Eye fixations to figures in a four-choice situation with luminance balanced areas: Evaluating practice effects

Similar documents
OBSERVING BEHAVIOR TOPOGRAPHY IN DELAYED MATCHING TO MULTIPLE SAMPLES

Patterns of eye movement in matching-to-sample tasks

Object Substitution Masking: When does Mask Preview work?

Within-event learning contributes to value transfer in simultaneous instrumental discriminations by pigeons

ARTICLE IN PRESS. Vision Research xxx (2008) xxx xxx. Contents lists available at ScienceDirect. Vision Research

Functional Fixedness: The Functional Significance of Delayed Disengagement Based on Attention Set

Comparing Two Procedures to Teach Conditional Discriminations: Simple Discriminations With and Without S- Stimuli Present. A Thesis Presented

Pupil Dilation as an Indicator of Cognitive Workload in Human-Computer Interaction

The role of cognitive effort in subjective reward devaluation and risky decision-making

Irrelevant features at fixation modulate saccadic latency and direction in visual search

Supplemental Information: Task-specific transfer of perceptual learning across sensory modalities

Value transfer in a simultaneous discrimination by pigeons: The value of the S + is not specific to the simultaneous discrimination context

The Simon Effect as a Function of Temporal Overlap between Relevant and Irrelevant

Improving Search Task Performance Using Subtle Gaze Direction

Offsets and prioritizing the selection of new elements in search displays: More evidence for attentional capture in the preview effect

THE SPATIAL EXTENT OF ATTENTION DURING DRIVING

REINFORCEMENT OF PROBE RESPONSES AND ACQUISITION OF STIMULUS CONTROL IN FADING PROCEDURES

CAROL 0. ECKERMAN UNIVERSITY OF NORTH CAROLINA. in which stimulus control developed was studied; of subjects differing in the probability value

Comparison of Direct and Indirect Reinforcement Contingencies on Task Acquisition. A Thesis Presented. Robert Mark Grant

Supporting Information

Department of Computer Science, University College London, London WC1E 6BT, UK;

Discrimination and Generalization in Pattern Categorization: A Case for Elemental Associative Learning

Are In-group Social Stimuli more Rewarding than Out-group?

Effect of Pre-Presentation of a Frontal Face on the Shift of Visual Attention Induced by Averted Gaze

Jennifer J. McComas and Ellie C. Hartman. Angel Jimenez

LEARNING-SET OUTCOME IN SECOND-ORDER CONDITIONAL DISCRIMINATIONS

Automatic detection, consistent mapping, and training * Originally appeared in

Morton-Style Factorial Coding of Color in Primary Visual Cortex

CONCEPT LEARNING WITH DIFFERING SEQUENCES OF INSTANCES

The path of visual attention

The time required for perceptual (nonmotoric) processing in IOR

Sequential Effects in Spatial Exogenous Cueing: Theoretical and Methodological Issues

Attention shifts during matching-to-sample performance in pigeons

Framework for Comparative Research on Relational Information Displays

Temporal Feature of S-cone Pathway Described by Impulse Response Function

Effect of Positive and Negative Instances on Rule Discovery: Investigation Using Eye Tracking

Oculomotor consequences of abrupt object onsets and offsets: Onsets dominate oculomotor capture

Interference with spatial working memory: An eye movement is more than a shift of attention

Differential Viewing Strategies towards Attractive and Unattractive Human Faces

FACTORS AFFECTING THE SMOOTH PURSUIT OF A MOVING TARGET

Analyzing the Stimulus Control Acquisition in Simple Discrimination Tasks through Eye Movement

Speed-Accuracy Tradeoff Operator Characteristics of Endogenous and Exogenous Covert Orienting of Attention

The effects of subthreshold synchrony on the perception of simultaneity. Ludwig-Maximilians-Universität Leopoldstr 13 D München/Munich, Germany

Stimulus control of foodcup approach following fixed ratio reinforcement*

Running head: PERCEPTUAL GROUPING AND SPATIAL SELECTION 1. The attentional window configures to object boundaries. University of Iowa

Stimulus-Driven Attentional Capture and Attentional Control Settings

Taking control of reflexive social attention

Does scene context always facilitate retrieval of visual object representations?

