Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Philadelphia, PA, USA c

Similar documents
NEUROCOGNITIVE, OUTCOMES IN PKU: IT S TIME TO RAISE THE BAR

Molecular Genetics and Metabolism

Not intended for UK based media. Merck Announces Detailed 26-Week Results from Phase IIIb Study with Kuvan in children with PKU below 4 years of age

Merck KGaA, Darmstadt, Germany, Receives EU-Approval to Extend Kuvan Use to Children with PKU Below 4 Years of Age

Neurocognitive and Behavioral Issues in PKU

Revision Log. See Important Reminder at the end of this policy for important regulatory and legal information.

PKU, KUVAN, and Your Child Making smart choices for PKU treatment

Disclosure. I have no disclosures to mention

Committee Approval Date: August 15, 2014 Next Review Date: September 2015

4. FJ van Spronsen, GM Enns. Future treatment strategies in phenylketonuria. Molecular Genetics and Metabolism 99 (2010): S90 S95.

Extended tetrahydrobiopterin loading test in the diagnosis of cofactor-responsive phenylketonuria: A pilot study

M P---- Ph.D. Clinical Psychologist / Neuropsychologist

Chapter 1: What is PKU?

Phenylketonuria (PKU) the Biochemical Basis. Biol 405 Molecular Medicine

Nutritional factors affecting serum phenylalanine concentration during pregnancy for identical twin mothers with phenylketonuria

The neonatal tetrahydrobiopterin loading test in phenylketonuria: what is the predictive value?

Background and proposal for a pilot EQA scheme for pterins

Clinical aspects of pterin disorders

PKU, KUVAN, and You PKU treatment and support for adults and young adults

ESPEN Congress Madrid 2018

Treatment of AD with Stabilized Oral NADH: Preliminary Findings

Phenylketonuria (PKU) is an inherited metabolic disorder involving a group of genetic mutations that reduce the ability

Cognitive Impairment and Magnetic Resonance Changes in Multiple Sclerosis. Background

The What, Why and How of Large Neutral Amino Acids

Supplementary appendix

1 Cognitive, Psychological and Behavioral Assessment Based Evidence

2015 PKU Patient Survey Results. National PKU Alliance PO Box 501, Tomahawk, WI

Nuclear imaging of the human brain

Neuro degenerative PET image from FDG, amyloid to Tau

CRITICALLY APPRAISED PAPER

Recent Studies of Phenylketonuria By: Jennifer Gastelum Dr. Koni Stone Copyright 2014

Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University

Quantitation of Cerebral Glucose Utilization using the Arterial Input Function or the Standardized Uptake Value (SUV)

Brief Communication Nuclear Medicine. In-Uk Song, MD 1, Sang-Won Ha, MD 2, Young-Soon Yang, MD 2, Yong-An Chung, MD 3 INTRODUCTION

Detection Of Functional Significance of Coronary Stenoses Using Dynamic. Values Of Myocardial Blood Flow And Coronary Flow Reserve

AMERICAN ACADEMY OF PEDIATRICS. New Developments in Hyperphenylalaninemia. Committee on Nutrition

NEUROIMAGING IN PANS/PANDAS

Detecting neurocognitive impairment in HIV-infected youth: Are we focusing on the wrong factors?

Sapropterin dihydrochloride treatment in Turkish hyperphenylalaninemic patients under age four

Case Report of the PET Scan Changes and Clinical Effects of Testosterone in the Treatment of a Stroke Patient

Imaging of Alzheimer s Disease: State of the Art

Complete Recovery of Perfusion Abnormalities in a Cardiac Arrest Patient Treated with Hypothermia: Results of Cerebral Perfusion MR Imaging

Plenary Session 2 Psychometric Assessment. Ralph H B Benedict, PhD, ABPP-CN Professor of Neurology and Psychiatry SUNY Buffalo

New treatment options in PKU and future role of dietary treatment

CEREBRAL BLOOD FLOW AND METABOLISM

The Nervous System. Neuron 01/12/2011. The Synapse: The Processor

Photon Attenuation Correction in Misregistered Cardiac PET/CT

SUPPLEMENTARY MATERIAL. Table. Neuroimaging studies on the premonitory urge and sensory function in patients with Tourette syndrome.

