Journal of Infectious Diseases and

Similar documents
Surveillance of antimicrobial susceptibility of Enterobacteriaceae pathogens isolated from intensive care units and surgical units in Russia

Prevalence of Extended Spectrum -Lactamases In E.coli and Klebsiella spp. in a Tertiary Care Hospital

Overcoming the PosESBLities of Enterobacteriaceae Resistance

Discussion points CLSI M100 S19 Update. #1 format of tables has changed. #2 non susceptible category

Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory, Institute of Environmental Science and Research Limited (ESR); July 2014.

In Vitro Susceptibility Pattern of Cephalosporin- Resistant Gram-Negative Bacteria

Affinity of Doripenem and Comparators to Penicillin-Binding Proteins in Escherichia coli and ACCEPTED

Screening and detection of carbapenemases

Frequency of Occurrence and Antimicrobial Susceptibility of Bacteria from ICU Patients with Pneumonia

Treatment Options for Urinary Tract Infections Caused by Extended-Spectrum Β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae

ST11 KPC-2 Klebsiella pneumoniae detected in Taiwan

ALERT. Clinical microbiology considerations related to the emergence of. New Delhi metallo beta lactamases (NDM 1) and Klebsiella

Carbapenem Disks on MacConkey agar as screening methods for the detection of. Carbapenem-Resistant Gram negative rods in stools.

In Vitro Activity of Ceftazidime-Avibactam Against Isolates. in a Phase 3 Open-label Clinical Trial for Complicated

Expert rules. for Gram-negatives

Clinical Microbiology Newsletter

EVALUATION OF METHODS FOR AMPC β-lactamase IN GRAM NEGATIVE CLINICAL ISOLATES FROM TERTIARY CARE HOSPITALS

Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Hong Kong. Title. Ho, PL; Tse, CWS; Lai, EL; Lo, WU; Chow, KH

Received 31 January 2011/Returned for modification 2 March 2011/Accepted 15 March 2011

jmb Research Article Review Semi Kim 1, Ji Youn Sung 2, Hye Hyun Cho 3, Kye Chul Kwon 1, and Sun Hoe Koo 1 *

Cefotaxime Rationale for the EUCAST clinical breakpoints, version th September 2010

(DHA-1): Microbiologic and Clinical Implications

Reporting blood culture results to clinicians: MIC, resistance mechanisms, both?

In-House Standardization of Carba NP Test for Carbapenemase Detection in Gram Negative Bacteria

Received 30 March 2005; returned 16 June 2005; revised 8 September 2005; accepted 12 September 2005

Differentiation of Carbapenemase producing Enterobacteriaceae by Triple disc Test

Giving the Proper Dose: How Can The Clinical and Laboratory Standards Institute(CLSI)Help?

Update on CLSI and EUCAST

The CLSI Approach to Setting Breakpoints

Phenotypic Detection Methods of Carbapenemase Production in Enterobacteriaceae

MHSAL Guidelines for the Prevention and Control of Antimicrobial Resistant Organisms (AROs) - Response to Questions

Laboratory CLSI M100-S18 update. Paul D. Fey, Ph.D. Associate Professor/Associate Director Josh Rowland, M.T. (ASCP) State Training Coordinator

NONFERMENTING GRAM NEGATIVE RODS. April Abbott Deaconess Health System Evansville, IN

Expert rules in antimicrobial susceptibility testing: State of the art

#Corresponding author: Pathology Department, Singapore General Hospital, 20 College. Road, Academia, Level 7, Diagnostics Tower, , Singapore

Cefmetazole for bacteremia caused by ESBL-producing enterobacteriaceae comparing with carbapenems

Cefuroxime iv Rationale for the EUCAST clinical breakpoints, version th September 2010

Guidance on screening and confirmation of carbapenem resistant Enterobacteriacae (CRE) December 12, 2011

Detection of Carbapenem Resistant Enterobacteriacae from Clinical Isolates

AAC Accepts, published online ahead of print on 13 October 2008 Antimicrob. Agents Chemother. doi: /aac

Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae in Taiwan

Antibiotic Resistance Pattern of Blood and CSF Culture Isolates At NHLS Academic Laboratories (2005)

Determining the Optimal Carbapenem MIC that Distinguishes Carbapenemase-Producing

β-lactamase inhibitors

AMPC BETA LACTAMASES AMONG GRAM NEGATIVE CLINICAL ISOLATES FROM A TERTIARY HOSPITAL, SOUTH INDIA. Mohamudha Parveen R., Harish B.N., Parija S.C.

