Till Blaser, MD; Wenzel Glanz; Stephan Krueger, MD; Claus-Werner Wallesch, MD; Siegfried Kropf, PhD; Michael Goertler, MD

Similar documents
Emboli detection to evaluate risk of stroke

The use of Doppler ultrasound to estimate blood flow

A study of microemboli monitoring of atherosclerotic thrombotic cerebral infarction and artery stenosis

Reduction of flow velocities in patients with ischemic events in the middle cerebral artery long-term follow-up with ultrasound

Protokollanhang zur SPACE-2-Studie Neurology Quality Standards

Prolonged TCD Monitoring for Microembolus Detection in Acute Stroke Patients

Diagnosis of Middle Cerebral Artery Occlusion with Transcranial Color-Coded Real-Time Sonography

Subscriptions: Information about subscribing to Circulation is online at

Policies and Statements D16. Intracranial Cerebrovascular Ultrasound

Symptomatic carotid stenosis is associated with a markedly

Redgrave JN, Coutts SB, Schulz UG et al. Systematic review of associations between the presence of acute ischemic lesions on

CHAPTER 5. Symptomatic and Asymptomatic Retinal Embolism Have Different Mechanisms

Carotid plaque morphology constitutes, besides degree

Stroke is the third-leading cause of death and a major

Davos Cerebral Ischemia after Transcatheter Aortic Valve Implantation. Raimund Erbel, H Eggebrecht, P Kahlert for the

APPENDIX A NORTH AMERICAN SYMPTOMATIC CAROTID ENDARTERECTOMY TRIAL

Carotid Artery Disease and What s Pertinent JOSEPH A PAULISIN DO

Transcranial Doppler ultrasound (TCD) may be used to

Slide 1. Slide 2 Conflict of Interest Disclosure. Slide 3 Stroke Facts. The Treatment of Intracranial Stenosis. Disclosure

Advances in the treatment of posterior cerebral circulation symptomatic disease

Michael Horowitz, MD Pittsburgh, PA

The severity of neurologic deficits associated with

Differentiation of Emboli

The New England Journal of Medicine PROGNOSIS AFTER TRANSIENT MONOCULAR BLINDNESS ASSOCIATED WITH CAROTID-ARTERY STENOSIS

Transcranial Doppler ultrasound detection of microemboli as a. predictor of cerebral events in patients with symptomatic and

Antithrombotic therapy in patients with transient ischemic attack / stroke (acute phase <48h)

Color Doppler Imaging Evaluation of Proximal Vertebral Artery Stenosis

Serum erythropoietin and outcome after ischemic stroke: a prospective study. Supplementary information (online only):

Clinical Study Relationship between Pulsatility Index and Clinical Course of Acute Ischemic Stroke after Thrombolytic Treatment

ORIGINAL CONTRIBUTION. Early Stroke Risk After Transient Ischemic Attack Among Individuals With Symptomatic Intracranial Artery Stenosis

Pre-and Post Procedure Non-Invasive Evaluation of the Patient with Carotid Disease

Neuro Quiz 29 Transcranial Doppler Monitoring

TIA SINGOLO E IN CRESCENDO: due diversi scenari della rivascolarizzazione urgente carotidea

Recommendations for documentation of neurosonographic examinations

Carotid Artery Stenosis

Transcranial color-coded sonography (TCCS) is a reliable

FIRST COAST SERVICE OPTIONS FLORIDA MEDICARE PART B LOCAL COVERAGE DETERMINATION

B-Flow, Power Doppler and Color Doppler Ultrasound in the Assessment of Carotid Stenosis: Comparison with 64-MD-CT Angiography


Any vascular studies performed should be as a result of, or to complement, a thorough patient evaluation and neurological examination.