Transitive inference in pigeons: Control for differential value transfer

Supporting Online Material for

Perceptual asynchronies between color and motion at the onset of motion and along the motion trajectory

Game Design Guided by Visual Attention

Learning to classify integral-dimension stimuli

Pushing the Right Buttons: Design Characteristics of Touch Screen Buttons

Human Learning of Contextual Priors for Object Search: Where does the time go?

What Matters in the Cued Task-Switching Paradigm: Tasks or Cues? Ulrich Mayr. University of Oregon

The Attentional Blink is Modulated by First Target Contrast: Implications of an Attention Capture Hypothesis

Voluntary Task Switching: Chasing the Elusive Homunculus

between successive DMTS choice phases.

Is subjective shortening in human memory unique to time representations?

The eyes fixate the optimal viewing position of task-irrelevant words

Masking by Object Substitution: Dissociation of Masking and Cuing Effects

The color of night: Surface color categorization by color defective observers under dim illuminations

ANTECEDENT REINFORCEMENT CONTINGENCIES IN THE STIMULUS CONTROL OF AN A UDITORY DISCRIMINA TION' ROSEMARY PIERREL AND SCOT BLUE

INTRODUCING NEW STIMULI IN FADING

Perceptual Learning of Categorical Colour Constancy, and the Role of Illuminant Familiarity

Empirical Formula for Creating Error Bars for the Method of Paired Comparison

COMPARING THE EFFECTS OF ECHOIC PROMPTS AND ECHOIC PROMPTS PLUS MODELED PROMPTS ON INTRAVERBAL BEHAVIOR AMBER L. VALENTINO

SUPPLEMENTARY INFORMATION Perceptual learning in a non-human primate model of artificial vision

CAN WE PREDICT STEERING CONTROL PERFORMANCE FROM A 2D SHAPE DETECTION TASK?

Posner s Attention Test

Pigeons transfer between conditional discriminations with differential outcomes in the absence of differential-sample-responding cues

Cognitive dissonance in children: Justification of effort or contrast?

Behavioural Processes

Why do we look at people's eyes?

What matters in the cued task-switching paradigm: Tasks or cues?

Running Head: Improving Parent Implementation of Discrete Trial Teaching

Unconscious Color Priming Occurs at Stimulus- Not Percept- Dependent Levels of Processing Bruno G. Breitmeyer, 1 Tony Ro, 2 and Neel S.

Discriminability of differences in line slope and in line arrangement as a function of mask delay*

Radial frequency stimuli and sine-wave gratings seem to be processed by distinct contrast brain mechanisms

A PRACTICAL VARIATION OF A MULTIPLE-SCHEDULE PROCEDURE: BRIEF SCHEDULE-CORRELATED STIMULI JEFFREY H. TIGER GREGORY P. HANLEY KYLIE M.

THE EFFECTS OF TERMINAL-LINK STIMULUS ARRANGEMENTS ON PREFERENCE IN CONCURRENT CHAINS. LAUREL COLTON and JAY MOORE University of Wisconsin-Milwaukee

ANATOMIC. Navigated Surgical Technique 4 in 1 TO.G.GB.016/1.0

Traffic Sign Detection and Identification

Training and generalization of complex auditory-visual conditional discriminations in individuals with autism: New procedures using dynamic stimuli.

