Definition:

Blood Thrombogenicity Is Independently Associated With Serum TSH Levels in Post Non-ST Elevation Acute Coronary Syndrome

Thyroid Disease. I have no disclosures. Overview TSH. Matthew Kim, M.D. July, 2012

Combination Treatment with T and T : Toward Personalized Replacement Therapy in Hypothyroidism? Context: Evidence Acquisition: Evidence Synthesis:

Comparative Effectiveness Review Number 24. Screening and Treatment of Subclinical Hypothyroidism or Hyperthyroidism

Atherosclerotic Disease Risk Score

Transcription:

DOUGLAS S. ROSS, MD Harvard University Subclinical Hypothyroidism: When to Treat, When to Watch Dr Ross is professor of medicine at Harvard Medical School in Boston and a physician at Massachusetts General Hospital, also in Boston. He is co-editor of the thyroid disease section of UpToDate. Dr Ross reports that he has no financial relationships relevant to the content of this article to disclose. ABSTRACT: Subclinical hypothyroidism is associated with elevated low-density lipoprotein (LDL) cholesterol levels and several factors related to atherosclerosis, including increased C-reactive protein levels and impaired endothelium-dependent vasodilatation. However, considerable controversy exists about screening for and treating this thyroid disorder. Thyroxine therapy lowers elevated LDL cholesterol levels in patients whose serum thyroid-stimulating hormone (TSH) concentrations are higher than 10 miu/l; thus, most experts recommend treatment for such patients. However, there is no consensus regarding the management of patients with TSH levels of less than 10 miu/l. Offering treatment to younger symptomatic patients is reasonable; however, the benefit of treating elderly patients whose TSH levels are less than 10 miu/l is uncertain, and unintentional over-treatment may be associated with cardiovascular and skeletal morbidity. Key words: subclinical hypothyroidism, thyroid-stimulating hormone, thyroxine A 76-year-old woman complains of impaired memory, and excessive fatigue (she usually falls asleep after dinner while watching television). Thyroid tests reveal the following values: Thyroid-stimulating hormone (TSH), 6.2 miu/l. Free thyroxine (T4 ), 1.2 ng/dl (normal 0.8 to 1.8 ng/dl). Would you offer this patient treatment? Subclinical hypothyroidism is defined as an elevated serum TSH level with a normal serum free T 4 concentration. It is a laboratory diagnosis; hypothyroid symptoms such as fatigue, inability to lose weight, memory impairment, hair loss, and depression are nonspecific and are not included in the definition. If a patient s serum TSH level is elevated and the serum T 4 concentration is low, he or she has overt hypothyroidism. The optimal approach to subclinical hypothyroidism continues to be debated. Experts disagree over screening for thyroid dysfunction, the threshold TSH level for treatment, and the upper limit of normal of the TSH reference range. Here I examine the often conflicting data and I offer a practical strategy for patients you are likely to see in your practice (Table). PREVALENCE AND NATURAL HISTORY Subclinical hypothyroidism is common, with a prevalence of 4.3% in the National Health and Examination Survey (NHANES III). 1 In population-based studies, the condition affects 7.5% to 8.5% of women and 2.8% to 4.4% of men. 2,3 In women older than 60 years, the prevalence is as high as 15%. 2 The prevalence is lower in African Americans and higher in patients with type 1 diabetes mellitus. In patients with no history of thyroid surgery or radioiodine treatment, hypothyroidism almost always results from Hashimoto thyroiditis. The titer november 2011 consultant 769