Canadian Best Practice Recommendations for Stroke Care. (Updated 2008) Section # 3 Section # 3 Hyperacute Stroke Management

Transcranial Color-Coded Duplex Sonography in Unilateral Flow-Restrictive Extracranial Carotid Artery Disease

MORTALITY AND MORBIDITY RISK FROM CAROTID ARTERY ATHEROSCLEROSIS. 73 year old NS right-handed male applicant for $1 Million life insurance

The CARENET all-comer trial using the CGuard micronet covered carotid embolic prevention stent

a physician-initiated study investigating the RoadSaver stent in carotid lesions Dr. Michel Bosiers

Spontaneous embolisation on TCD and carotid plaque features

Carotid Endarterectomy for Symptomatic Complete Occlusion of the Internal Carotid Artery

Transient Atrial Fibrillation and Risk of Stroke after Acute Myocardial Infarction

Disclosures. State of the Art Management of Carotid Stenosis. NIH funding for clinical trials Consultant for Scientia Vascular and Medtronic

The Impact of Smoking on Acute Ischemic Stroke

Amaurosis fugax: some aspects of management

CEA and cerebral protection Volodymyr labinskyy, MD

Emergently? Michigan Institute for Neurological Disorders. Garden City Hospital, Garden City, Michigan

MORTALITY AND MORBIDITY RISK FROM CAROTID ARTERY ATHEROSCLEROSIS. 73 year old NS right-handed male applicant for $1 Million Life Insurance

CEREBRO VASCULAR ACCIDENTS

CAROTID DEBATE High-Grade Asymptomatic Disease Should Be Repaired Selectively; Medical Management is NOT Enough

THE FRAMINGHAM STUDY Protocol for data set vr_soe_2009_m_0522 CRITERIA FOR EVENTS. 1. Cardiovascular Disease

Antithrombotic management options for acute ischemic large-vessel stroke: A meta-analysis of randomized clinical trials

TCD in Anaesthesiology

DESCRIPTION: Percent of asymptomatic patients undergoing CEA who are discharged to home no later than post-operative day #2

Intracranial Cerebrovascular Evaluation Transcranial Doppler (Non-Imaging) and Transcranial Duplex Imaging (TCD-I)

Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion

Critical Review Form Therapy

Recurrent stroke risk is high after a single cerebrovascular event in patients with symptomatic 50-99% carotid stenosis: a cohort study

CHAPTER 7. Retinal Embolism: Risk Factors, Characteristics, Source and Prognosis

In cerebral infarction, the prognostic value of angiographic

2016 PQRS OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY

Imaging of the Basal Cerebral Arteries and Measurement of Blood Velocity in Adults by Using Transcranial Real-Time Color Flow Doppler Sonography

Dr Julia Hopyan Stroke Neurologist Sunnybrook Health Sciences Centre

TCD and cardiac arrest

Identification of those patients with transient ischemic

CAROTID ARTERY ANGIOPLASTY

Carotid Artery Stenting

Categorical Course: Update of Doppler US 8 : 00 8 : 20

Guidelines for Ultrasound Surveillance

The risk of MR-detected carotid plaque hemorrhage on recurrent or first-time stroke: a meta-analysis of individual patient data

Original Contributions. Prospective Comparison of a Cohort With Asymptomatic Carotid Bruit and a Population-Based Cohort Without Carotid Bruit

The contribution of the external carotid artery to cerebral perfusion in carotid disease

Non-invasive assessment of intracranial pressure - a plugin function of ICM+ system

ISPUB.COM. Transcranial Doppler: An Overview of its Clinical Applications. A Alexandrov, M Joseph INTRODUCTION SICKLE CELL DISEASE

TIA is associated with high early risk of stroke. This risk is

ORIGINAL CONTRIBUTION. Long-term Risk of Stroke and Other Vascular Events in Patients With Asymptomatic Carotid Artery Stenosis

KARG E R. Stroke Prevention. Editors Wolfgang Domdorf, Giessen Peter Marx, Berlin. 26 figures and 29 tables, 1994

Luisa Vinciguerra. Ictus recidivanti

Lesion patterns in patients with cryptogenic stroke with and without right-to-left-shunt

CT and MR Imaging in Young Stroke Patients

Reappraisal of Flow Velocity Ratio in Common Carotid Artery to Predict Hemodynamic Change in Carotid Stenosis

Recanalization of Chronic Carotid Artery Occlusion Objective Improvement Of Cerebral Perfusion

