Vascular Medicine. Sustained Benefit at 2 Years of Primary Femoropopliteal Stenting Compared With Balloon Angioplasty With Optional Stenting

Similar documents
journal of medicine The new england Balloon Angioplasty versus Implantation of Nitinol Stents in the Superficial Femoral Artery Abstract

Department of Cardiology, The Cardiovascular Institute, Roppongi, Minato-ku, Tokyo, , Japan

Comparison Of Primary Long Stenting Versus Primary Short Stenting For Long Femoropopliteal Artery Disease (PARADE)

A Data-driven Therapeutic Algorithm For Choosing Among Currently Available Tools For SFA Intervention

The present status of selfexpanding. for CLI: Why and when to use. Sean P Lyden MD Cleveland Clinic Cleveland, Ohio

The Final Triumph Of Endovascular Therapy In SFA Treatment

Clinical and morphological features of patients who underwent endovascular interventions for lower extremity arterial occlusive diseases

Current Status and Limitations in the Treatment of Femoropopliteal In-Stent Restenosis

2-YEAR DATA SUPERA POPLITEAL REAL WORLD

Brachytherapy for In-Stent Restenosis: Is the Concept Still Alive? Matthew T. Menard, M.D. Brigham and Women s Hospital Boston, Massachussetts

TOBA II 12-Month Results Tack Optimized Balloon Angioplasty

Accurate Vessel Sizing Drives Clinical Results. IVUS In the Periphery

John E. Campbell, MD Assistant Professor of Surgery and Medicine Department of Vascular Surgery West Virginia University, Charleston Division

The Crack and Pave technique for highly resistant calcified lesions. Manuela Matschuck MD University Hospital Leipzig Department Angiology

The ZILVERPASS study a randomized study comparing ZILVER PTX stenting with Bypass in femoropopliteal lesions

Outcomes Of DCB Use In Real World Registries: 2 Year Results From The INPACT Global Registry

Hypothesis: When compared to conventional balloon angioplasty, cryoplasty post-dilation decreases the risk of SFA nses in-stent restenosis

New Data to Shape the Era of Drug Elution in Peripheral Interventions

Robert W. Fincher, DO The Ritz-Carlton, Dove Mountain Marana, Arizona February 7th, 2015

Drug-Coated Balloon Treatment for Patients with Intermittent Claudication: Insights from the IN.PACT Global Full Clinical Cohort

Utility of new classification based on clinical and lesional factors after self-expandable nitinol stenting in the superficial femoral artery

Evidence-Based Optimal Treatment for SFA Disease

Promise and limitations of DCB in long lesions What Have we Learned from Clinical Trials? Ramon L. Varcoe, MBBS, MS, FRACS, PhD

Original Article INTRODUCTION

PAD and CRITICAL LIMB ISCHEMIA: EVALUATION AND TREATMENT 2014

Paclitaxel Drug-Eluting Stents in Peripheral Arterial Disease: A Health Technology Assessment

Making BTK Interventions more Durable: Are DES and DCB the answer? Thomas Zeller, MD

Drug eluting stents and balloons in peripheral arterial disease A.T.O. ABDOOL-CARRIM UNIVERSITY OF WITWATERSRAND

THE NEW ARMENIAN MEDICAL JOURNAL

Management of In-stent Restenosis after Lower Extremity Endovascular Procedures

Specificities for infrapopliteal stents

Interventional Cardiology

Clinical Data Update for Drug Coated Balloons (DCB) Seung-Whan Lee, MD, PhD

Disclosures. In the DCB Era, How Do I Choose To Use a Stent? When to Stent and What Devices to Use in the SFA

Potential Conflicts of Interest

The incidence of peripheral artery disease (PAD)

Tools and options for recanalisation of long-femoro-popliteal segments

MEET M. Bosiers K. Deloose P. Peeters. SFA stenting in 2009 : The good and the ugly What factors influence patency?

Dierk Scheinert, MD. Department of Angiology University Hospital Leipzig, Germany

Lessons learnt from DES in the SFA is there any ideal concept so far?

Angiographic dissection pattern and patency outcomes of post balloon angioplasty for SFA lesions -a retrospective multi center analysis-

Lessons & Perspectives: What is the role of Cryoplasty in SFA Intervention?