Molecular Imaging and the Brain

Large neutral amino acids in the treatment of PKU: from theory to practice

SUPPLEMENTAL MATERIAL

Cranial Ultrasonography in Maple Syrup Urine Disease

Supplementary Online Content

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology

Clinical, molecular imaging and biomarker concordance in the diagnosis of Alzheimer s disease and vascular dementia

Dr Sneha Shah Tata Memorial Hospital, Mumbai.

New life Collage of nursing Karachi

Efficacy and safety of BH4 before the age of 4 years in patients with mild phenylketonuria

Original Articles. Pitfalls in the Management of Phenylketonuria in China LL YANG, HQ MAO, WF ZHANG, ZY ZHAO, RL YANG, XL ZHOU, XL HUANG, XW HUANG

Research Article The Association between EEG Abnormality and Behavioral Disorder: Developmental Delay in Phenylketonuria

COGNITIVE SCIENCE 17. Peeking Inside The Head. Part 1. Jaime A. Pineda, Ph.D.

INVESTIGATION THE PREVALENCE OF MUTATIONS IVS 10 AND R158Q IN A NUMBER OF IRANIAN PATIENTS WITH PKU

The Adverse Effect of Chemotherapy on the Developing Brain. Ellen van der Plas, PhD Research Fellow at SickKids

Body control systems. Let s start at the top: the human brain. The Cerebrum. The human brain. What parts of your brain are you using right now?

Working Memory: Critical Constructs and Some Current Issues. Outline. Starting Points. Starting Points

Yin-Hui Siow MD, FRCPC Director of Nuclear Medicine Southlake Regional Health Centre

Adaptive Design in CIAS

Subject Index. Band of Giacomini 22 Benton Visual Retention Test 66 68

Analysis of Neurotransmitters. Simon Heales

MALATTIA CARDIOVASCOLARE NELL ANZIANO DIABETICO. Diabete e demenza. Enzo Manzato

Phenylketonuria Jonathan Baghdadi and Evan Marlin

Amal Alamri. Phenylketonuria

POSITRON EMISSION TOMOGRAPHY (PET)

TWO NEW PRODUCTS FROM MOSS NUTRITION PHOSPHATIDYLSERINE AND DHA 710 SELECT

Biomarkers Workshop In Clinical Trials Imaging for Schizophrenia Trials

biological psychology, p. 40 The study of the nervous system, especially the brain. neuroscience, p. 40

Analysis of [ 11 C]L-deprenyl-D2 (DEP-D) brain PET studies

PHENYLKETONURIA. Debbie Galo

Reproducibility of Uptake Estimates in FDG PET: a Monte Carlo study

Positron Emission Tomography Imaging in Brain Injured Patients

Methods to examine brain activity associated with emotional states and traits

Children s Hospital of Philadelphia Annual Progress Report: 2010 Formula Grant

Supplementary Online Content

Wetware: The Biological Basis of Intellectual Giftedness

Medikal Fizik Çalışmaları

The Brain on ADHD. Ms. Komas. Introduction to Healthcare Careers

Scope Differences in brain activation patterns Differences observed in chemo-exposed vs. chemo-naive brains at rest Mechanistic Considerations

CSF Aβ1-42 predicts cognitive impairment in de novo PD patients

BCH Graduate Survey of Biochemistry

Early intervention in Bipolar Disorder

Cerebral Cortex 1. Sarah Heilbronner

Summary. Syndromic versus Etiologic. Definitions. Why does it matter? ASD=autism

Metabolic Disorders. Chapter Thomson - Wadsworth

Resistance to forgetting associated with hippocampus-mediated. reactivation during new learning

PROTEIN METABOLISM: SPECIFIC WAYS OF AMINO ACIDS CATABOLISM AND SYNTHESIS

Issues of Neuropsychological Assessment in International Settings

The Frontal Lobes. Anatomy of the Frontal Lobes. Anatomy of the Frontal Lobes 3/2/2011. Portrait: Losing Frontal-Lobe Functions. Readings: KW Ch.