Free classification: Element-level and subgroup-level similarity

Gathering and Repetition of the Elements in an Image Affect the Perception of Order and Disorder

The role of scanpaths in the recognition of random shapes*

Segregation from direction differences in dynamic random-dot stimuli

Effects of Increased Exposure to Training Trials with Children with Autism. A Thesis Presented. Melissa A. Ezold

The Creative Porpoise Revisited

USE OF AN ESP COVER STORY FACILITATES REINFORCEMENT WITHOUT AWARENESS. LEWIS A. BIZO and NICOLA SWEENEY University of Southampton

Recognizing partially visible objects

Prioritizing new objects for eye fixation in real-world scenes: Effects of objectscene consistency

HOW DOES PERCEPTUAL LOAD DIFFER FROM SENSORY CONSTRAINS? TOWARD A UNIFIED THEORY OF GENERAL TASK DIFFICULTY

A FRÖHLICH EFFECT IN MEMORY FOR AUDITORY PITCH: EFFECTS OF CUEING AND OF REPRESENTATIONAL GRAVITY. Timothy L. Hubbard 1 & Susan E.

Sequences of Fixed-Ratio Schedules of Reinforcement: The Effect of Ratio Size in the Second and Third Fixed-Ratio on Pigeons' Choice

Templates for Rejection: Configuring Attention to Ignore Task-Irrelevant Features

The Role of Color and Attention in Fast Natural Scene Recognition

Development and application of a hand force measurement system

Transcription:

Journal of Eye Movement Research 2(5):3, 1-6 Eye fixations to figures in a four-choice situation with luminance balanced areas: Evaluating practice effects Candido V. B. B. Pessôa Edson M. Huziwara Peter Endemann William F. Perez Gerson Y. Tomanari Contingency analyses of eye movements may reveal variables that are relevant to the stimulus control of observing behavior. The present research tracked the eye movements of four adults exposed to a simultaneous discrimination among four stimuli, two twodimensional (square and circle) and two three-dimensional (cube and cylinder) monochromatic figures with approximately equal luminance. On each discrimination trial, the stimuli were displayed in the four corners of a video monitor and participants chose among them by pressing corresponding keys. For two participants, choosing either cube or square (S+) was followed by the word correct and a 3-second inter-trial interval. Alternatively, choosing either cylinder or circle (S-) was followed by "incorrect" and a 30-second intertrial interval. For the other two participants, contingencies were reversed. The position of the stimuli on the screen varied randomly across trials. The procedure continued for 80 trials. During these trials, discriminated choices were established. Despite the presence of both a two- and a three-dimensional S+ on each trial, responses to the three-dimensional S+ tended to prevail. Although general eye fixations tended to decrease as discrimination was established, subjects tended to observe S+ for longer durations than S-. Characteristics of the stimuli may interact with the contingencies of reinforcement in the stimulus control of observing behavior. Keywords: eye movements, fixation, four-choice discrimination procedure, two and three-dimensional figures, human participants Introduction Researchers in eye movements typically categorize saccades into two basic types: those exogenously controlled (stimulus-driven, involuntary, or bottom-up) and those endogenously controlled (goal-directed, voluntary, or top-down) (e.g., Godijn & Theeuwes, 2003). Behavior Analysis is primarily concerned with the environmental variables that control the second type of saccades, mainly the effect of consequences of the eye movements on subsequent eye movements (operant behavior) (Schroeder & Holland, 1968, 1969; Madelain, Champrenaut & Chauvin, 2007). Using a corneal reflection technique and apparatus (Mackworth & Thomas, 1962), Schroeder and Holland (1968) demonstrated that human saccadic eye movements could be affected by their consequences (i.e. eye movements could be conditioned). The researchers established an experimental situation where saccadic eye movements toward a pointer triggered its deflection. The different programmed conditions for the deflection consequences affected frequency and distribution of fixations to the pointer deflector. Having established the sensitivity of saccadic eye movement to its consequences, behavior analysts began to reveal controlling behavior/environment relations in several empirical contexts, including simple discrimination (Schroeder 1969a), conditional discrimination (Magnusson, 2002; Dube et al. 2006) transfer of discriminative 1