Sensitive and specific Modified Hodge Test for KPC and metallo-beta-lactamase

Detecting CRE. what does one need to do?

Activity of Ceftolozane/Tazobactam Against a Broad Spectrum of Recent Clinical Anaerobic Isolates

ORIGINAL ARTICLE. Julie Creighton and Clare Tibbs. Canterbury Health Laboratories, Christchurch

breakpoints, cephalosporins, CLSI, Enterobacteriacae, EUCAST, review Clin Microbiol Infect 2008; 14 (Suppl. 1):

Academic Perspective in. David Livermore Prof of Medical Microbiology, UEA Lead on Antibiotic resistance PHE

Disclosure. Objectives. Evolution of β Lactamases. Extended Spectrum β Lactamases: The New Normal. Prevalence of ESBL Mystic Program

ESCMID Online Lecture Library. by author

Public Health Surveillance for Multi Drug Resistant Organisms in Orange County

Revised AAC Version 2» New-Data Letter to the Editor ACCEPTED. Plasmid-Mediated Carbapenem-Hydrolyzing β-lactamase KPC-2 in

Molecular characterisation of CTX-M-type extendedspectrum β-lactamases of Escherichia coli isolated from a Portuguese University Hospital

Pharmacologyonline 1: (2010) ewsletter Singh and Kochbar. Optimizing Pharmacokinetic/Pharmacodynamics Principles & Role of

HOSPITAL EPIDEMOLOGY AND INFECTION CONTROL: STANDARD AND TRANSMISSION-BASED ISOLATION

Carbapenems and Enterobacteriaceae

EUCAST Frequently Asked Questions. by author. Rafael Cantón Hospital Universitario Ramón y Cajal, Madrid, Spain EUCAST Clinical Data Coordinator

Escherichia coli b- Extended spectrum b-lactamase (ESBL) 8 (6.5 ), Cephalosporinase (Amp- Amp-C 2. IncF (FIA,FIB) group ESBL 6 Amp-C 4

Carbapenemases in Enterobacteriaceae: Prof P. Nordmann Bicêtre hospital, South-Paris Med School

(multidrug-resistant Pseudomonas aeruginosa; MDRP)

Author: Souha Kanj Andrew Whitelaw Michael J. Dowzicky. To appear in: International Journal of Antimicrobial Agents

Against Aerobic Gram-Negative Bacilli

Below is an overview of the oral and poster presentations featuring cefiderocol and S at IDWeek 2017:

Nightmare Bacteria. Disclosures. Technician Objectives. Pharmacist Objectives. Carbapenem Resistance in Carbapenem Resistance in 2017

ORIGINAL ARTICLE SUSCEPTIBILITY PATTERNS IN GRAM NEGATIVE URINARY ISOLATES TO CIPROFLOXACIN, CO-TRIMOXAZOLE AND NITROFURANTOIN

EXTENDED-SPECTRUM BETA-LACTAMASE PRODUCTION AMONG AMPICILLIN-RESISTANT ESCHERICHIA COLI STRAINS FROM CHICKEN IN ENUGU STATE, NIGERIA

Phenotypic detection of ESBLs and carbapenemases

Insert for Kit 98006/98010/ KPC/Metallo-B-Lactamase Confirm Kit KPC+MBL detection Kit KPC/MBL and OXA-48 Confirm Kit REVISION: DBV0034J

Nature and Science 2017;15(10)

National Center for Emerging and Zoonotic Infectious Diseases The Biggest Antibiotic Resistance Threats

Comparision of Antibiotic Susceptibility Testing As Per CLSI and Eucast Guidelines for Gram Negative Bacilli

Clinical Management of Infections Caused by Enterobacteriaceae that Express Extended- Spectrum β-lactamase and AmpC Enzymes

SUPPLEMENTAL TESTING. Tan Thean Yen

Comparative Activity of Cefotaxime and Selected f3-lactam Antibiotics Against Haemophilus Influenzae and Aerobic Gram-Negative Bacilli

Rapid identification of emerging resistance in Gram negatives. Prof. Patrice Nordmann

JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 1998, p Vol. 36, No. 9. Copyright 1998, American Society for Microbiology. All Rights Reserved.