Christian Wissgott MD, PhD Assistant Director, Radiology Westküstenkliniken Heide

Long Lesions: Primary stenting or DCB first? John Laird MD Adventist Heart and Vascular Institute, St. Helena, CA

Initial Clinical Experience with a Novel Dedicated Cobalt Chromium Stent for the Treatment of Below-the-knee Arterial Disease

Update in femoral angioplasty & stenting PRO

Merits and demerits of DES, DEB or covered stent in lower extremity arterial occlusive disease 성균관의과대학삼성서울병원순환기내과최승혁

Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg

Medical therapy after angioplasty / stenting

Treatment of Complex Atherosclerotic Popliteal Artery Disease With a New Self-Expanding Interwoven Nitinol Stent

Drug-Eluting Balloon Angioplasty versus Bare Metal Stents for Femoropopliteal Disease in Real-World Experience

The ZILVERPASS study a randomized study comparing ZILVER PTX stenting with Bypass in femoropopliteal lesions Preliminary report

Endovascular Therapy vs. Open Femoral Endarterectomy Rationale and Design of the Randomized PESTO Trial

Update on the Ranger clinical trial programme

Neuestes aus der Therapie der pavk. beschichtete Stents + Ballons. Karls-University. Eberhard-Karls. of Tubingen Department of Diagnostic Radiology

12-month Outcomes of Post Dilatation in the IN.PACT Global CTO Cohort. Gunnar Tepe, MD RodMed Clinic Rosenheim Rosenheim, Germany

Which Stent Is Best for Various Femoropopliteal Anatomy? 2018 Pacific Northwest Endovascular Conference June 15-26, 2018 Seattle, WA

COMPARE-Pilot RCT: 1-year results of a randomised comparison of RANGER DCB vs. IN.PACT DCB in complex SFA lesions. Dierk Scheinert

Olive registry: 3-years outcome of BTK intervention in Japan. Osamu Iida, MD Kansai Rosai Hospital Amagasaki, Hyogo, Japan

Latest Insights from the LEVANT II study and sub-group analysis

Update from Korea on the Lutonix SFA registry 12 month data

The BATTLE Trial Comparing Bare Metal to Drug Eluting Stents for Intermediate Length Lesions of the SFA

The latest evidences from the DES trials in peripheral arterial disease

Utility of Image-Guided Atherectomy for Optimal Treatment of Ambiguous Lesions by Angiography

Final Results of the Feasibility Study for the Drug-coated Chocolate Touch PTA balloon. (The ENDURE Trial)

BIOLUX P-III Passeo-18 Lux All-comers Registry: 12-month Results for the All-Comers Cohort

Extreme SFA Lesions: DETOUR I 12- Month Results in Lesions >30cm. Sean Lyden, MD Chairman Vascular Surgery Cleveland Clinic Cleveland, Ohio

The Utility of Atherectomy and the Jetstream Atherectomy System

Efficacy of Cilostazol After Endovascular Therapy for Femoropopliteal Artery Disease in Patients With Intermittent Claudication

Alternative concepts for drug delivery in BTK arteries the LIMBO project

Comparison of Angiographic Dissection Patterns Caused by Long vs Short Balloons During Balloon Angioplasty for Chronic Femoropopliteal Occlusions

Long-term results with interwoven nitinol stents vs. BMS vs. DCB

Prospective, randomized controlled study of paclitaxel-coated versus plain balloon angioplasty for the treatment of failing dialysis access

Massimiliano Fusaro, MD on behalf of ISAR-STATH Investigators. Deutsches Herzzentrum München, Technische Universität München Munich - Germany

Endovascular treatment (EVT) has markedly advanced,

Final Results of the Feasibility Study for the Drug-coated Chocolate Touch PTA balloon. (The ENDURE Trial)

Treating In-Stent Restenosis with Brachytherapy: Does it Actually Work?

The importance of scientific evidence. Prof. I. Baumgartner Head Clinical & Interventional Angiology University Hospital Bern

Future Algorithm for Lower Extremity Revascularization: Where Does Vessel Prep Fit?