Patent Foramen Ovale: Diagnosis and Treatment

Stroke 101. Maine Cardiovascular Health Summit. Eileen Hawkins, RN, MSN, CNRN Pen Bay Stroke Program Coordinator November 7, 2013

Acute brain MRI DWI patterns and stroke recurrence after mild-moderate stroke

Use of Orbital Color Doppler Imaging for Detecting Internal Carotid Artery Stenosis in Patients with Amaurosis Fugax

Transorbital blood flow sound recordings have the

ORIGINAL INVESTIGATION. Relevance of Carotid Stenosis Progression as a Predictor of Ischemic Neurological Outcomes

ACUTE CENTRAL PERIFERALEMBOLISM

PERCUTANEOUS CLOSURE OF PATENT FORAMEN OVALE AND ATRIAL SEPTAL DEFECT: STATE OF THE ART AND A CRITICAL APPRAISAL

THE incidence of stroke after noncardiac surgery

Acute stroke. Ischaemic stroke. Characteristics. Temporal classification. Clinical features. Interpretation of Emergency Head CT

GUNDERSEN/LUTHERAN ULTRASOUND DEPARTMENT POLICY AND PROCEDURE MANUAL

Does ABCD 2 Score Below 4 Allow More Time to Evaluate Patients With a Transient Ischemic Attack?

Transcription:

Time Period Required for Transcranial Doppler Monitoring of Embolic Signals to Predict Recurrent Risk of Embolic Transient Ischemic Attack and Stroke From Arterial Stenosis Till Blaser, MD; Wenzel Glanz; Stephan Krueger, MD; Claus-Werner Wallesch, MD; Siegfried Kropf, PhD; Michael Goertler, MD Background and Purpose We aimed to investigate whether the time period of transcranial Doppler monitoring for embolic signals can be reduced without loss of clinical yield compared with routinely performed 1-hour monitoring. Methods Investigations on the basis of a post hoc analysis of a previously published cohort of 86 patients (55 men, 31 women; mean age 60.6 years) with a nondisabling arterioembolic ischemic event in the anterior circulation within the last 30 days (mean 7.3) and an ipsilateral medium-grade or high-grade stenosis of the carotid or middle cerebral artery. underwent 1-hour monitoring for embolic signals and were followed up prospectively for 6 weeks to evaluate the relationship between embolic signals and risk of an early ischemic recurrence. Risk was also calculated after fictitious reduction of the monitoring period from 60 minutes to 50, 40, 30, 20, and 10 minutes, respectively, and compared with the results obtained from the 1-hour period. Results The number of patients positive for embolic signals decreased with the decreasing monitoring period. By this, the odds ratio of embolic signals for an early ischemic recurrence decreased from 40 (derived from the 1-hour monitoring) to 10 when the monitoring lasted 30 minutes. The relationship between the rate of embolic signals per hour and risk of a recurrent stroke is described by an S-shaped curve. As a consequence, risk estimated from reduced monitoring periods can differ considerably from that derived from the 1-hour monitoring if the signal frequency lies within a medium range (eg, between 3 and 15 signals in 30 minutes). Conclusions The time period of monitoring for embolic signals may be reduced without loss of clinical relevant information when signal frequency is low or already high during the reduced monitoring period, but it should be prolonged to maximally an hour at signal numbers within a medium range. However, our results need to be externally validated on an independent cohort of patients or confirmed by a prospective study before this modification can be recommended in general. (Stroke. 2004;34:2155-2159.) Key Words: carotid stenosis cerebral embolism stroke, ischemic ultrasonography, Doppler, transcranial The occurrence of cerebral microemboli as detected by transcranial Doppler sonography in patients with recently symptomatic carotid stenosis is associated with a 10- to 40-fold risk increase for an early ischemic recurrence. 1 3 Their persistence or cessation under antithrombotic medication may serve as a parameter for the short-term efficacy of secondary antithrombotic prevention or even guide this therapy until carotid endarterectomy. 1 However, especially in patients with an acute cerebrovascular event, clinical impracticability of prolonged and repetitive transcranial Doppler monitoring may oppose its clinical efficiency. One-hour detection periods, as suggested from long-term recordings 4 and confirmed for their clinical value at repeated monitorings, 1 might neither be tolerated by a substantial number of patients nor be applicable in an acute stroke setting, 5,6 thus limiting the clinical feasibility of the examination. We investigated whether and to what extent a reduction of the detection period results in a clinical yield comparable to that evaluated by 1-hour monitoring. Subjects and Methods Post hoc analysis presented in this study is based on a series of 86 patients (55 men, 31 women; mean age 60.6 13 years) with a nondisabling arterioembolic ischemic event in the anterior circulation (15 amaurosis fugax, 34 transient ischemic attacks [TIAs], 37 minor strokes) within the last 30 days (mean 7.3). All patients had medium-grade (41 patients) or high-grade stenosis (45 patients) of Received March 16, 2004; final revision received May 21, 2004; accepted June 3, 2004. From the Department of Neurology (T.B., W.G., S. Krueger, C.-W.W., M.G.) and the Institute for Biometry and Medical Informatics (S. Kropf), University of Magdeburg, Germany. Correspondence to Dr Michael Goertler, Department of Neurology, University of Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany. E-mail michael.goertler@medizin.uni-magdeburg.de 2004 American Heart Association, Inc. Stroke is available at http://www.strokeaha.org DOI: 10.1161/01.STR.0000136768.63532.70 2155