β- Lactamase Gene carrying Klebsiella pneumoniae and its Clinical Implication

Antibiotic Usage Related to Microorganisms Pattern and MIC

Infection Control Strategies to Avoid Carbapenam Resistance in Hospitals. Victor Lim International Medical University Malaysia

Klebsiella pneumoniae 21 PCR

Incidence of metallo beta lactamase producing Pseudomonas aeruginosa in ICU patients

Antibacterial Activity of ZnO Nanoparticles against ESBL and Amp-C Producing Gram Negative Isolates from Superficial Wound Infections

Emergence of non-kpc carbapenemases: NDM and more

A Snapshot of Colistin Use in South-East Europe and Particularly in Greece

What is new in EUCAST South Africa, May, Gunnar Kahlmeter EUCAST Technical Data Coordinator and Webmaster Sweden

Prevalence of ESBL producing enterobacteriaceae in diabetic foot ulcers

Detecting carbapenemases in Enterobacteriaceae

PROFESSOR PETER M. HAWKEY

Original Article Clinical Microbiology

Mechanisms of Resistance to Ceftazidime-Avibactam. Romney M. Humphries, PhD D(ABMM) Chief Scientific Officer Accelerate Diagnostics.

1) 1) 1) 2) 2) (ICU) Key words: (ICU), ( ) 1 30 TEL: FAX: Vol. 17 No

University of Alberta Hospital Antibiogram for 2007 and 2008 Division of Medical Microbiology Department of Laboratory Medicine and Pathology

ORIGINAL INVESTIGATION. Rapid Spread of Carbapenem-Resistant Klebsiella pneumoniae in New York City

Evaluation of the in vitro activity of ceftazidime-avibactam and ceftolozane-tazobactam

Treatment Strategies for Infections due to MDR-GNR

NDA Briefing Document Anti-Infective Drugs Advisory Committee 05 December 2014

2612 Page. *Yusuf, I 1., Rabiu A.T 1., Haruna, M 2. and Abdullahi, S. A 3. Phone:

Transcription:

Journal of Infectious Diseases & Therapy ISSN: 2332-0877 Journal of Infectious Diseases and Therapy Santanirand et al., J Infect Dis Ther 2018, 6:5 DOI: 10.4172/2332-0877.1000378 Research Article Open Access Antimicrobial Activity of Flomoxef against Enterobacteriaceae Including Extended Spectrum Beta-Lactamases-Producing Strains Isolated at Ramathibodi Hospital: A 1000-bed Tertiary Care Hospital in Bangkok, Thailand Pitak Santanirand 1, Satoshi Kojima 2*, Takahiro Yamaguchi 2, Kornikar Wongnak 1, Sudaluk Thokaew 1 and Suwichak Chiaranaicharoen 1 1 Microbiology Laboratory, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand 2 Medical Affairs Department, Shionogi & Co., Ltd., Osaka, Japan * Corresponding author: Satoshi Kojima, Medical Affairs Department, Shionogi & Co., Ltd., Osaka, Japan, Tel: +81-6-6485-5201; E-mail: satoshi.kojima@shionogi.co.jp Received date: September 6, 2018; Accepted date: September 18, 2018; Published date: September 21, 2018 Copyright: 2018 Santanirand P, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Background: The spreading of antimicrobial resistance among Gram-negative bacteria is a global issue. To explore a treatment option for Gram-negative bacilli infection, we investigated the in vitro activity of flomoxef and comparators against clinically isolated Enterobacteriaceae from a tertiary care hospital in Bangkok, Thailand. Methods: A total of 359 isolates of extended spectrum beta-lactamases- (ESBL-) and non-esbl-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were analyzed for minimum inhibitory concentration (MIC) using standard broth microdilution procedure. Results: The susceptibility rates of non-esbl-producing E. coli, K. pneumoniae and P. mirabilis to flomoxef were 98.3%, 98.3% and 100%, respectively and the isolates with ESBL-production were susceptible to flomoxef except one K. pneumoniae isolate. Intriguingly, flomoxef showed a unique antimicrobial profile among cephems, the MIC required to inhibit the growth of 90% of organisms (MIC90) was 0.25 against ESBL-producing strains. However, seventeen isolates with lower susceptibility to flomoxef were found in this study and thirteen were phenotypically confirmed producing AmpC beta-lactamase. Conclusions: Compared to other beta-lactams widely used in Thailand, flomoxef was the most active except meropenem. Therefore, Flomoxef could be considered as a new alternative and appropriate treatment option for hospitalized patients with various localized infections caused by Enterobacteriaceae including ESBL-producing strains. Keywords: Cepharosporin; Cephamycin; Oxacephem; Carbapenem; Flomoxef; ESBL; AmpC beta-lactamase Introduction Recently, emerging antimicrobial resistant bacteria is one of the most serious problems in various geographical regions including South East Asia [1,2]. In Thailand, antimicrobial resistance among Gramnegative bacteria has been spreading, which limits the therapeutic options for bacterial infections [3]. Carbapenem is one of the commonly available treatment options for the ESBL-producing bacterial infections. However, because of the broad spectrum of carbapenem, excessive use of the drug has led to the emergence of carbapenem resistant Gram-negative bacteria that include not only Enterobacteriaceae but also non-fermenting Gram-negative bacteria such as Pseudomonas aeruginosa or Acinetobacter baumannii. To overcome this conundrum regarding antimicrobial resistance and prevent carbapenem resistant bacteria from spreading, an effective treatment alternative for ESBL infection is required. Flomoxef is an intravenous beta-lactam antibiotic, which is classified under the oxacephem group. It has better in vitro activity among beta-lactams against Enterobacteriaceae including ESBLproducing bacteria but is not active against non-fermenting bacteria such as P. aeruginosa or A. baumannii [4]. However, the activity of flomoxef has not yet been reported against clinical isolates in Thailand. Hence, we assessed in vitro susceptibility of clinically isolated major strains of Enterobacteriaceae to flomoxef in comparison with antibiotics that are widely used in clinical settings. The introduction of intravenous flomoxef will enrich the treatment armamentarium for ESBL infections in Thailand. Material and Methods Clinical isolates Clinical isolates of three common Enterobacteriaceae pathogens; Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis used in this study were collected from Ramathibodi Hospital, a 1000-bed tertiary care hospital in Bangkok, Thailand. These isolates included both ESBL- and non-esbl-producing strains which were isolated mainly during 2015-2016 (some ESBL-producing P. mirabilis were isolated during 2013-2014).