stimulus control (Schroeder 1969b, 1997), concurrent schedules (Schroeder & Holland, 1969), stimulus overselectivity (Dube et al., 2003), and programmed instruction (Doran & Holland, 1971). According to some of these studies, not only consequences, but also the stimuli that were present when the consequences were produced, acquired control over the eye movements. Recording the eye movements using a Mackworth V-1164-2 corneal reflection system with television digitizer (described by Schroeder & Holland, 1968), Schroeder (1970) investigated the effects of different consequences upon fixations to figures presented in the corners of a screen in a choice task. Initially, all figures were fixated. During the experiment, participants began to make choices without foveal fixations. Eventually participants held foveal fixation at the center position of the screen (practice effect) while they choose the figures. Schroeder (1970) suggested that the practice effect may have occurred due to differences in the luminance of the figures. The present study replicated Schroeder s study (1970) and extended it by balancing the luminance of the figures and evaluating its influence upon the practice effect. the head - and a RK-630 Auto-calibration System, installed in a PC platform with ISCAN Raw Movement Data Acquisition software. Images were captured in another PC platform with Pinnacle Studio Plus 9 software and analyzed frame by frame (30Hz) with Video Frame Coder software (Abilities Software, Sudbury, MA, USA). Method Participants Four female undergraduate students participated in one session each. Participants all signed an agreement with minimal information about the experiment, declared having normal vision, and were naïve with respect to the task and the apparatus. Setting and apparatus Sessions were held in a 2 m x 3 m room. The room was divided in two by a partition wall. In one side there was a chair and a table with a computer monitor and keyboard. Stimulus presentation, delivery of consequences, and recording of the participant s choices were conducted by computer software developed for this research. On the other side of the partition wall was the equipment used by the experimenter. The apparatus consisted of a RK-826PCI Pupil/Corneal Reflection Tracking Hardware System - with precision of 0.3 deg in a visual field of 20 deg. x 20 deg, permitting free movements of Figure 1. Series of frames displayed for participants during a trial. The left branch is an example of a correct choice; the right branch is an example of an incorrect choice. Stimuli were four monochromatic blue figures with approximately the same luminance, varying between 19.4 cd/m 2 to 19.9 cd/m 2. Two figures were two-dimensional square and circle and the other two were threedimensional cube and cylinder (Figure 1). Figures dimensions were 2.4 cm x 2.4 cm, displayed in a 4 cm x 4 cm white background. Center-to-center distance between figures was 11.5 cm. A minimum viewing distance of 65 2

cm was maintained between the participant s eye and the monitor, and thus the maximum sizes in terms of visual angle was 2 deg x 2 deg for the figures, 3.5 deg x 3.5 deg for the backgrounds, and 10.1 deg center-to-center distance for the figures.. with the model of selection by consequences proposed by Skinner (1981) to explain behavior (for a more detailed explanation of reinforcing consequences upon behavior, see Mazur, 2006). Procedure Sessions began with an apparatus calibration routine that lasted for approximately 10 minutes. Then the following instructions were read: Figures will appear in the corners of this screen. Your job is to choose the correct figure. You indicate your choice by pressing letter W on the keyboard to choose the upper left corner; S to choose the bottom left corner, P to choose the upper right corner and L to choose the bottom right corner. A yellow light will appear next to the figure you chose. If the choice you made is correct, a green light will appear on the center of the screen; if the choice is incorrect, a red light will appear. In the beginning you may have to guess a bit, but you shouldn t have any trouble figuring it out eventually. The session consisted of four blocks of 20 trials each. On each trial the four figures were presented simultaneously, one in each corner of the screen (Figure 1). The locations of figures across trials were balanced in each block, and figures were presented in the same location for no more than two consecutive trials. The participant responded by pressing one of the four letters (W, S, P, L). A yellow light flashed for 2s next to the chosen figure. For two participants (P4 and P5) choices of square or cube were followed by the word correct displayed on a green background, a 3-second inter-trial interval (ITI) and the beginning of the next trial; choices of circle or cylinder were followed by the word incorrect displayed on a red background, a 30-second ITI and the representation of the same trial (correction trial). For the other two participants (P6 and P7) the consequences for figure choices were reversed (i.e., circle or cylinder correct, and square or cube incorrect). Results and Discussion Figure 2 shows the participants manual choice distributions during the four blocks of trials. All participants chose almost exclusively only one figure, the threedimensional figure followed by the correct message and shorter ITI as consequences. This result is consistent Figure 2. Number of choices of each figure, per block of 20 trials, for each participant. Corrections trials not included. In accordance with the manual choices, fixation occurred significantly more often to the correct chosen figure than to all other figures (Figure 3). (The average of the total time spent fixating the correct chosen figure 3