Determining Medication Treatment. Neuropsychological Impairment Matter?

Transcription:

ORIGINAL ARTICLE J Clin Neurol 2013;9:151-156 Print ISSN 1738-6586 / On-line ISSN 2005-5013 http://dx.doi.org/10.3988/jcn.2013.9.3.151 Open Access A Pilot Study of Fluorodeoxyglucose Positron Emission Tomography Findings in Patients with Phenylketonuria before and during Sapropterin Supplementation Can Ficicioglu, a Jacob G Dubroff, b Nina Thomas, c Paul R Gallagher, d Jessica Burfield, a Christie Hussa, a Rebecca Randall, a Hongming Zhuang b a Children s Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Section of Biochemical Genetics, Philadelphia, PA, USA b Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Philadelphia, PA, USA c Department of Child and Adolescent Psychiatry and Behavioral Sciences, Philadelphia, PA, USA d Biostatistics Core, The Clinical and Translational Research Center, Philadelphia, PA, USA Background and PurposezzPET scanning with fluorodeoxyglucose (FDG-PET) is a non-invasive method that measures regional glucose metabolic rate. Phenylalanine (Phe) and its metabolites appear to impair several aspects of brain energy metabolism. 1) To evaluate brain glucose metabolism with FDG-PET imaging in phenylketonuria (PKU) patients before and 4 months after sapropterin therapy; 2) to evaluate neurodevelopmental changes, blood Phe levels and dietary Phe tolerance before and after sapropterin therapy; 3) to generate pilot data to assess the feasibility of evaluating brain glucose metabolism with FDG-PET imaging and to explore potential trends resulting from the administration of sapropterin therapy. Received November 10, 2012 Revised March 8, 2013 Accepted March 8, 2013 Correspondence Can Ficicioglu, MD, PhD The Children s Hospital of Philadelphia, Section of Biochemical Genetics, 3501 Civic Center Blvd. CTRB #9054, Philadelphia, PA 19104, USA Tel +1-215-590-3376 Fax +1-215-590-4297 E-mail ficicioglu@email.chop.edu MethodszzWe enrolled 5 subjects, ranged in age from 22 years to 51 years, with PKU. Subjects underwent FDG-PET brain imaging, blood tests for Phe and tyrosine levels, and neurocognitive evaluations before and 4 months after sapropterin therapy (20 mg/kg/day). All subjects Phe and tyrosine levels were monitored once a week during the study. Subjects kept 3 day diet records that allow calculation of Phe intake. ResultszzNone of the subjects responded to sapropterin therapy based on 30% decrease in blood Phe level. The data show that glucose metabolism appeared depressed in the cerebellum and left parietal cortex while it was increased in the frontal and anterior cingulate cortices in all five subjects. In response to sapropterin therapy, relative glucose metabolism showed significant increases in left Broca s and right superior lateral temporal cortices. Interestingly, there was corresponding enhanced performance in a phonemic fluency test performed during pre- and postneurocognitive evaluation. ConclusionszzFurther studies with a larger sample size are needed to confirm the above changes in both sapropterin non-responsive and responsive PKU patients. J Clin Neurol 2013;9:151-156 Key Wordszz phenylketonuria, sapropterin, fluorodeoxyglucose positron emission tomography. Introduction cc This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Phenylketonuria (PKU) is caused by a deficiency of phenylalanine (Phe) hydroxylase, which utilizes tetrahydrobiopterin (BH4) as a cofactor and converts Phe to tyrosine. 1 PKU can cause severe mental retardation; however, implementation of a Phe-restricted diet shortly after birth prevents many of the neurologic manifestations of PKU. 1 PKU patients may have difficulties with executive function, attention, emotional lability, and depression 2 in spite of diet treatment. Although the Copyright 2013 Korean Neurological Association 151