DO NOT DUPLICATE. Critical limb ischemia (CLI) has been defined as patients with chronic. Endovascular Interventions for Limb Salvage REVIEW

Disclosures. In-Stent Restenosis: The Tail IS Wagging the Dog 4/15/2016. Restenosis: The Continuing Challenge for Peripheral Vascular Intervention

Disclosures. Carotid artery stenting. Surveillance after Endovascular Intervention: When to Re-Intervene and What s the Evidence

DCB use in fem-pop lesions of patients with CLI (RCC 4-5): subgroup analysis of IN.PACT Global 12-month outcomes

Cutting/scoring balloon Cryoplasty Drug-eluting balloon Brachytherapy Debulking Restent (BMS or DES) John R. Laird, MD

Below-knee Bare Nitinol Stent Placement in High-risk Patients with Critical Limb Ischaemia and Unlimited Supragenicular Inflow as Treatment of Choice

Turbo-Power. Laser atherectomy catheter. The standard. for ISR

Atherectomy: Jetstream and Directional. George S. Chrysant, M.D.

Is a Stent or Scaffold Necessary in The SFA?

Paclitaxel-coated versus Plain Balloon Angioplasty in the Treatment of Infrainguinal Vein Bypass Stenosis

Michael K. W. Lichtenberg MD, FESC on behalf of KANSHAS 1 investigators; Tepe G, Müller-Hülsbeck S, Deloose K, Verbist J, Goverde P, Zeller T

The latest generation DEB

Lutonix DCB in BTK Update on the BTK real world registry and RCT

LIBERTY 360 Study. 15-Jun-2018 Data 1. Olinic Dm, et al. Int Angiol. 2018;37:

On behalf of the DURABILITY Investigators:

Peripheral Arterial Disease: the growing role of endovascular management

Plaque Excision Infrainguinal PAD An update on this nonstenting alternative, with intermediate-term results of the ongoing TALON Registry.

Poor Inter-observer Agreement on the TASC II Classification of Femoropopliteal Lesions *

The Role of Lithotripsy in Solving the Challenges of Vascular Calcium. Thomas Zeller, MD

Transcription:

Vascular Medicine Sustained Benefit at 2 Years of Primary Femoropopliteal Stenting Compared With Balloon Angioplasty With Optional Stenting Martin Schillinger, MD; Schila Sabeti, MD; Petra Dick, MD; Jasmin Amighi, MD; Wolfgang Mlekusch, MD; Oliver Schlager, MD; Christian Loewe, MD; Manfred Cejna, MD; Johannes Lammer, MD; Erich Minar, MD Background Primary stenting with self-expanding nitinol stents of the superficial femoral artery yielded improved morphological and clinical results compared with balloon angioplasty with optional stenting until 12 months in a randomized controlled trial. We now report 2-year data on restenosis and clinical outcomes of these patients. Methods and Results Of 104 patients with chronic limb ischemia and superficial femoral artery obstructions, 98 (94%) could be followed up until 2 years after intervention for occurrence of restenosis ( 50%) by duplex ultrasound and for clinical and hemodynamic outcome by treadmill walking distance and ankle brachial index. Restenosis rates at 2 years were 45.7% (21 of 46) versus 69.2% (36 of 52) in favor of primary stenting compared with balloon angioplasty with optional secondary stenting by an intention-to-treat analysis (P 0.031). Consistently, stenting (whether primary or secondary; n 63) was superior to plain balloon angioplasty (n 35) with respect to the occurrence of restenosis (49.2% versus 74.3%; P 0.028) by a treatment-received