Page 2 of 5 2. Susceptibility test The following antibiotics were tested with designated concentration ranges: cefotaxime (CTX) and ceftazidime (CAZ), 1-32 ; cefoxitin (CFX), ceftriaxone (CRO), piperacillin/tazobactam (PIP/ TAZ), and flomoxef (FMOX), 0.06-64 ; and imipenem (IPM) and meropenem (MEM), 0.5-16. Flomoxef was provided from Shionogi Co., Ltd. (Osaka, Japan) and the other antibiotics were obtained from Sigma-Aldrich (USA). Susceptibility of the isolates to the antimicrobial agents was determined by serial microdilution in cation-adjusted Mueller-Hinton broth (BBL, USA) in accordance with Clinical and Laboratory Standards Institute (CLSI) recommendation [5]. The interpretation of susceptibility was based on CLSI M100 S27 (2017) criteria [6]. The quality of the test was monitored using standard strains of E. coli ATCC25922 and ATCC35218. Since there was no available breakpoint (BP) for flomoxef in the CLSI guideline, the BP for moxalactam (8 ) that also belonged to oxacephem was applied. 3. Phenotypic ESBL and AmpC beta-lactamase detection ESBL screening and confirmation tests were performed as recommended by CLSI [6]. For detection of AmpC beta-lactamase production, phenotypic test using cloxacillin-containing agar was applied [7] to strains with flomoxef MIC equal to or higher than 0.5. For non-esbl-producing strains, the inhibition zone diameter of CTX and CAZ discs on 200 µg/ml cloxacillin (Sigma-Aldrich, USA) containing agar was compared with that on the plate without cloxacillin. For ESBL-producing strains, 4 µg/ml clavulanic acid was added in both the cloxacillin containing and non-containing agar plates. If more than 5 mm diameter increase was observed in either CTX or CAZ disc on the plates with beta-lactamase inhibitors (cloxacillin and/or clavulanic acid), we defined it AmpC betalactamase producing strain. Results 1. In vitro activity of antimicrobial agents against Enterobacteriaceae For this study, major three Enterobacteriaceae pathogens isolated in Ramathibodi Hospital during 2015-16 were separately collected based on ESBL-production and their susceptibilities were determined against each antimicrobial agent. Breakpoints Total (n=180) E. coli (n=60) K. pneumoniae (n=60) P. mirabilis (n = 60) Antimicrobial agents S R MIC50 MIC90 %S %R MIC50 MIC90 %S %R MIC50 MIC90 %S %R MIC50 MIC90 Cefotaxime 1 4 1 1 90.0 10.0 1 1 95.0 3.3 1 1 96.7 3.3 1 1 Ceftazidime 4 16 1 1 91.7 3.3 1 1 96.7 1.7 1 1 100 0 1 1 Ceftriaxone 1 4 0.06 0.06 90.0 8.3 0.06 0.13 96.7 1.7 0.06 0.06 96.7 1.7 0.06 0.06 Cefoxitin 8 32 2 8 88.3 6.7 4 16 93.3 5.0 2 4 100 0 2 4 Flomoxef 8 64 0.06 0.13 98.3 1.7 0.06 0.13 98.3 0.0 0.06 0.06 100 0 0.13 0.13 PIP/TAZ* 16 128 1 4 100 0 1 2 100 0.0 4 8 100 0 1 2 Imipenem 1 4 0.5 1 100 0 0.5 0.5 100 0.0 0.5 0.5 73.3 3.3 0.5 2 Meropenem 1 4 0.5 0.5 100 0 0.5 0.5 100 0.0 0.5 0.5 100 0 0.5 0.5 Table 1A: In vitro activity of antimicrobial agents against non-esbl-producing E. coli, K. pneumoniae and P. mirabilis *Piperacillin/Tazobactam (Breakpoints except flomoxef: 2017 CLSI M100 S27, Breakpoint for flomoxef: Breakpoint for moxalactam is applied) Breakpoints Total (n=179) E. coli (n=60) K. pneumoniae (n=60) P. mirabilis (n = 59) Antimicrobial agents S R MIC50 MIC90 %S %R MIC50 MIC90 %S %R MIC50 MIC90 %S %R MIC50 MIC90 Cefotaxime 1 4 32 >32 0 100 32 >32 0 100.0 >32 >32 0.0 94.9 8 32 Ceftazidime 4 16 8 >32 43.3 35.0 8 32 11.7 58.3 16 >32 59.3 37.3 1 >32 Ceftriaxone 1 4 64 >64 0 100 >64 >64 0 100.0 >64 >64 11.9 62.7 4 16 Cefoxitin 8 32 4 16 78.3 16.7 8 32 90.0 1.7 8 8 100 0 2 4 Flomoxef 8 64 0.13 0.25 100 0 0.06 0.25 98.3 0.0 0.13 0.13 100 0 0.13 0.13 PIP/TAZ* 16 128 2 8 100 0 2 4 90.0 3.3 8 16 100 0 2 8