PKU and Sapropterin causes of brain damage, neurocognitive dysfunction or depression in PKU remain unknown, some data point to impaired protein synthesis, or deficiencies of brain dopamine and serotonin. 3-7 Evidence also indicates that there is altered energy metabolism in the brain of the child with PKU. 5-7 Phe and its metabolites appear to impair several aspects of brain energetics including: 1) inhibition of glucose uptake; 2) diminished glycosylation of cytoskeletal proteins; 3) inhibition of hexokinase and pyruvate kinase; 4) reduced flux through the glycolysis and 5) inhibition of mitochondrial electron transport chain. Tetrahydrobiopterin is the first drug (sapropterin dihydrochloride-kuvan), which acts as a pharmacological chaperone, approved to be used in PKU patients by the Food and Drug Administration in 2007. Since then, numerous studies have confirmed that about 40-50% of PKU patients, especially the ones with some residual enzyme activity, respond to BH4 to the point that it becomes possible to ease dietary restrictions, establish lower and more stable Phe levels or even replace the diet with a near-normal regimen. 8-10 The aim of this pilot study is to determine if there are any changes in brain glucose metabolism in patients with PKU before and 4 months after sapropterin therapy. Primary importance will be the generation of pilot data to assess the feasibility of evaluating brain glucose metabolism with Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) imaging and to explore potential trends resulting from the administration of sapropterin therapy. Methods Subjects Five adults (3 male and 2 female) with Classical PKU participated in the study. Participants ranged in age from 22 years to 51 years (median: 27.2; IQR: 19.0) (Table 1). All participants were naïve to sapropterin therapy. The first subject was diagnosed and put on a Phe-restricted diet at 9 months of age. The other four subjects were detected through newborn screening and started on a Phe-restricted diet before 2 weeks of life. At the time of the study, subjects 1 and 3 were on a low protein diet and Phe free formula. Subject 2 was on a low protein diet, and subject 4 and 5 were on a regular diet (Table 1). Their Phe intake was 2522.0 mg/day (3703.0) [median (IQR)]. All patients were examined with FDG-PET brain imaging, physical and neurological exam, blood tests for Phe and tyrosine levels, and neuropsychological tests before and 4 months after sapropterin therapy (mean 122±9 days between studies). All patients Phe and tyrosine levels were monitored once a week during the study. Subjects kept 3-day diet records that allowed calculation of Phe intake. All subjects received sapropterin at a dose of 20 mg/kg/day for four months. Response to sapropterin is defined as 30% or more decrease in Phe level at 1 month and 4 month-evaluations. Methods FDG-PET Subjects received intravenous administration of 0.14 mci/kg (+/- 10%) of FDG, with a maximum dose of 10 mci. PET imaging was initiated approximately 60 minutes after injection. Using a Philips Gemini 16 Power PET/CT scanner (Cleveland, OH, USA), data were acquired in 4 back-to-back time frames for total imaging time of 40 minutes. Following PET emission data acquisition, transmission scans were obtained using the Cs-137 point source for attenuation correction purposes. The emission and transmission data were reconstructed with an iterative reconstruction algorithm, the expectation maximization algorithm with ordered subsets (OSEM). Quantification of regional brain glucose metabolism (RBGM) for each study was determined using Philips NeuroQ 3.0 TM [20 iterations, normalizing each of the 47 regions of interest (ROI) to whole brain metabolism]. Neuropsychological battery The battery was designed to assess verbal memory (Hopkins Verbal Learning Test, HVLT), immediate auditory attention and processing speed (Paced Auditory Serial Addition Task, PASAT), graphomotor speed (Symbol-Digit Modalities Test), verbal and visual working memory [Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) Digit Span subtest and Wechsler Memory Scale-Fourth Edition Symbol Span subtest respectively], sustained attention and impulse control (Conners Continuous Performance Test-Second Edition, Version Table 1. Baseline characteristics of study subjects Subject Sex Age (year) Age at diagnosis Physical/neurologic exam Current treatment 1 M 51 9 months Normal Low protein diet+formula 2 F 23 10 days Normal Low protein diet 3 F 22 1 week Normal Low protein diet+formula 4 M 32 2 weeks Normal Regular diet 5 M 27 10 days Normal Regular diet 152 J Clin Neurol 2013;9:151-156