analysis. Clinically, patients in the primary stent group showed a trend toward better treadmill walking capacity (average, 302 versus 196 m; P 0.12) and better ankle brachial index values (average, 0.88 versus 0.78; P 0.09) at 2 years, respectively. Reintervention rates tended to be lower after primary stenting (17 of 46 [37.0%] versus 28 of 52 [53.8%]; P 0.14). Conclusions At 2 years, primary stenting with self-expanding nitinol stents for the treatment of superficial femoral artery obstructions yields a sustained morphological benefit and a trend toward clinical benefit compared with balloon angioplasty with optional stenting. (Circulation. 2007;115:2745-2749.) Key Words: arteriosclerosis balloon peripheral vascular disease restenosis stents Self-expanding nitinol stents seemed to improve the midterm durability of endovascular revascularization of the superficial femoral artery (SFA). 1 6 The randomized Balloon Angioplasty Versus Stenting With Nitinol Stents in the Superficial Femoral Artery (ABSOLUTE) trial compared primary stenting with self-expanding nitinol stents against balloon angioplasty with optional stenting for treatment of SFA disease in 104 patients with chronic limb ischemia and an average length of the treated segments of 132 and 127 mm, respectively. 1 Until 12 months, primary stenting yielded morphological and clinical benefit with respect to restenosis rates, walking capacity on the treadmill, and resting ankle brachial indexes. 1 After 12 months, however, the effects of primary nitinol stent implantation in the SFA were unclear, and a catch-up phenomenon of late restenosis in the stent group remained a matter of substantial concern. Clinical Perspective p 2749 We followed up patients from the ABSOLUTE trial until 2 years after intervention for morphological, clinical, and hemodynamic outcome by duplex ultrasound, walking capacity on the treadmill, ankle brachial index at rest, and clinically driven target vessel revascularization. Methods Study design and inclusion and exclusion criteria have been reported. 1 Briefly, we enrolled 104 patients with symptomatic peripheral artery disease (PAD) with severe intermittent claudication (Rutherford class 3) or chronic critical limb ischemia with either rest pain (Rutherford class 4) or ischemic ulcers (Rutherford class 5) and a 50% stenosis or occlusion of the ipsilateral SFA with a target lesion length 30 mm and at least 1 patent ( 50% stenosis) tibioperoneal runoff vessel. Exclusion criteria were acute critical limb ischemia, previous bypass surgery, or stenting of the SFA; Received January 3, 2007; accepted February 23, 2007. From the Departments of Angiology (M.S., S.S., P.D., J.A., W.M., O.S., E.M.) and Cardiovascular and Interventional Radiology (C.L., M.C., J.L.), Medical University, Vienna, Austria. Clinical trial registration information URL: http://www.clinicaltrials.gov. Unique identifier: NCT00281060. Correspondence to Martin Schillinger, MD, Department of Internal Medicine II, Division of Angiology, Vienna General Hospital, Medical University, Waehringer Guertel 18 20, A-1090 Vienna, Austria. E-mail martin.schillinger@meduniwien.ac.at 2007 American Heart Association, Inc. Circulation is available at http://www.circulationaha.org DOI: 10.1161/CIRCULATIONAHA.107.688341 2745