Subclinical Hypothyroidism: When to Treat, When to Watch of anti-thyroid peroxidase (TPO) antibodies is proportional to the degree of lymphocytic infiltration and inflammation within the gland. Thus, hypothyroidism in patients with high titers of anti-tpo antibodies is more likely to progress from subclinical to overt disease. In one population-based survey with a 20-year follow-up, the progression to overt hypothyroidism was 2.6% per year among patients with an elevated TSH concentration and negative results on anti-tpo antibody testing and 4.3% per year among those with an elevated TSH concentration and positive results on anti-tpo antibody testing. 4 SCREENING AND TREATMENT CONTROVERSIES Controversy persists about screening for subclinical hypothyroidism and the TSH level at which treatment should be initiated. A 1998 position paper from the American College of Physicians questioned whether there were sufficient data to recommend treatment of patients with subclinical hypothyroidism. 5 A 2004 publication from the US Preventive Services Task Force found that the data were insufficient to recommend for or against screening in adults. 6 In 2002, a consensus development panel sponsored by the American Thyroid Association, the American Association of Clinical Endocrinologists, and the Endocrine Society found insufficient evidence to support screening and recommended against treating patients with a TSH concentration between 4.5 and 10 miu/l. 7 The conclusions of this panel were so controversial that the organizations involved formed a second panel of ex- Table Possible indications for treatment of subclinical hypothyroidism Indication Comments Hypothyroid symptoms Placebo effect is 40% no improvement in symptoms seen in RCTs if TSH < 15 miu/l Overtreatment may result Elevated lipid levels At risk for atherosclerosis Neuropsychiatric symptoms Overweight Pregnancy High anti-tpo antibody titer Goiter Improvement seen only when TSH > 10 miu/l Data suggest an association between subclinical hypothyroidism and markers for atherosclerosis Studies do not consistently show a reduction in cardiovascular disease or mortality; in a meta-analysis cardiovascular mortality, but not all-cause mortality was increased if TSH > 7.0 miu/l no trials assess whether the benefits of treatment outweigh the risks of treatment in the elderly Many studies testing the association with subclinical hypothyroidism have been poorly designed Depression in patients with subclinical hypothyroidism may be the result of a genetic predisposition Modest increased BMI associated with TSH > 3.6 miu/l no therapeutic trial shows weight loss Reduced IQ in offspring of women with subclinical hypothyroidism tpo antibodies and TSH > 2.5 miu/l during pregnancy is associated with a poor pregnancy outcome treatment is recommended in pregnant women for TSH > 4.5 miu/l, or TSH > 2.5 miu/l if she has positive TPO antibodies Without treatment, progression to overt hypothyroidism is likely Reduction of TSH may limit growth RCT, randomized controlled trial; TSH, thyroid-stimulating hormone; BMI, body mass index; TPO, thyroid peroxidase. 770 consultant november 2011

perts. These experts disagreed with the findings of the first panel and recommended screening for thyroid dysfunction, especially among pregnant women; they also recommended treatment of most patients with subclinical hypothyroidism. 8 In 2007 the Cochrane Collaboration assessed 12 randomized controlled trials and concluded that treatment did not result in improved survival or reduced cardiovascular mortality, or improvement in symptoms, but noted improvement in lipid profiles and left ventricular function in some studies. 9 Since these reports were issued, there has been considerable controversy regarding the upper limit of normal for serum TSH. While most clinical laboratories use values between 4.2 and 5.0 miu/l, data from NHANES III demonstrate an age-related shift toward higher TSH values in TPO antibody-negative subjects: the 97.5 centile for TSH was 3.56 miu/l for subjects aged 20 to 29 years, but increased to 4.33, 5.90, and 7.49 miu/l for those aged 60 to 69, 70 to 79, and over 80 years, respectively. 