Ficicioglu C et al. 5), and verbal fluency [Delis-Kaplan Executive Function System (D-KEFS) Verbal Fluency subtest]. Test choice and a double-baseline approach were used to minimize and statistically control for potential practice effects. Five participants were tested three times: at an initial baseline before treatment; a second baseline which occurred approximately 7 to 14 days later but before initiation of treatment; and at post-treatment approximately four months after the second baseline. Additionally, alternate test forms were used when applicable (HVLT, PASAT, D-KEFS). All tests were given at all-time points, with the exception of the D- KEFS Verbal Fluency task, which was given only at second baseline and post-treatment as only two alternate forms for this task exist. Two test battery versions were prepared, which counterbalanced test forms across time points to prevent order effects. Statistical methods Wilcoxon matched-pairs signed-ranks tests were used to examine differences between pre- and post-measurements of Phe levels, neurocognitive test scores done only at two time points, and FDG-PET values. The Friedman test, a non-parametric alternative to the one-way ANOVA with repeated measures, was used to examine neuropsychological outcomes across the three time-points. Results Clinical/biochemical findings Physical and neurological examinations were normal in all subjects. Concurrent plasma Phe and tyrosine levels were 18.0 (18.95) mg/dl and 0.90 (0.50) mg/dl at pre-sapropterin visit 1, 9.4 (17.90) mg/dl and 1.20 (0.75) mg/dl at pre-sapropterin visit 2, and 17.2 (16.35) mg/dl and 0.95 (0.70) mg/dl at postsapropterin visit. Liver function tests including prothrombin time and partial thromboplastin time were normal. No patient experienced any side effects related to sapropterin. Phe intake in diet was 2522.0 (3703.0) mg/day and 2670.0 (3519.5) mg/ day at pre-sapropterin visit 2 and post-sapropterin visit, respectively, and there was no statistically significant difference. None of the subjects responded to sapropterin therapy based on at least a 30% decrease in blood Phe level, nor did subjects have increased Phe tolerance in diet. Neuropsychological findings There was no statistically significant difference between performance of tasks at baseline 1 relative to baseline 2, with the exception of auditory working memory (WAIS-IV Digit Span, p 0.043). When comparing pre-sapropterin visit 2 (baseline 2) to post-sapropterin, only one potential significant result was noted, in that semantic verbal fluency (D-KEFS Verbal Fluency Total Letter Fluency) increased an average of half a standard deviation across subjects (Wilcoxon p 0.066) (Table 2). FDG-PET findings On the initial FDG-PET brain scan, seven ROI s were measured to be at least, on average, 1 standard deviation below expected activity: right visual association cortex (-1.7), left parietal-temporal cortex (-1.4), right cerebellum (-1.3), left cerebellum (-1.3) right infero-lateral posterior temporal cortex (-1.2), cerebellar vermis (-1.2) and left inferior parietal cortex (-1.1). Six regions were measured to be at least, on average, 1 standard deviation above the mean: left medial frontal cortex (+2.0), left anterior cingulate cortex (+1.5), right medial Table 2. Neuropsychological findings in 5 subjects before and after sapropterin therapy Neuropsychological battery Pre-sapropterin (visit 1) Pre-sapropterin (visit 2) Post-sapropterin Friedman test Median IQR Median IQR Median IQR p-value HVLT Total Recall T 51 30 44 26 53 25 0.82 HVLT Del Recall T 47 27 53 26 49 23 0.46 PASAT Rate 1 Z 0.47 1.38 0.95 0.73 0.94 0.37 0.071 PASAT Rate 2 Z -0.32 0.96 0.63 0.60 0.62 0.92 0.050 SDMT Raw 63 38 72 40 79 39 0.25 WAIS-IV Digit Span Raw 33 15 37 19 37 19 0.050 WMS-IV Symbol Span Raw 35 18 39 32 37 19 0.68 D-KEFS Cat Fluency Scaled - - 10 5 11 8 0.34** D-KEFS Letter Fluency Scaled - - 10 8 11 8 0.066** D-KEFS Switch Scaled - - 11 8 12 9 0.59** CPT-II Clinical Conf 50 51.5 55.9 69.5 47.7 49.9 0.95 CPT-II Hit RT Value 393.5 132.5 435.4 137.1 361.9 110.1 0.55 **p-value from Wilcoxon test. CPT-II: Conners Continuous Performance Test, D-KEFS: Delis-Kaplan Executive Function System Verbal Fluency subtest, HVLT: Hopkins Verbal Learning Test, PASAT: Paced Auditory Serial Addition Task, SDMT: Symbol-Digit Modalities Test, WAIS-IV: Wechsler Adult Intelligence Scale-Fourth Edition Digit Span subtest, WMS-IV: Wechsler Memory Scale-Fourth Edition Symbol Span subtest. www.thejcn.com 153