2746 Circulation May 29, 2007 TABLE 1. Demographic Data and Clinical Characteristics of 98 Patients With PAD Randomized to Primary Stenting or Balloon Angioplasty With Optional Secondary Stenting of Atherosclerotic Obstruction in the SFA Stent (n 46) PTA (n 52) P Age, y 64 (9) 67 (10) 0.15 Male sex, n (%) 27 (59) 24 (46) 0.30 Body mass index, kg/m 2 27.5 (3.9) 27.4 (4.0) 0.80 Family history of atherosclerosis, n (%) 24 (52) 30 (58) 0.73 Hypertension, n (%) 44 (96) 46 (89) 0.35 Hyperlipidemia, n (%) 43 (94) 47 (90) 0.85 Diabetes mellitus, n (%) 20 (44) 16 (31) 0.28 Current smoking, n (%) 26 (57) 19 (37) 0.075 Coronary artery disease, n (%) 32 (70) 39 (75) 0.71 History of myocardial infarction, n (%) 9 (20) 4 (8) 0.15 History of stroke, n (%) 1 (2) 4 (8) 0.44 Clinical stage of PAD: Rutherford class, n (%) 0.86 3 (intermittent claudication) 42 (91) 46 (89) 4 (ischemic rest pain) 1 (2) 2 (4) 5 (ischemic ulcers) 3 (7) 4 (7) Side of treatment, left/right 24/22 26/26 0.99 Maximum walking distance on treadmill, m* 88 (50 139) 86 (49 128) 0.41 Baseline ankle brachial index 0.58 (0.19) 0.54 (0.20) 0.28 PTA indicates balloon angioplasty with optional secondary stenting. Metric data are given as mean (SD) or median (IQR) when appropriate. *Walking distance was assumed to be 0 in patients with critical limb ischemia and ischemic rest pain or ischemic ulcers. untreated inflow disease of the ipsilateral pelvic arteries ( 50% stenosis or occlusions); and known intolerance of study medications or contrast agent. In patients randomized to stenting, primary stent implantation without predilation was anticipated. Predilation with undersized balloons was performed restrictively in patients with very tight stenosis or heavily calcified occlusions, which did not allow primary passage with the introducer device of the stents. Stents were implanted covering the margins of the target lesion for 10 mm proximal and distal. In case of multiple stents, the margins of the stents were overlapped for 10 mm. Postdilation after stenting was performed strictly within the stented segment with the balloon diameter corresponding to the proximal nondiseased vessel area with up to 10% oversizing. In patients randomized to balloon angioplasty, the balloon diameter corresponded to the proximal nondiseased vessel area. The minimal time for each balloon inflation was 2 minutes at 10 to 12 atm. After dilation of the entire target segment, biplane control angiograms were obtained. In cases with a suboptimal primary result, defined as a residual stenosis 30% or the presence of a flowlimiting dissection in the worst-view angiogram, a second prolonged balloon dilation of the entire target segment was performed with inflation times exceeding 2 minutes. In patients with persistent suboptimal results after the second prolonged balloon dilation, secondary stenting was performed. For all stent implantations in both groups, self-expandable nitinol stents (Dynalink/Absolute, Guidant, Santa Clara, Calif) with a nominal diameter of 6 mm were used. All patients received acetylsalicylic acid 100 mg daily continuously and clopidogrel 75 mg daily for 3 months after intervention. Acetylsalicylic acid and clopidogrel were initiated at least 2 days before the intervention; otherwise, a loading dose of 300 mg clopidogrel was given during the intervention. Patients were followed up until 2 years after intervention. Twentyfour months ( 1 month) after the index procedure, systematic reexaminations could be performed in 98 of 104 patients (4 patients died, 2 refused or were unable to participate in the follow-up examinations), including staging of PAD according to the Rutherford classification, 7 measurement of resting ankle brachial index, treadmill walking exercise testing (3.2 km/h at 12 slope), and colorcoded duplex sonography for determination of restenosis. 8 The degree of restenosis by duplex ultrasound in the femoropopliteal segment was classified using the peak velocity ratio. Peak velocity ratio was derived by dividing the peak systolic velocity in the stenotic segment by the peak systolic velocity in the preceding normal segment or, in patients with multiple stenoses, in the adjacent distal segment. A peak velocity ratio 2.4 was predefined as 50% stenosis. 8 Within the ABSOLUTE trial, agreement for binary restenosis between duplex ultrasound and angiography at 6 months was excellent ( 0.91; 95% CI, 0.85 to 0.97). Clinically driven target vessel revascularization until 24 months was recorded. Statistical Methods Metric data are given as mean SD or, in the case of nonnormal distributions or censored data sets, as medians and interquartile range (IQR; range from the 25th to the 75th percentile) and were analyzed by Mann-Whitney U tests. Proportions were compared by 2 statistics using Yates corrections. Multivariable logistic regression analysis was applied to assess the association between treatment group and restenosis at 24 months and to adjust for potentially confounding factors. Multiplicative interaction terms and loglikelihood ratio tests were used to test for interactions. We converted the odds ratios derived from the multivariate model to risk ratios with 95% confidence intervals. Time-dependent outcomes were analyzed by the Kaplan-Meier method and compared by log-rank tests. Calculations were performed with Stata release 8.0 (Stata Inc, College Station, Tex). The authors had full access to and take full responsibility for the integrity of the data. All authors have read and agree to the manuscript as written. Results Demographic data and clinical and interventional characteristics of the 98 patients with complete 2-year data are shown