10 CLINICAL AND METABOLIC CONSEQUENCES OF SUBCLINICAL HYPOTHYROIDISM Elevated cholesterol levels. A large cross-sectional study of 25,862 persons found that those with serum TSH concentrations of 5.1 to 10 miu/l had higher serum cholesterol levels than those who were euthyroid (223 mg/dl vs 216 mg/dl). 11 The extensive literature on the effect of thyroxine treatment on lipid concentrations includes many conflicting results. A meta-analysis of several therapeutic trials revealed a 10-mg/dL reduction in low-density lipoprotein (LDL) cholesterol levels, but this occurred only in patients with total cholesterol levels of greater than 240 mg/dl at baseline. 12 The recommendation of the 2002 consensus panel 7 that only patients with TSH concentrations of greater than 10 miu/l be treated is based on several studies that showed that treatment reduced serum total and LDL cholesterol levels in patients whose initial serum TSH concentrations were greater than 10 miu/l. Nonrandomized trials have shown that thyroxine therapy lowers serum lipoprotein (a) concentrations. 13,14 Atherosclerosis. Patients with subclinical hypothyroidism have abnormalities in parameters that are associated with atherosclerosis. Of note, all of these studies were published after the recommendations of the 2002 consensus panel were released. Moreover, all of these studies are of patients who have minimal elevations in serum TSH levels, with values generally less than 15 miu/l. Impaired endothelium-dependent vasodilatation is an early marker for atherosclerosis. This abnormality has been found in patients with subclinical hypothyroidism and was reversed by thyroxine treatment. 15 Platelet-activating factor (PAF) is a proinflammatory lipid mediator that has been implicated in atherogenesis. PAF-acetylhydrolase inactivates PAF; levels of PAF-acetylhydrolase have been found to be low in patients with subclinical hypothyroidism and increased to normal with treatment. 16 Elevated C-reactive protein levels also became normal with treatment in one study, 17 but not in another study. 18 Increased concentrations of osteoprotegerin, involved in the regulation of endothelium-dependent vasodilatation, have been noted in patients with subclinical hypothyroidism; the values normalized after treatment. 19 Finally, thyroxine therapy in patients with subclinical hypothyroidism resulted in an 11% reduction in carotid arter y intimamedia thickness. 20 Cardiovascular disease and mortality. The evidence is conflicting about whether subclinical hypothyroidism results in an increase in cardiovascular disease or cardiovascular mortality. In the Rotterdam Study of women older than 55 years, the risk of aortic atherosclerosis and myocardial infarction (MI) was increased by about 2-fold in participants who had subclinical hypothyroidism. 21 The Nagasaki study found a 2-fold elevation in the risk of angina and MI in men but not in women with subclinical hypothyroidism. 22 A study of patients with subclinical hypothyroidism who were between the ages of 70 and 79 years showed a 2.5- to 3-fold increased risk of congestive heart failure (for serum TSH higher than 7.0 miu/l), but no increased risk of coronary or cerebrovascular disease or cardiovascular mortality. 23 The Busselton Health Study (Australia) revealed a 2- to 3-fold increase in the risk of coronary artery disease and a 1.5-fold increase in the risk of cardiovascular mortality in patients with subclinical hypothyroidism. 24 In contrast, the Cardiovascular Health Study a prospective study of 3233 patients older than 65 years who were monitored for 12 to 13 years found no differences in incidence of coronary artery disease, cerebrovascular disease, or cardiovascular mortality between euthyroid participants and those with subclinical hypothyroidism, 25 although there was an increase in heart failure if the TSH exceeded 10 miu/l. 26 An analysis of the individual data from these and other studies found significant hazard ratios for coronar y events to be 1.89 (CI, 1.28 to 2.80) for serum TSH levels from 10 to 19.9 miu/l, and for cardiovascular mortality to be 1.42 (CI, 1.03 to 1.95) for serum TSH from 7.0 to 9.9 miu/l and 1.58 (CI, 1.10 to 1.27) for serum TSH from 10 to 19.9 miu/l; however, total mortality was not increased november 2011 consultant 771