PKU and Sapropterin Table 3. Pre sapropterin FDG-PET scan findings ROI s measured to be at least, on average, 1 standard deviation below expected activity ROI s measured to be at least, on average, 1 standard deviation above the expected activity Right visual association cortex -1.7 Left medial frontal cortex +2 Left parietal-temporal cortex -1.4 Left anterior cingulate cortex +1.5 Right cerebellum -1.3 Right medial frontal cortex +1.5 Left cerebellum -1.3 Left mid-frontal cortex +1.3 Right infero-lateral posterior temporal cortex -1.2 Right mid-frontal cortex +1.3 Cerebellar vermis -1.2 Right anterior cingulated cortex +1.1 Left inferior parietal cortex -1.1 FDG-PET: fluorodeoxyglucose positron emission tomography, ROI: regions of interest. Table 4. Changes in PET scan findings after 4 month-sapropterin therapy ROI Pre sapropterin [median (IQR)] Post sapropterin [median (IQR)] Wilcoxon test (p-value) Right superior lateral temporal cortices 0.74 (2.19) 1.30 (1.46) 0.043 Left Broca -0.784 (1.25) 0.035 (1.38) 0.043 ROI: regions of interest. frontal cortex (+1.5), left mid-frontal cortex (+1.3), right midfrontal cortex (+1.3), and right anterior cingulated cortex (+1.1) (Table 3). In response to the sapropterin therapy, two ROI s showed significant (p<0.05) change in RBGM: left Broca s area (p=0.043, pre and post median levels of 0.74 and 1.30, respectively) and right superior lateral temporal cortex (p= 0.043, pre and post median levels of -0.784 and 0.035, respectively) (Table 4). FDG-PET transaxial images shown in Fig. 1 represent the differences between normal brain, and one of the study subjects brain before and after Sapropterin supplementation. Discussion In brain, FDG-PET imaging measures regional glucose metabolic rate and reflects a complex scenario that involves activity of the entire neurovascular unit and the multifunctional role of astrocytes. 11,12 Our data show that PKU patients have reproducible patterns of RBGM, which differ from those of a normal data set. Generally, glucose metabolism appeared depressed in the cerebellum and left parietal cortex while it increased in the frontal and anterior cingulate cortices. We speculate that increased brain glucose metabolism in the frontal cortex may have resulted from increased energy demand in brain cells caused by elevated Phe levels. Pietz et al. 6 evaluated cerebral energy metabolism using 31 P-MRS in adult PKU patients whose phe levels ranged from 831 to 1784 umol. They demonstrated that adenosine triphosphate (ATP) and phosphocreatine (PR) levels and phe concentrations were inversely related: increasing Phe concentrations after Phe loading resulted in decreasing ATP and PR levels. They pointed to a link between Phe neurotoxicity and imbalances of cerebral energy metabolism. Neurons require energy in the form of ATP to maintain their membrane potential. Increased demand for ATP will increase cerebral metabolic rate for glucose, which is used to replenish the ATP. Interestingly, the presence of increased glucose uptake in the frontal cortex, largely responsible for executive function is unexpected as patients with PKU can have impaired executive function. 2 Increased glucose metabolic rate may reflect compensation efforts of this region as all early treated subjects showed relatively normal executive functioning in neurocognitive evaluation. It is more difficult to explain the diminished uptake in cerebellum and left parietal cortex. The differences of glucose uptake in different regions of brain may be a consequence of a domino-like effect of elevated Phe, which can help to better understand and define circuits and networks involved in the pathogenesis of neurocognitive symptoms of PKU. After sapropterin therapy, relative glucose metabolism showed significant increases in left Broca s and right superior lateral temporal cortices. There were no significant changes in other regions. There was corresponding enhanced performance in a standardized verbal fluency test performed during pre and post-sapropterin neuropsychological evaluation. Published data point to other biological roles of BH4 in human beings besides being a cofactor for aromatic amino acid hydroxylases. 13-16 These other roles include BH4 1) as a cofactor of nitric oxide (NO) syntheses to produce NO 2) as an intracellular antioxidant to scavenge reactive oxygen species (ROS) 3) as a way to stimulate the increased release of dopamine and serotonin. These roles may be important in preventing neurotoxic effects of elevated Phe in PKU. It is unknown if intracellular biochemical events and increased oxidative stress can lead to disruption of BH4 homeostasis in PKU. Sanayama et al. 17 reported increased oxidative stress status in PKU patients and found significant correlation with plasma Phe levels 154 J Clin Neurol 2013;9:151-156