Schillinger et al ABSOLUTE Trial 2-Year Data 2747 TABLE 2. Baseline Angiographic and Interventional Data of 98 Patients Randomized to Primary Stenting or Balloon Angioplasty With Optional Secondary Stenting of Atherosclerotic Obstruction in the SFA Stent (n 46) PTA (n 52) P Length of the target lesion, mm 112 (77) 93 (65) 0.08 Degree of stenosis, % 90 (10) 90 (10) 0.55 Occlusions, n (%) 19 (41) 16 (31) 0.38 Target lesion calcification, n (%)* 0.68 None or mild 9 (20) 7 (13) Moderate 26 (56) 30 (58) Severe 11 (24) 15 (29) No. of crural runoff vessels, n (%) 0.39 1 5 (11) 11 (21) 2 17 (37) 17 (33) 3 24 (52) 24 (46) Crossover access, n (%) 36 (78) 39 (75) 0.88 Duration of fluoroscopy, min 15 (8) 14 (5) 0.81 Amount of contrast agent, ml 180 (60) 180 (60) 0.78 Stents used, n (%) 46 (100) 17 (33) 0.01 No. of stents used, n (%) 0.01 0 35 (67) 1 25 (54) 9 (17) 2 13 (28) 6 (12) 3 3 (7) 1 (2) 4 4 (9) 1 (2) 5 1 (2) Length of the treated segment, mm 138 (71) 117 (56) 0.18 Peripheral emboli, n (%) 0 1 (2) 0.99 Major complications, n (%) 0 0 PTA indicates balloon angioplasty with optional secondary stenting. Data are given as mean (SD) when appropriate. *By fluoroscopy. in Tables 1 and 2. By an intention-to-treat analysis, restenosis rates at 2 years were 45.7% (21 of 46) versus 69.2% (36 of 52) in favor of primary stenting compared with balloon angioplasty with optional stenting (P 0.03). Figure 1 shows the occurrence of restenosis in both treatment groups until 24 months after intervention. Multivariable analysis confirmed a significantly reduced risk for restenosis at 2 years for primary stenting (adjusted risk ratio, 0.52; 95% confidence interval, 0.24 to 0.93) after adjustment for age, gender, diabetes mellitus, smoking, PAD stage, and lesion length. No interaction between treatment group, restenosis, and PAD stage or length of the lesion was observed, indicating that the benefit of stenting did not vary by these strata. Ultrasound data other than binary restenosis showed no significant difference between the 2 groups. In patients with restenosis, median peak systolic velocity levels after primary stenting versus balloon angioplasty with optional stenting were 3.3 (IQR, 2.7 to 5.5) versus 3.6 (IQR, 2.9 to 6.3), respectively (P 0.60). Lengths of the restenotic segments in the 2 groups also were comparable (median, 50 mm [IQR, 10 to 100 mm] versus 50 mm [IQR, 20 to 100]; P 0.83). Clinically, Rutherford stages of PAD at 2 years were almost identical in the 2 groups: In the primary stent versus balloon angioplasty groups, 40.0% and 39.6% were asymptomatic, 56.5% and 56.3% had intermittent claudication, and 4.4% and 4.2% had critical limb ischemia, respectively (P 0.74). However, patients in the primary stent group showed a trend toward better walking capacity on the treadmill [302 m (IQR, 99 to 700) versus 196 m (IQR, 77 to 355); P 0.12] and better ankle brachial index values [0.88 (SD, 0.18) versus 0.78 (SD, 0.17); P 0.09]. Reinterventions included 12 balloon angioplasties, 2 stent implantations, and 3 bypass operations in the primary stent group compared with 20 balloon angioplasties, 8 stent implantations, and 0 bypass operations in patients who underwent initially balloon angioplasty with optional stenting. Overall, reintervention rates tended to be lower after primary stenting compared with balloon angioplasty with optional secondary stenting (17 of 46 [37.0%] versus 28 of 52 [53.8%]; P 0.14). Figure 2 gives an overview of clinically driven target vessel revascularization during the course of the study. At 2 years, freedom from restenosis, including target vessel revascularization, was nonsignificantly different with 78.3% (36 of 46) in the primary stent group versus 65.4% (34 of 52) in the balloon angioplasty with optional secondary stenting group (P 0.24), respectively. One minor amputation had to be performed in a patient treated within the balloon angioplasty group. Stent fractures were not systematically