Subclinical Hypothyroidism: When to Treat, When to Watch for TSH lower than 20 miu/l. 27 A study of patients aged 85 to 89 years showed lower cardiovascular mortality (hazard ratio, 0.77) in patients with subclinical hypothyroidism than in those who were euthyroid. 28 Neuropsychiatric disease. Studies of neuropsychiatric disease and subclinical hypothyroidism are difficult to interpret because of such confounding variables as inadequate control groups and the inclusion of patients taking lithium, those with normal TSH levels and positive results on anti-tpo antibody tests, and those with normal TSH levels but abnormal responses to thyrotropin-releasing hormone. On the whole, these studies suggest an increased risk of depression and panic disorder and a poorer response to antidepressant treatment in patients with subclinical hypothyroidism. 29,30 One study found an increased risk of depression in patients with positive titers of anti-tpo antibodies, but not in patients with elevated serum TSH concentrations and negative antibody titers. 31 These results suggest a possible genetic basis for the association of hypothyroidism and depression. In the Framingham study, Alzheimer disease was more common in women, but not in men, with subclinical hypothyroidism. 32 However cognitive function was unchanged by thyroxine treatment in a randomized 1-year placebo-controlled trial of elderly patients with TSH between 6.0 and 8.5 miu/l. 33 Weight gain. In the Framingham trial, the 3.5-year weight gain among women with TSH values between 0.5 and 10 miu/l was 2.3 kg for those in the highest quintile and 0.5 kg for those in the lowest quintile. 34 No study has demonstrated weight loss with treatment of subclinical hypothyroidism. Neuromuscular disease. A survey showed that 64% of patients with subclinical hypothyroidism had 2 or more symptoms of neuromuscular 772 consultant november 2011 disease, compared with 14% of euthyroid controls; treatment with thyroxine ameliorated these symptoms. 35 However, the patients in this survey knew their diagnosis, and treatment was not blinded or placebo-controlled. In another study older patients with TSH levels from 4.5 to 6.9 miu/l had improved mobility (faster usual and rapid gait speed) and cardiorespiratory fitness. 36 Poor pregnancy outcomes. Children born to mothers who had elevated serum TSH concentrations during the second trimester of pregnancy had a slightly lower IQ score at age 7 to 9 years than did children born to mothers with normal serum TSH concentrations (103 vs 107). 37 THE ARGUMENT FOR THERAPY: A CRITICAL LOOK AT THE EVIDENCE Those who favor treating most patients with subclinical hypothyroidism commonly cite 1 or more of the several randomized clinical trials. Among 8 trials 38-45 : Four of the seven that assessed for hypothyroid symptoms showed improvement with treatment. Two of the three that used psychometric testing results as an outcome measure found an improvement with treatment. Three of the seven that measured serum total and LDL cholesterol levels found lower levels with treatment. However, 3 of these studies included patients who met the strict biochemical criteria for subclinical hypothyroidism but had serum TSH concentrations as high as 30 to 55 miu/l, 38,40,41 and 2 studies used a fixed dose of thyroxine for treatment, 39,45 which resulted in over-treatment in some patients. In 3 randomized controlled trials that included only patients whose TSH values were less than 15 miu/l, 42-44 there was no improvement in any parameter studied except for a reduction in total and LDL cholesterol levels in 1 study, 42 while a fourth study that included patients with TSH up to 15.8 miu/l, in which 10% of patients were given excessive doses of thyroxine, found improvement in lipids, fatigue, and endothelial function. 