Ficicioglu C et al. A C E B D F and the magnitude of oxidative stress. Intracellular ROS can diminish BH4/BH2 ratio through accelerated oxidation of BH4 to BH2, and insufficient availability of BH4 to nitric oxide synthase (NOS) results in the formation of superoxide rather than NO (NOS uncoupling). Dihydrofolate reductase (DH- PR) enzyme, which recycles BH4, may play a key factor in the pathophysiology of PKU and its management with sapropterin. If DHPR is up-regulated in PKU, it can override the rate of BH4 oxidation, and BH4/BH2 ratio recovers to a high level and NOS remains in a coupled state. If DHPR activity is down-regulated under oxidative stress in PKU, it can result in further deterioration of uncoupling of NOS. While it is not well-known if oral supplementation of BH4 can be transported into the brain, one may speculate that increased glucose uptake in left Broca s and right superior lateral temporal cortices may be the effect of increased blood flow caused by NO production in the presence of BH4 or increased release of neurotransmitters by BH4. The small sample size constrains the statistical significance of this study. While useful in indicating potential trends worthy of fuller exploration, the results of this pilot study should be cautiously interpreted. Further studies are needed with larger samples of patients 1) to assess brain energy metabolism using a combination of imaging tools including PET scan, MRI, functional MRI and magnetic resonance spectroscopy; 2) to reach more definitive conclusions regarding the effect of sapropterin supplementation in PKU patients who do not respond to the therapy with decreased Phe levels or increased Phe tolerance. Further research is also needed to understand if PKU disturbs BH4 cellular homeostasis. If it does, PKU patients may benefit from BH4 supplementation to keep their BH4/BH2 ratio at a high level, and prevent further increase in oxidative stress. The numerous remaining questions guarantee that additional research will offer us valuable new insights in the near future. G H Fig. 1. Representative [F-18] FDG-PET transaxial images throughout the cortices (A, C, E and G) and mid-brain (B, D, F and H). [F- 18] FDG-PET regions of interest are shown in (A) and (B) as determined by Philips NeuroQ (version 3.0) as well as corresponding locations in a representative normal brain (C and D) and one of this study s participants before (E and F) and after (G and H) Sapropterin supplementation (126 days). Note the purple shaded region in (A) designates Broca s area in which a significant increase in glucose metabolism was found in response to therapy. Tracer uptake intensity color legend is shown to the right of the images (red/ yellow=highest, black/violet=lowest). Note the depressed glucose metabolism in the frontal cortices relative to the parietal cortices in the PKU patient (E-H) compared to the normal example (C and D). This pattern was present in all patients. FDG-PET: fluorodeoxyglucose positron emission tomography. Conflicts of Interest Can Ficicioglu, MD, PhD received research funding from Biomarin. Jacob G Dubroff, MD, PhD, Nina Thomas, PhD, Paul R Gallagher, BS, Jessica Burfield, RD Rebecca Randall RD, Hongming Zhuang, MD, PhD report no disclosures. Christie Hussa RD, MBA received honoraria as a speaker at a meeting organized by Biomarin. Acknowledgements The project described was supported by Biomarin and the National Center for Research Resources (Grant Number UL1RR024134). REFERENCES 1. Scriver CR, Kaufman S. Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Valle D, Sly WS, Childs B, Kinzler KW, et al. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. Vol 4. New York: McGraw-Hill, 2001; 1667-1709 2. Waisbren SE, Noel K, Fahrbach K, Cella C, Frame D, Dorenbaum A, et al. Phenylalanine blood levels and clinical outcomes in phenylketonuria: a systematic literature review and meta-analysis. Mol Genet Metab 2007;92:63-70. www.thejcn.com 155