Page 3 of 5 Imipenem 1 4 0.5 2 100 0 0.5 0.5 100 0.0 0.5 0.5 69.5 3.4 1 2 Meropenem 1 4 0.5 0.5 100 0 0.5 0.5 100 0.0 0.5 0.5 100 0 0.5 0.5 Table 1B: In vitro activity of antimicrobial agents against ESBL-producing E. coli, K. pneumoniae and P. mirabilis *Piperacillin/Tazobactam (Breakpoints except flomoxef: 2017 CLSI M100 S27, Breakpoint for flomoxef: Breakpoint for moxalactam is applied) In non-esbl-producing group, all three species were shown to be highly susceptible to nearly all tested antibiotics. The susceptibility rates of piperacillin/tazobactam and meropenem were 100% in all three species. The susceptibility rates of E. coli and K. pneumoniae to flomoxef were equally at 98.3%, which were higher comparing with other four cephalosporins. The MIC90 of flomoxef against E. coli and K. pneumoniae were 0.13 and 0.06, respectively. A 100% susceptibility was demonstrated to flomoxef, cefoxitin and ceftazidime in P. mirabilis (Table 1A). The overall MIC90 of flomoxef against 180 isolates of non- ESBL-producing strains was 0.13. of flomoxef against 180 isolates of non-esbl-producing strains was 0.13. In the ESBL-producing group, all of the isolates were resistant to cefotaxime, and all of the isolates were resistant to ceftriaxone except P. mirabilis. On the other hand, susceptibility rate of E. coli and P. mirabilis to ceftazidime was 43.3% and 59.3%, respectively, while it remained at 11.7% in K. pneumoniae. Meropenem achieved 100% susceptibility in all tested isolates while E. coli and K. pneumoniae isolates solely were susceptible to imipenem. Although only 69.5% of P. mirabilis isolates were susceptible to imipenem, it is a common feature of the drug which is not attributable to beta-lactamase production, such as ESBL, AmpC, and carbapenemase. On the other hand, piperacillin/tazobactam showed 100% susceptibility rate in E. coli and P. mirabilis. Similar to piperacillin/tazobactam, flomoxef was 100% effective against these two species. Additionally, flomoxef achieved higher susceptibility rate comparing with piperacillin/tazobactam (98.3 versus 90.0%) in ESBL-producing K. pneumoniae. The overall MIC90 of flomoxef against 179 isolates of ESBL-producing strains was 0.25 (Table 1B). Effect of AmpC production on flomoxef activity MIC () n 0.06 0.13 0.25 0.5 1 2 4 8 16 32 64 MIC50 MIC90 Total 359 164 162 16 5 2 3 2 2 2 0 1 0.13 0.13 to non-esbl 180 104 61 6 0 1 3 2 1 1 0 1 0.06 0.13 to ESBL 179 60 101 10 5 1 0 0 1 1 0 0 0.13 0.13 Table 2A: MIC distribution of Flomoxef. MIC Organism Strain ESBL FMOX CTX CAZ CRO CFX PIP/TAZ IMP MEM AmpC E. coli EC-P24 Negative 64 32 32 64 >64 4 0.5 0.5 Positive K. pneumoniae KP-P18 Negative 16 4 16 2 >64 8 0.5 0.5 Positive E. coli EC-P12 Negative 8 8 8 16 64 2 0.5 0.5 Positive E. coli EC-P10 Negative 4 4 4 4 32 2 0.5 0.5 Positive K. pneumoniae KP-P37 Negative 4 8 8 8 >64 8 0.5 0.5 Positive E. coli EC-P01 Negative 2 4 8 2 64 4 0.5 0.5 Positive K. pneumoniae KP-P54 Negative 2 1 1 0.13 >64 8 0.5 0.5 Positive P. mirabilis PM-P43 Negative 2 4 2 2 8 8 0.5 0.5 Positive E. coli EC-P49 Negative 1 4 8 4 16 2 0.5 0.5 Positive K. pneumoniae KPE-P31 Positive 16 >32 32 >64 64 32 0.5 0.5 Positive E. coli ECE-P50 Positive 8 >32 16 >64 16 4 0.5 0.5 Positive P. mirabilis PME-P28 Positive 1 16 >32 4 2 2 0.5 0.5 Positive