45 Problems in interpretation of trial results. Other studies point to the difficulty of interpreting many of these results, especially those whose end points are symptom scores. In a population-based study of almost 400 patients who had normal serum TSH concentrations while taking levothyroxine, participants had significantly distressed scores on both general health and thyroid-specific symptom questionnaires. 46 One explanation for these findings may be a possible genetic predisposition to depression among patients with autoimmune thyroid disease. It is also possible that levothyroxine therapy is suboptimal treatment for hypothyroidism in a subset of patients. While twelve randomized trials have compared combined treatment (triiodothyronine [T 3 ] and T 4 therapy) to therapy with T 4 alone, only 1 of these studies found that symptoms (as assessed by standardized questionnaires) abated with combined therapy. However, in another study, patients preferred combined therapy despite negative results on standardized symptom assessments. 47 And a recent study from the United Kingdom suggests that 16% of patients have a polymorphism in the type 2 deiodinase that converts T 4 into T 3 ; those patients had improved symptoms (by standardized questionnaires) when treated with both T 4 and T 3. 48 In one study that is commonly cited to support the treatment of subclinical hypothyroidism, patients were given doses of levothyroxine that were slightly lower or slightly higher than optimal doses (based on TSH levels). The investigators found

Subclinical Hypothyroidism: When to Treat, When to Watch CLINICAL HIGHLIGHTS q Considerable controversy persists regarding screening for thyroid dysfunction and treatment of subclinical hypothyroidism. Statements from the American College of Physicians, the US Preventive Services Task Force, the American Thyroid Association, the Endocrine Society, and the American Association of Clinical Endocrinologists have failed to reach a consensus. q The upper limit of normal for serum TSH is age-related, with a value of 3.56 miu/l for patients aged 20 to 29 years, increasing to 7.49 for patients over 80 years old. q Subclinical hypothyroidism may be associated with modest weight increases; however, no study has demonstrated weight loss with treatment of the condition. q When serum TSH concentrations are greater than 10 miu/l, subclinical hypothyroidism is associated with increases in serum low-density lipoprotein cholesterol levels. In a meta-analysis, cardiovascular mortality, but not all-cause mortality was increased when serum TSH was greater than 7 miu/l. Thus, thyroxine therapy should be considered if the serum TSH level is 7 to 10 miu/l or higher. q Consider a trial of thyroxine for symptomatic patients whose serum TSH level is below 10 miu/l. If the patient perceives no benefit, therapy can be discontinued. that patients preferred slightly higher doses of thyroid hormone. 49 However, this study was not blinded. A double-blinded, randomized crossover trial assessed 3 different levels of thyroxine treatment, which resulted in mean serum TSH concentrations of 2.8, 1.0, and 0.3 miu/l, respectively. There were no differences in hypothyroid symptoms among the groups, and patients could not distinguish among the 3 levels of thyroid hormone replacement. 50 Placebos have a significant effect on hypothyroid symptoms. In one of the trials of combined T 3 and T 4 therapy, symptoms abated in 39% of patients who received placebo. 51 In another study of patients with hypothyroid symptoms, 52 thyroxine and placebo produced equal benefit despite the fact that the average serum TSH concentrations in the thyroxinetreated group were at the lower limit of the normal reference range. Because hypothyroid symptoms are 774 consultant november 2011 readily amenable to the placebo effect, a large, double-blind, randomized, placebo-controlled trial is needed to accurately assess the efficacy of levothyroxine therapy on hypothyroid symptoms, cognitive function, and psychological well-being in patients with subclinical hypothyroidism. RECOMMENDATIONS FOR SYMPTOMATIC PATIENTS Let us return to the 76-year-old woman in the opening clinical scenario. Her TSH level is within the ageadjusted normal range for TSH. There is no evidence that treating her will improve her cognitive function or fatigue. I would not treat her with levothyroxine. Patients taking levothyroxine are commonly unintentionally over-treated; in one study 41% of patients over age 65 had subnormal serum TSH levels. 