PKU and Sapropterin 3. de Groot MJ, Hoeksma M, Blau N, Reijngoud DJ, van Spronsen FJ. Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol Genet Metab 2010;99 Suppl 1:S86-S89. 4. Landvogt C, Mengel E, Bartenstein P, Buchholz HG, Schreckenberger M, Siessmeier T, et al. Reduced cerebral fluoro-l-dopamine uptake in adult patients suffering from phenylketonuria. J Cereb Blood Flow Metab 2008;28:824-831. 5. Rech VC, Feksa LR, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM. Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res 2002;27:353-357. 6. Pietz J, Rupp A, Ebinger F, Rating D, Mayatepek E, Boesch C, et al. Cerebral energy metabolism in phenylketonuria: findings by quantitative In vivo 31P MR spectroscopy. Pediatr Res 2003;53:654-662. 7. Wasserstein MP, Snyderman SE, Sansaricq C, Buchsbaum MS. Cerebral glucose metabolism in adults with early treated classic phenylketonuria. Mol Genet Metab 2006;87:272-277. 8. Hennermann JB, Bührer C, Blau N, Vetter B, Mönch E. Long-term treatment with tetrahydrobiopterin increases phenylalanine tolerance in children with severe phenotype of phenylketonuria. Mol Genet Metab 2005;86 Suppl 1:S86-S90. 9. Matalon R, Michals-Matalon K, Koch R, Grady J, Tyring S, Stevens RC. Response of patients with phenylketonuria in the US to tetrahydrobiopterin. Mol Genet Metab 2005;86 Suppl 1:S17-S21. 10. Muntau AC, Röschinger W, Habich M, Demmelmair H, Hoffmann B, Sommerhoff CP, et al. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 2002;347:2122-2132. 11. Alavi A, Reivich M, Ferris S, Christman D, Fowler J, MacGregor R, et al. Regional cerebral glucose metabolism in aging and senile dementia as determined by 18F-deoxyglucose and positron emission tomography. Exp Brain Res 1982;Suppl 5:187-195. 12. Sestini S, Castagnoli A, Mansi L. The new FDG brain revolution: the neurovascular unit and the default network. Eur J Nucl Med Mol Imaging 2010;37:913-916. 13. Koshimura K, Miwa S, Lee K, Fujiwara M, Watanabe Y. Enhancement of dopamine release in vivo from the rat striatum by dialytic perfusion of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin. J Neurochem 1990;54: 1391-1397. 14. Mataga N, Imamura K, Watanabe Y. 6R-tetrahydrobiopterin perfusion enhances dopamine, serotonin, and glutamate outputs in dialysate from rat striatum and frontal cortex. Brain Res 1991;551:64-71. 15. Koshimura K, Miwa S, Watanabe Y. Dopamine-releasing action of 6R- L-erythro-tetrahydrobiopterin: analysis of its action site using sepiapterin. J Neurochem 1994;63:649-654. 16. Kim HL, Park YS. Maintenance of cellular tetrahydrobiopterin homeostasis. BMB Rep 2010;43:584-592. 17. Sanayama Y, Nagasaka H, Takayanagi M, Ohura T, Sakamoto O, Ito T, et al. Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol Genet Metab 2011;103:220-225. 156 J Clin Neurol 2013;9:151-156