2748 Circulation May 29, 2007 Figure 1. Freedom from restenosis ( 50%) in 98 patients with chronic limb ischemia and femoropopliteal obstructions randomized to primary stent implantation (Stent) vs balloon angioplasty with optional stenting (PTA). assessed at 24 months; however, no new stent fractures were detected in patients undergoing reinterventions between months 12 and 24. By a treatment-received analysis, stent implantation (whether primary or secondary) was superior to plain balloon angioplasty with respect to the occurrence of restenosis at 2 years (31 of 63 [49.2%] versus 26 of 35 [74.3%]; P 0.03). Clinically, Rutherford stages of PAD at 2 years were not significantly different between the 2 groups: In the stent versus balloon groups, 43.3% and 33.3% were asymptomatic, 51.7% and 63.6% had intermittent claudication, and 5.0% and 3.0% had critical limb ischemia, respectively (P 0.53). Similarly, patients in the stent group showed no significant difference in walking capacity on the treadmill (268 m [IQR, 89 to 700] versus 189 m [IQR, 79 to 329]; P 0.25) and ankle brachial index values (0.84 [SD, 0.19] versus 0.77 [SD, 0.16]; P 0.36] compared with patients after plain balloon angioplasty. Reintervention rates tended to be lower after stenting compared with balloon angioplasty, but this also was not statistically significant (26 of 63 [41.3%] versus 19 of 35 [54.3%]; P 0.30). Discussion At 2 years, we found a sustained benefit of primary stent implantation with self-expanding nitinol stents for the treatment of symptomatic SFA obstructions compared with plain balloon angioplasty with optional stenting. Restenosis occurred significantly less often after primary implantation of nitinol stents and translated into a tendency for better clinical outcomes. These data favor the use of nitinol stents for endovascular revascularization of long SFA lesions. Nevertheless, a 45% restenosis rate in stented patients at 2 years underlines the need for further improvement of the devices. In patients with critical limb ischemia, endovascular and surgical revascularization revealed equal outcomes with respect to limb salvage at 2 years in the Bypass Surgery Versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial. 9 Putting together these findings and our recent observation, long-segment SFA disease in patients with critical limb ischemia seems an acceptable indication for stent implantation because stenting is suggested to further improve the clinical results of plain balloon angioplasty observed in the BASIL trial. In patients with intermittent claudication, occurrence of restenosis in 45% of the patients at 2 years remains problematic. Nevertheless, in the primary stent group, freedom from restenosis at 2 years after reinterventions could be achieved in 78%. Endovascular treatment of long-segment SFA disease therefore seems a reasonable treatment option for patients with disabling claudication. If treated by endovascular means, primary stenting seems to be the therapy of choice to improve the durability of interventional success and to reduce the need for reinterventions. The rates of restenosis observed in the ABSOLUTE trial seem high compared with the midterm findings from the Sirolimus Coated Cordis SMART Nitinol Self-expandable Stent for the Treatment of Obstructive Superficial Femoral Artery Disease (SIROCCO) trial. 10 Duda et al 10 reported only 21% restenoses at 24 months in the bare metal stent group of SIROCCO using the SMART self-expanding nitinol stent (Cordis, Johnson & Johnson, Miami Lakes, Fla). However, average lesion length in SIROCCO was 83 mm, 10 shorter than in the ABSOLUTE trial. Furthermore, in the present study, only 6-mm stents were used; reduced restenosis rates might have been achieved by the use of larger stents, particularly in patients with large arteries. A direct, nonrandomized comparison of the 2 devices at our institution revealed no significant differences in patency and clinical outcome in SFA lesions 100 mm long. 11 Nevertheless, randomized head-to-head Figure 2. Freedom from target vessel revascularization (TVR) in 98 patients with chronic limb ischemia and femoropopliteal obstructions randomized to primary stent implantation (Stent) vs balloon angioplasty with optional stenting (PTA).