2156 Stroke September 2004 the ipsilateral carotid (61 patients) or middle cerebral artery (25 patients). Extracranial carotid stenosis was classified as medium grade ( 50% local diameter reduction) at angle-corrected peak systolic velocities 120 cm/s and as high grade ( 80% local diameter reduction) at peak systolic velocities 300 cm/s or end-diastolic velocities 135 cm/s. 7 For the diagnosis of middle cerebral artery stenosis, cut-off values of angle-corrected peak systolic velocities were 155 cm/s ( 50%) and 220 cm/s ( 50%), respectively. 8 Detailed characteristics of patients have been presented previously. 1 All patients underwent a standardized admission procedure, including medical history, quantification of the neurological deficit, and functional disability according to the National Institutes of Health Stroke Scale and the modified Rankin Scale, brain-computed tomography/mri, extracranial and transcranial Doppler, and colorcoded duplex sonography, 12 lead ECG, and laboratory examination. One-hour transcranial Doppler monitoring was performed at admission and again 1.8 days after start of an antithrombotic prevention if embolic signals were detected (mean, range 0.2 to 3.9). were followed up prospectively to evaluate the relationship between presence (ie, persistence of embolic signals even under antithrombotic medication) and the risk of recurrent TIA and stroke within the following 6 weeks. End point of follow-up was recurrent ischemia in 7 patients, carotid endarterectomy in 27, change of antithrombotic medication in 10, and censored follow-up in 39. Three patients were lost to follow up. Mean duration of follow-up was 28 days (SD 16.8) for the entire cohort and 18 days (SD 15.3) for the 27 patients who underwent endarterectomy. In the latter patients, embolic signals had been detected in 14, which persisted in 9 also under antithrombotic medication. Although these relationships were similar for the 56 patients who were not operated on later (in whom embolic signals were initially detected in 30 and persisted in 16), the risk of patients waiting for endarterectomy may be even higher than that calculated for the entire cohort 1 because operated patients showed significantly shorter follow-up periods under risk than those with other end points of follow-up. Periods suspicious of embolic signals at bilateral simultaneous middle cerebral artery monitoring with dual-gated 2-MHz pulsedwave probes (Multidop X; DWL) were assessed automatically by the software. Signals were registered online and stored on hard disk when the relative intensity increase reached the detection threshold of 12 db and the calculated propagation distance ranged from 0.5 to 10 mm (true Doppler gate distance 5 mm). Device setting of the initial monitoring was maintained at follow-up recording. Subsequent visual offline review was performed by 2 independent observers blinded for patients and monitoring data. Both observers included only events with a unidirectional signal within the Doppler velocity spectrum. For these settings, sensitivity for artifact identification had been investigated on 300 artifacts in control subjects (by coughing, clearing their throats, speaking, snoring, swallowing, jaw movements, and tapping against the probe) and was determined as 98%. 9 Sensitivity for detection of an embolic signal had been evaluated by reference digital audio tape within the scope of a between-center comparison and was 95%. For the purpose of this study, the time period of the 1-hour monitoring that preceded the follow-up period was fictitiously reduced from 60 minutes to 50, 40, 30, 20, and 10 minutes, respectively. Embolic signals that had appeared between the start of the monitoring and the end of a period were counted for that period. Periods with 1 signal were considered embolic signal positive. The risk of a recurrent stroke or TIA in relation to the presence or absence of embolic signals was analyzed by Cox regression for each of the 5 fictitious monitoring periods and compared with that calculated from the 1-hour monitoring. Covariates supposed to be associated with recurrent TIA and stroke and included in the analysis of the 1-hour period 1 (ie, age, type of the first event [persistent versus transient], recurrent initial events, time since the initial event, degree and localization [extracranial versus intracranial] of the stenosis) were also included at each of the 5 regression analyses. Previous investigation on these patients had also shown that the number of embolic signals at a 1-hour detection period may better predict patients individual risk than dichotomization between presence and absence of embolic signals. 