Page 4 of 5 E. coli ECE-P45 Positive 0.5 16 1 16 32 2 0.5 0.5 Positive E. coli ECE-P08 Positive 0.5 >32 32 >64 32 4 0.5 0.5 Negative E. coli ECE-P19 Positive 0.5 >32 > 32 >64 32 4 0.5 0.5 Negative E. coli ECE-P52 Positive 0.5 >32 > 32 >64 32 8 0.5 0.5 Negative K. pneumoniae KPE-P38 Positive 0.5 >32 16 >64 8 4 0.5 0.5 Negative Table 2B: AmpC beta-lactamase detection. CTX: Cefotaxime; CAZ: Ceftazidime; CFX: Cefoxitin; CRO: Ceftriaxone; PIP/TAZ: Piperacillin/ tazobactam; FMOX: Flomoxef; IPM: Imipenem; MEM: Meropenem The MIC distribution of flomoxef against ESBL- and non-esblproducing isolates is shown in Table 2A. The MIC90 of flomoxef against 359 isolates of ESBL- and non-esbl-producing strains from three species were 0.13. Although only a single isolate of non- ESBL-producing E. coli was resistant to flomoxef with the MIC of 64, there were some isolates which showed higher MICs than most of the strains. This phenotype is likely to be attributable to AmpC production. The hypothesis is reflected from high MIC of cefoxitin in these isolates combination with data from previous study among Enterobacteriaceae [8]. In order to assess the production of AmpC beta-lactamases, 17 isolates with the MIC of flomoxef equal to or higher than 0.5 were tested for AmpC production. Among these isolates, nine were non-esbl-producing strains which consisted of five E. coli, three K. pneumoniae and one P. mirabilis. In addition, eight ESBL-producing strains included five E. coli, two K. pneumoniae and one P. mirabilis. The result from the phenotypic test of AmpC betalactamase production depicted in Table 2B showed that all strains with flomoxef MIC of higher than or equal to 1 and one of five strains with MIC of 0.5 had AmpC beta-lactamase Discussion Antimicrobial resistance represents an emerging threat to our community. The spread of antimicrobial resistant bacteria, especially ESBL-producing bacteria is a growing concern in Thailand as is a global issue. According to an earlier study and the data from National Antimicrobial Resistance Surveillance Center, Thailand (NARST) [http://narst.dmsc.moph.go.th], recent ESBL-producing rate in E. coli and K. pneumoniae was approximately 40% [9]. Flomoxef is classified as oxacephem antibiotic as its chemical structure is based on the oxygen atom being substituted for the sulfur of cephem nucleus. It also has a 7-α-methoxy group in the beta-lactam core, which provides the stability against various beta-lactamases [10]. In the circumstance with high prevalence of ESBL-producing bacteria in Thailand, flomoxef was shown to retain its antimicrobial activity against major Enterobacteriaceae strains, which coincide with the outcomes reported in other Northeastern Asian regions [11-13]. The detection of AmpC beta-lactamase in Enterobacteriaceae suggested that production of AmpC beta-lactamase conferred the resistance to flomoxef. This finding was consistent with the previous study result [8], and additionally we found that even one of the strains with flomoxef MIC of 0.5 produced AmpC beta-lactamase. Although 4 of 5 isolates with flomoxef MIC of 0.5 had a negative phenotype for AmpC production, these isolates were resistant to cefoxitin with MIC ranged between 8-32. This could be the limitation of the detection method [14]. Since only a small number of isolates were tested in this study, further study on the correlation of AmpC and the MIC distribution of flomoxef would provide useful information on this matter. However, these data suggest that any isolates with MIC of flomoxef between 1-8 may require close monitoring, as this can be inferred as resistance acquisition. A recent Monte-Carlo simulation suggests that the flomoxef dosing regimen of 1 g every 8 h is effective against Enterobacteriaceae strains with MIC90 0.5 to achieve the target attainment of 80% for 70% of time above MIC [15]. Considering these observations, the BP of flomoxef, 8 applied in this study might be higher than the optimal BP. These AmpC-producing strains are not as common in Thailand when compared to Taiwan and South Korea [16,17]. Although in this study, only a few isolates were AmpC-producing with high MICs of flomoxef, which implied that the success rate of using flomoxef for empirical therapy would rely on the prevalence of AmpC in the region. Therefore, regular susceptibility monitoring to flomoxef is recommended for optimal clinical outcome. Based on this study, flomoxef might be a carbapenem-sparing option for an infection presumably caused by ESBL-producing strains and a de-escalation option in mild to moderate urinary tract infection, intra-abdominal infection, and biliary tract infection. Flomoxef holds a potential to alleviate the overuse of carbapenem. Flomoxef has activity against most of the Enterobacteriaceae isolates in Thailand. Given the favorable antimicrobial profiles, flomoxef represents one of the appropriate treatment options for hospitalized patients with infections caused by Enterobacteriaceae. Acknowledgements We thank all investigators for their contribution and participation in this study and the Microbiology Laboratory, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University for the support with the bacterial strains for this study. This research project was approved by the ethical clearance committee on human rights related to research involving human subjects, Faculty of Medicine, Ramathibodi hospital, Mahidol University (approval ID: MURA2015/691). This research was conducted at The Faculty of Medicine, Ramathibodi Hospital under the contract research for Shionogi Singapore Pte. Ltd. SK and TY are employee of Shionogi & Co., Ltd. PS, KW, ST and SC declare that they have no competing interests. Authors' contributions to the work PS and TY designed this study and made the protocol of this study. PS, SK and KW modified the protocol. PS, SK and TY made the concept of manuscript. PS, KW, ST and SC analyzed and interpreted