Schillinger et al ABSOLUTE Trial 2-Year Data 2749 comparisons between different products are deemed necessary to assess whether different stents yield different restenosis rates. With regard to the timing of restenosis, it seems remarkable that the vast majority of restenoses occurred during the initial 12 months after treatment. In the stent and angioplasty groups, the incidences of late restenosis from months 12 to 24 were only 9% and 6%, respectively. This suggests that after endovascular treatment of peripheral arteries, the activity of the restenotic process may decrease with increasing time from the initial injury. Covered stent grafts, an alternative to bare stents, seem to be a promising endovascular treatment option. Kedora and colleagues 12 recently reported findings of a randomized comparison of percutaneous Viabahn stent grafts versus prosthetic femoropopliteal bypass in 86 patients. At 12 months, primary (74% versus 74%) and secondary (84% versus 84%) patency rates were identical in the endovascular and surgical groups. Particularly for treatment of long SFA lesions, stent graft implantation may be worth considering, as long as adequate outflow can be obtained to minimize the risk for stent graft thrombosis. Some limitations of the present study have to be recognized. The number of restenoses occurring from 12 to 24 months was quite low in both groups (4 and 3 events in the stent and balloon groups, respectively). Therefore, the limited power of the comparative analysis has to be acknowledged. Furthermore, at the 2-year follow-up, biplane x-ray investigations for evaluation of stent fractures were not available; therefore, the frequency and potential impact of material fatigue remain indeterminate. However, at least clinically, adverse events other than restenosis were not observed during the second year of follow-up. Conclusion At 2 years, primary stenting with self-expanding nitinol stents for treatment of SFA obstructions yields a sustained morphological and a trend toward clinical benefit compared with balloon angioplasty with optional stenting. Disclosures Dr Schillinger is on the speakers bureau for Guidant, Boston Scientific, and Cordis J&J, and is a consultant and on the advisory board for Guidant. Dr Minar is on the speakers bureau for Guidant, Boston Scientific, and Sanofi-Synthelabo. Dr Cejna is on the speakers bureau for Boston Scientific and is a consultant and on the advisory board for Cordis J&J. Dr Lamar is on the speakers bureau for Guidant. The other authors report no conflicts. References 1. Schillinger M, Sabeti S, Loewe C, Dick P, Amighi J, Schlager O, Mlekusch W, Cejna M, Lammer J, Minar E. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N Engl J Med. 2006;354:1879 1888. 2. Duda SH, Pusich B, Richter G, Landwehr P, Olivia VL, Tielbeek A, Wiesinger B, Hak JB, Tielemans H, Ziemer G, Cristea E, Lansky A, Beregi JP. Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease: six-months results. Circulation. 2002;106: 1505 1509. 3. Sabeti S, Mlekusch W, Amighi J, Minar E, Schillinger M. Primary patency of long segment self-expanding nitinol stents in the femoropopliteal arteries. J Endovasc Ther. 2005;12:6 12. 4. Lugmayr HF, Holzer H, Kastner M, Riedeksberger H, Auterith A. Treatment of complex arteriosclerotic lesions with nitinol stents in the superficial femoral and popliteal arteries: a midterm follow-up. Radiology. 2002;222:37 43. 5. Sabeti S, Schillinger M, Amighi J, Sherif C, Mlekusch W, Ahmadi R, Minar E. Patency of nitinol vs. Wallstents in the superficial femoral artery: a propensity score adjusted analysis. Radiology. 2004;232: 516 521. 6. Duda SH, Bosiers M, Lammer J, Scheinert D, Zeller T, Tielbeek A, Anderson J, Wiesinger B, Tepe G, Lansky A, Mudde C, Tielemans H, Beregi JP. Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J Vasc Interv Radiol. 2005;16:331 338. 7. Dormandy JA, Rutherford B. Management of peripheral arterial disease (PAD): TASC Working Group: TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg. 2000;31(pt 2):S1-S296. 8. Leiner T, Kessels A, Nelemans P, Vasbinder GB, de Haan MW, Kitslaar PE, Ho KY, Tordoir JH, van Engelshoven JM. Peripheral arterial disease: comparison of color duplex US and contrast-enhanced MR angiography for diagnosis. Radiology. 2005;235:699 708. 9. Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF, Fowkes FG, Gillepsie I, Ruckley CV, Raab G, Storkey H, for the BASIL Trial Participants. Bypass Surgery Versus Angioplasty in Severe Ischaemia of the Leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366:1925 1934. 10. Duda SH, Bosiers M, Lamme J, Scheinert D, Zeller T, Oliva V, Tielbeek A, Anderson J, Wiesinger B, Tepe G, Lansky A, Jaff MR, Mudde C, Tielemans H, Beregi JP. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superficial femoral artery: long-term results from the SIROCCO trial. J Endovasc Ther. 2006;13: 701 710. 11. Schlager O, Dick P, Sabeti S, Amighi J, Mlekusch W, Minar E, Schillinger M. Stenting of the superficial femoral artery: the dark sides: restenosis, clinical deterioration and fractures. J Endovasc Ther. 2005; 12:676 684. 12. Kedora J, Hohmann S, Garrett W, Munschaur C, Theune B, Gable D. Randomized comparison of percutaneous Viabahn stent grafts vs. prosthetic femoral-popliteal bypass in the treatment of superficial femoral arterial occlusive disease. J Vasc Surg. 2007;45:10 16. CLINICAL PERSPECTIVE Previously reported data from the Vienna Balloon Angioplasty Versus Stenting With Nitinol Stents in the Superficial Femoral Artery (ABSOLUTE) trial showed that primary stenting with self-expanding nitinol stents of the superficial femoral artery yielded improved morphological and clinical results after 12 months compared with balloon angioplasty with optional stenting. The present study reports the 2-year data on restenosis, as well as the clinical outcomes of these patients. We found a sustained benefit of primary stent implantation with self-expanding nitinol stents for the treatment of symptomatic obstructions of the superficial femoral artery compared with plain balloon angioplasty with optional stenting. Restenosis occurred significantly less often after primary implantation of nitinol stents, and this translated into a tendency for better clinical outcomes. These data favor the use of nitinol stents for endovascular revascularization of long superficial femoral artery lesions. Nevertheless, a 45% restenosis rate in stented patients at 2 years underlines the need for further improvement of the devices.