was significantly different from the average of the total time fixating each of the other three figures. ANOVA: F (3, 9) = 78,974; p<.005). The average time spent fixating the four figures, from the most to the least fixated, can be seen in Figure 4. The longer fixation of correct figures shows the sensitivity of observing behavior to its consequences (Schroeder, 1970; Schroeder & Holland, 1968). These results also support Dinsmoor s (1983) selective observing theory: The figures served not only as discriminative stimuli for the manual task response, but also as discriminative stimuli for maintaining or terminating the fixation responses to them. A practice effect can be observed in the significant decrease of fixation durations from one block to another (Taking in account the average total time spent fixating figures during each block, the average total time spent fixating figures in one block was significantly different from the others. ANOVA: F (3, 9) = 15, 191; p =.001). Figure 4 shows that fixations of figures related to a correct message and shorter ITI consequences decreased less than fixation of all other figures, but the decreases were not significantly different (Taking in account the interaction between the first and the last block in relation to the total average time spent fixating each figure in the first and in the last block, ANOVA: F (9, 27) = 1,471; p =.209, differences were not significant). Several aspects of the present experiment replicated Schroeder (1970), including the consequences for the manual task, the visual angular distance between stimuli, and the same general experimental situation. The primary difference was equal luminance across stimuli in the present study and unequal luminance in Schroeder (1970). Schroeder s results showed zero frequency of foveal fixation on figures in the final trials of his procedure. In contrast, the present experiment found a decrease in fixation durations, but no choice was made without at least one fixation on the chosen figure. This result suggests that balancing the luminance of the figures in a choice situation may increase the probability that stimuli will be fixated, a reduction in practice effects. This experiment contributes to the literature showing that the control of differential programmed consequences in the manual task (e.g., correct message and shorter ITI versus incorrect message and longer ITI) is a relevant variable in experiments involving endogenously controlled saccades and subsequent fixations. Previous studies have already shown that stimuli related to different consequences in the manual task control different frequencies of saccades towards them (Magnusson, 2002; Schroeder, 1969a, 1969b, 1970, 1997; Schroeder & Holland, 1968, 1969). The present results also show that, although differential consequences were programmed for the manual task, such differential consequences affected systematically the time spent fixating the stimuli related to them (e.g. Dube et al., 2006; Dube et al., 2003; Tomanari et al., 2007). Figure 3. Total fixation time (in seconds) for each figure, per block of 20 trials, for each participant. Trials with the same configuration that followed incorrect choices (correction trials) are not presented. 4