53 Only one trial has assessed the risks of treatment; while that trial found a 10% mortality rate among treated patients and a 31% mortality rate among untreated patients, the study is hardly robust with only 20 patients treated, and only 2 deaths in the treatment group. 54 Measurement of TPO antibodies might be useful. If they are high, the patient should be more closely monitored, and if her TSH increased to values above 7.5 miu/l, I would then consider treatment. If the TSH increased to values above 10 miu/l, treatment is indicated. If the patient was younger and had symptoms possibly related to subclinical hypothyroidism, I would offer a trial of levothyroxine, since in younger patients eg, a premenopausal woman the risks of overtreatment (atrial fibrillation, reduced bone density) are minimal. RECOMMENDATIONS FOR ASYMPTOMATIC PATIENTS The evidence for treating patients with TSH values of less than 10 miu/l is not compelling except in women who are pregnant. 37,55 At present, a TSH value of 7 to 10 miu/l appears to be a reasonable threshold for routinely recommending treatment (based on the favorable response of LDL cholesterol levels to levothyroxine, and the higher risk of cardiovascular, but not allcause mortality). Thus, I would not advise treating a patient whose TSH concentration is elevated but below 7 to 10 miu/l if he or she exhibits no hypothyroid symptoms. n REFERENCES: 1. Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87:489-499. 2. Tunbridge WM, Evered DC, Hall R, et al. The spectrum of thyroid disease in a community: the Whickham Survey. Clin Endocrinol (Oxf). 1977; 7: 481-493. 3. Bagchi N, Brown TR, Parish RF. Thyroid dysfunction in adults over age 55 years. A study in an urban US community. Arch Intern Med. 1990;150: 785-787. 4. Vanderpump MP, Tunbridge WM, French JM, et al. The incidence of thyroid disorders in the com-

munity: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf). 1995;43:55-68. 5. Clinical guideline, part 1. Screening for thyroid disease. American College of Physicians. Ann Intern Med. 1998;129:141-143. 6. US Preventive Services Task Force. Screening for thyroid disease: recommendation statement. Ann Intern Med. 2004;140:125-127. 7. Surks MI, Ortiz E, Daniels GH, et al. Subclinical thyroid disease: review and guidelines for diagnosis and management. JAMA. 2004;291:228-238. 8. Gharib H, Tuttle RM, Baskin HJ, et al. Subclinical thyroid dysfunction: a joint statement on management from the American Association of Clinical Endocrinologists, the American Thyroid Association, and the Endocrine Society. J Clin Endocrinol Metab. 2005;90:581-587. 9. Villar HCCE, Saconato H, Valente J, et al. Thyroid hormone replacement for subclinical hypothyroidism. Cochrane Database Syst Rev 2007;3:CD003419. 10. Surks MI, Hollowell JG. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications from the prevalence of subclinical hypothyroidism. J Clin Endocrinol Metab. 2007;92:4575-4582. 11. Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000;160:526-534. 12. Danese MD, Ladenson PW, Meinert CL, Powe NR. Clinical review 115: effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J Clin Endocrinol Metab. 2000;85:2993-3001. 13. Milionis HJ, Efstathiadou Z, Tselepis AD, et al. Lipoprotein (a) levels and apolipoprotein (a) isoform size in patients with subclinical hypothyroidism: effect of treatment with levothyroxine. Thyroid. 2003;13:365-369. 