Page 5 of 5 the data of MIC and AmpC test. PS and SK were major contributors in writing the manuscript. All authors read and approved the final manuscript. References 1. Jean SS, Coombs G, Ling T, Balaji V, Rodrigues C, et al. (2016) Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010-2013. Int J Antimicrob Agents 47:328-334. 2. Nakayama T, Ueda S, Huong BTM, Tuyen LD, Komalamisra C, et al. (2015) Wide dissemination of extended-spectrum β-lactamase-producing Escherichia coli in community residents in the Indochinese peninsula. Infect Drug Resist 8: 1-5. 3. Lestari ES, Severin JA, Verbrugh HA (2012) Antimicrobial resistance among pathogenic bacteria in Southeast Asia. Southeast Asian J Trop Med Public Health 43: 385-422. 4. Jacoby GA, Carreras I (1990) Activities of β-lactam antibiotics against Escherichia coli strains producing extended spectrum β-lactamases. Antimicrob Agents Chemother 34: 858-862. 5. Clinical and Laboratory Standards Institute (2015) M07-A10. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standards-tenth edition. Wayne, PA: CLSI. 6. Clinical and Laboratory Standards Institute (2015) M100-S25. Performance standards for antimicrobial susceptibility testing; Twentyfifth informational supplement. Wayne, PA: CLSI. 7. Tan TY, Ng LS, He J, Koh TH, Hsu LY (2009) Evaluation of screening methods to detect plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Antimicrob Agents Chemother 53: 146-149. 8. Matsumura Y, Yamamoto M, Nagao M, Tanaka M, Takakura S, et al. (2016) In vitro activities and detection performances of cefmetazole and flomoxef for extended spectrum β-lactamase and plasmid-mediated AmpC β-lactamase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 84: 322-327. 9. Sethaphanich N, Santanirand P, Rattanasiri S, Techasaensiri C, Chaisavaneeyakorn S, et al. (2016) Pediatric extended spectrum β- lactamase infection: Community-acquired infection and treatment options. Pediatric international 58: 338-346. 10. Ruckdeschel G, Eder W (1988) Comparative in vitro activity of the new oxacephem antibiotic, flomoxef (6315-S). Eur J Clin Microbiol Infect Dis 7: 687-691. 11. Yang Q, Zhang H, Cheng J, Xu Z, Xu Y, et al. (2015) In vitro activity of flomoxef and comparators against Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis producing extended-spectrum betalactamases in China. Int J Antimicrob Agents 45: 485-490. 12. Cui L, Li Y, Lv Y, Xue F, Liu J (2015) Antimicrobial resistance surveillance of flomoxef in China. J Infect Chemother 21: 402-404. 13. Liao CH, Sheng WH, Wang JT, Sun HY, Wang HK, et al. (2006) In vitro activities of 16 antimicrobial agents against clinical isolates of extendedspectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in two regional hospitals in Taiwan. J Microbiol Immunol Infect 39: 59-66. 14. Ingram PR, Inglis TJ, Vanzetti TR, Henderson BA, Harnett GB, et al. (2011) Comparison of methods for AmpC β-lactamase detection in Enterobacteriaceae. J Med Microbiol. 60(6): 715-721. 15. Ito A, Tatsumi MY, Wajima T, Nakamura R, Tsuji M (2013) Evaluation of antibacterial activities of flomoxef against ESBL producing Enterobacteriaceae analyzed by Monte Carlo Simulation. Jpn J Antibiot 66: 71-86. 16. Lee CH, Liu JW, Li CC, Chien CC, Tang YF, et al. (2011) Spread of ISCR1 Elements Containing bladha-1 and Multiple Antimicrobial Resistance Genes Leading to Increase of Flomoxef Resistance in Extended- Spectrum-beta-Lactamase Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 55: 4058-4063. 17. Lee K, Yong D, Choi YS, Yum JH, Kim JM, et al. (2007) Reduced imipenem susceptibility in Klebsiella pneumoniae clinical isolates with plasmid-mediated CMY-2 and DHA-1 β-lactamases co-mediated by porin loss. Int J Antimicrob Agents 29: 201-206.