in a repetitive task situation by balancing (controlling) the luminance of the stimuli. References Dinsmoor, J. A. (1983). Observing and conditioned reinforcement. The Behavioral and Brains Sciences, 6, 693-728. Dube, W. V., Balsamo, L. M., Fowler, T. R., Dickson, C. A., Lombard, K. M., & Tomanari, G. Y. (2006). Observing behavior topography in delayed matching to multiple samples. The Psychological Record, 56, 233-244. Figure 4. The average of the four participants time spent fixating figures (duration in seconds) across the four blocks of trials. The bars, from left to right, show the average from the most to the least fixated figure. Table 1 Percent reduction in time spent fixating each figure from the first to the last block of trials. Participant Cube Cylinder Square Circle P4 38%* 84% 61% 90% P5 6%* 55% 51% 65% P6 65% 26%* 38% 56% P7 58% 24%* 58% 56% Note. Asterisk (*) indicates the most chosen figure for each participant. Finally, the present results support Schroeder s hypothesis that the difference in the luminance of the figures is a critical variable to enhance the practice effect. In our experiment, the decrease in time spent fixating the most-chosen stimulus ranked from 6% to 38% across participants. In Schroeder s study (1970), all participants ceased to fixate the most chosen stimuli during the last block of trials (decrease of 100%). Taken together, these results show that it is possible to increase the fixation duration for target stimuli (i.e., reduce the practice effect) Dube, W. V., Lombard, K. M., Farren, K. M., Flusser, D. S., Balsamo, L. M., Fowler, T. R., & Tomanari, G. Y. (2003). Stimulus overselectivity and observing behavior in individuals with mental retardation. In S. Soraci and K. Murata-Soraci (Eds.), Visual Information Processing (pp 109-123). Westport, CY: Praeger. Doran, J., & Holland, J. G. (1971). Eye movements as a function of response contingencies measured by blackout technique. Journal of Applied Behavior Analysis, 4, 11-17. Godijn, R., & Theeuwes, J. (2003). The relationship between exogenous and endogenous saccades and attention. In J. Hyönä, R. Radach and H. Deubel (Eds.), The Mind s Eye: Cognitive and Applied Aspects of Eye Movement Research (pp 3-26). Amsterdan: Elsevier Science BV. Mackworth, N., & Thomas, E. (1962). Head-mounted eye-marker camera. Journal of Optical Society of America, 52, 713-716. Madelain, L., Champrenaut, L., & Chauvin, A. (2007). Control of sensorimotor variability by consequences. Journal of Neurophysiology, 98, 2255-2265. Magnusson, A. (2002). Topography of eye movements under select and reject control. Unpublished doctoral dissertation, Northeastern University, Boston. Mazur, J. E. (2006). Learning and behavior (6 th ed.). Upper Saddle River, NJ: Pearson Prentice Hall. Schroeder, S. R. (1969a). Effects of cue factors on selective eye movements and choices during successive discriminations. Perceptual and Motor Skills, 29, 991-998. 5

Schroeder, S. R. (1969b). Fixation and choice selectivity during discrimination transfer. Psychonomic Science, 17, 324-325. Schroeder, S. R. (1970). Selective eye movements to simultaneously presented stimuli during discrimination. Perception & Psychophysics, 7, 121-124. Schroeder, S. R. (1997). Selective eye fixations during transfer of discriminative stimulus control. In D. M. Baer and E. M. Pinkston (Eds.), Environment and Behavior (97-110). Boulder, CO: Westview. Schroeder, S. R., & Holland, J, G. (1968). Operant control of eye movements. Journal of Applied Behavior Analysis, 1, 161-166. Schroeder, S. R., & Holland, J, G. (1969). Reinforcement of eye movements with concurrent schedules. Journal of the Experimental Analysis of Behavior, 12, 897-903. Skinner, B. F. (1981). Selection by consequences. Science, 213, 501/4. Tomanari, G. Y., Balsamo, L. M., Fowler, T. R., Farren, K. M., & Dube, W. V. (2007). Manual and ocular observing behavior in human subjects. European Journal of Behavior Analysis, 8, 29-40. Acknowledgements The authors thank Dr. William Dube for the careful reading and Carlos Pinto for the statistics revision. The present research received financial support from CNPq and FAPESP, two Brazilian funding agencies, in the form of grants and scholarships. 6