14. Ganotakis ES, Mandalaki K, Tampakaki M, et al. Subclinical hypothyroidism and lipid abnormalities in older women attending a vascular disease prevention clinic: effect of thyroxine replacement therapy. Angiology. 2003;54:569-576. 15. Taddei S, Caraccio N, Virdis A, et al. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab. 2003;88:3731-3737. 16. Milionis HJ, Tambaki AP, Kanioglou CN, et al. Thyroid substitution therapy induces high-density lipoprotein-associated platelet-activating factoracetylhydrolase in patients with subclinical hypothyroidism: a potential antiatherogenic effect. Thyroid. 2005;15:455-460. 17. Ozcan O, Cakir E, Yaman H, et al. The effects of thyroxine replacement on the levels of serum asymmetric dimethylarginine (ADMA) and other biochemical cardiovascular risk markers in patients with subclinical hypothyroidism. Clin Endocrinol (Oxf). 2005;63:203-206. 18. Christ-Crain M, Meier C, Guglielmetti M, et al. Elevated C-reactive protein and homocysteine values: cardiovascular risk factors in hypothyroidism? A cross-sectional and a double-blind, placebo-controlled trial. Atherosclerosis. 2003;166:379-386. 19. Guang-Da X, Hui-Ling S, Zhi-Song C, Lin-Shuang Z. Alteration of plasma concentrations of OPG before and after levothyroxine replacement therapy in hypothyroid patients. J Endocrinol Invest. 2005;28:965-972. 20. Monzani F, Caraccio N, Kozakowa M, et al. Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: a double-blind placebo-controlled study. J Clin Endocrinol Metab. 2004;89:2099-2106. 21. Hak AE, Pols HA, Visser TJ, et al. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med. 2000;132:270-278. 22. Imaizumi M, Akahoshi M, Ichimaru S et al. Risk for ischemic heart disease and all-cause mortality in subclinical hypothyroidism. J Clin Endocrinol Metab. 2004;89:3365-3370. 23. Rodondi N, Newman AB, Vittinghoff E, et al. Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch Intern Med. 2005;165:2460-2466. 24. Walsh JP, Bremner AP, Bulsara MK, et al. Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch Intern Med. 2005;165:2467-2472. 25. Cappola AR, Fried LP, Arnold AM, et al. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA. 2006;295:1033-1041. 26. Rodondi N, Bauer DC, Cappola AR, et al. Subclinical thyroid dysfunction, cardiac function, and risk of heart failure. The Cardiovascular Health Study. J Am Coll Cardiol. 2008;52:1152-1159. 27. Rodondi N, den Elzen WP, Bauer DC, et al. Subclinical hypothyroidism and the risk of coronary artery disease and mortality. JAMA. 2010;304: 1365-1374. 28. Gussekloo J, van Exel E, de Craen AJ, et al. Thyroid status, disability and cognitive function, and survival in old age. JAMA. 2004;292:2591-2599. 29. Joffe RT, Levitt AJ. Major depression and subclinical (grade 2) hypothyroidism. Psychoneuroendocrinology. 1992;17:215-221. 30. Haggerty JJ, Stern RA, Mason GA, et al. Subclinical hypothyroidism; a modifiable risk factor for depression? Am J Psychiatry. 1993;150:508-510. 31. Pop VJ, Maartens LH, Leusink G, et al. Are autoimmune thyroid dysfunction and depression related? J Clin Endocrinol Metab. 1998;83:3194-3197. 32. Tan ZS, Beiser A, Vasan RS, et al. Thyroid function and the risk of Alzheimer disease: the Framingham Study. Arch Intern Med. 2008;168:1514-1520. 33. Parle J, Roberts L, Wilson S, et al. A randomized controlled trial of the effect of thyroxine replacement on cognitive function in community-living elderly subjects: The Birmingham Thyroid Elderly Study. J Clin Endocrinol Metab. 2010;93:3623-3632. 34. Fox CS, Pencina MJ, D Agostino RB, et al. Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community based sample. Arch Intern Med. 2008;168:587-592. 35. Monzani F, Caraccio N, Del Guerra P, et al. Neuromuscular symptoms and dysfunction in subclinical hypothyroid patients: beneficial effect of L-T4 replacement therapy. Clin Endocrinol (Oxf). 1999;51:237-242. 36. Simonsick EM, Nedwman AB, Ferrucci L, et al. Subclinical hypothyroidism and functional mobility in older adults. Arch Intern Med. 2009;169:2011-2017. 37. Haddow JE, Palomaki GE, Allan WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341:549-555. 38. Cooper DS, Halpern R, Wood LC, et al. L-Thyroxine therapy in subclinical hypothyroidism. A double-blind, placebo-controlled trial. Ann Intern Med. 1984;101:18-24. 39. Nystrom E, Caidahl K, Fager G, et al. A doubleblind cross-over 12-month study of L-thyroxine treatment of women with subclinical hypothyroidism. Clin Endocrinol. 1988;29:63-75. 40. Jaeschke R, Goyatt G, Gerstein H, et al. Does treatment with L-thyroxine influence health status in middle-aged and older patients with subclinical hypothyroidism? J Gen Intern Med. 1996;11:744-749. 41. Meier C, Staub JJ, Roth CB, et al. TSH-controlled L-thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel Thyroid Study). J Clin Endocrinol Metab. 2001:86:4860-4866. 42. Caraccio N, Ferannini E, Monzani R. Lipoprotein profile in subclinical hypothyroidism: response to levothyroxine replacement, a randomized placebo-controlled study. J Clin Endocrinol Metab. 2002; 87:1533-1538. 43. Kong WM, Sheikh MH, Lumb PJ, et al. A 6-month randomized trial of thyroxine treatment in women with mild subclinical hypothyroidism. Am J Med. 2002;112:348-354. 44. Jorde R, Waterloo K, Storhaug H, et al. Neuropsychological function and symptoms in subjects with subclinical hypothyroidism and the effect of thyroxine treatment. J Clin Endocrinol Metab. 2006; 91:145-53. 45. Razvi S, Ingoe L, Keeka G, et al. The beneficial effect of L-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hyperthyroidism: randomized, controlled trial. J Clin Endocrinol Metab. 2007;92:1715-1723. 46. Saravanan P, Chau WF, Roberts N, et al. Psychological well-being in patients on adequate doses of L-thyroxine: results of a large, controlled communitybased questionnaire study. Clin Endocrinol (Oxf). 2002;57:577-585. 47. Escabor-Morreale HF, Botella-Carretero JI, Gomez-Bueno M, et al. Thyroid hormone replacement therapy in primary hypothyroidism: a randomized trial comparing L-thyroxine plus liothyronine with L-thyroxine alone. Ann Intern Med. 2005;142:412-424. 48. Paniker V, Saravanan P, Vaidya B, et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine treatment in hypothyroid patients. J Clin Endocrinol Metab 2009;94:1623-1629. 49. Carr D, McLeod DT, Parry G, Thornes HM. Fine adjustment of thyroxine replacement dosage: comparison of the thyrotrophin releasing hormone test using a sensitive thyrotrophin assay with measurement of free thyroid hormones and clinical assessment. Clin Endocrinol (Oxf). 1988;28:325-333. 50. Walsh JP, Ward LC, Burke V, et al. Small changes in thyroxine dosage do not produce measurable changes in hypothyroid symptoms, well-being, or quality of life: results of a double-blind, randomized clinical trial. J Clin Endocrinol Metab. 2006;91: 2624-2630. 51. Saravanan P, Simmons DJ, Greenwood R, et al. Partial substitution of thyroxine (T4) with triiodothyronine in patients on T4 replacement therapy: results of a large community-based randomized controlled trial. J Clin Endocrinol Metab. 2005;90:805-812. 52. Pollack MA, Sturrock A, Marshall K, et al. Thyroxine treatment in patients with symptoms of hypothyroidism but thyroid function tests within the reference range: randomized double-blind placebocontrolled crossover trial. BMJ. 2001;323:891-895. 53. Somwaru LL, Arnold AM, Joshi N, et al. High frequency of and factors associated with thyroid hormone over-replacement and under-replacement in men and women aged 65 and over. J Clin Endocrinol Metab. 2009;94:1342-1345. 54. Razvi S, Weaver JU, Vanderpump MP, et al. The incidence of ischemic heart disease and mortality in people with subclinical hypothyroidism: reanalysis of the Whickham Survey cohort. J Clin Endocrinol Metab. 2010;95:1734-1740. 55. Negro R. Schwartz A, Gismondi R, et al. Increased pregnancy loss rate in thyroid antibody negative women with TSH levels between 2.5 and 5.0 in the first trimester of pregnancy. J Clin Endocrinol Metab. 2010;95:E44-E48. november 2011 consultant 775