1 Therefore, Cox regression was also performed when the number of embolic signals during the 1-hour monitoring was included instead of signal presence/absence. Covariates matched those of the dichotomized analysis (see above). The estimated probability S(t) to be event free up to time t can be calculated by means of Cox regression analysis according to the equation: S(t) exp[ H 0 (t) exp(pi)], where H 0 (t) is the baselineintegrated hazard at time t and PI is prognostic index. 10 PI is calculated from regression coefficients (b i ) of included variables (x i ) as PI (b i x i ). Time (t) was fixed at 42 days (6 weeks), which corresponded to the follow-up period of our patients and is the maximum interval between diagnosis and endarterectomy of symptomatic carotid stenosis in our routine clinical practice. For the purpose of the present study, 1-hour periods again were fictitiously reduced from 60 minutes to 50, 40, 30, 20, and 10 minutes, respectively. Embolic signals within these periods were counted, and a 1-hour frequency was calculated (eg, by multiplying the frequency of a 20-minute monitoring period by 3). These calculated 1-hour frequencies were inserted in the above-mentioned equation for the event-free function (derived from the 1-hour monitoring), and the corresponding probabilities to be without recurrent ischemic event at time t (ie, at 6 weeks) were calculated. Because measured and calculated 1-hour frequency may differ in an individual patient, calculated probabilities for the absence of a recurrent event will also differ in this patient. This difference was plotted against the number of embolic signals counted during the reduced monitoring period. Therefore, a single plot shows the deviation in the estimated stroke risk for each patient that occurred as a consequence of the reduced monitoring period in relation to counted embolic signals within this reduced monitoring period. Five of these plots were created, 1 for each reduced period. For statistical analysis, we used SPSS version 10.0, with significance set at P 0.05. Results The number of patients in whom embolic signals ipsilateral to the symptomatic stenosis could be detected decreased along with the decreasing monitoring period (Table 1). This also applied to the 7 patients with recurrent TIA or stroke during follow-up, of whom 4 were negative for embolic signals at the shortest monitoring time (10 minutes) in contrast to only 1 patient at the 1-hour monitoring. As a consequence, the adjusted odds ratio of the presence of embolic signals (without consideration of their number) for a recurrent ischemic event was 10 at monitoring periods lasting 30 minutes, in contrast to 40, when the presence or absence of embolic signals was assessed by 1-hour monitoring (Table 1). Table 2 shows results of Cox regression analysis when signal presence/absence at 1-hour monitoring was replaced by the 1-hour signal frequency. On the basis of the coefficients derived from this Cox regression analysis, the risk of a subsequent embolic ischemic event within 6 weeks (ie, 1 S(t), with t 42 days; see above) was calculated in relation to the number of embolic signals detected at the 1-hour monitoring. Calculation revealed a relationship that is described by an S-shaped curve (Figure 1). An alteration of the signal frequency within a range from 10 to 25 signals per hour was associated with a remarkable risk increase/decrease per signal of 5%. In contrast, risk was only slightly or not influenced when the frequency of embolic signals altered within the range of 5 or 30 per hour, respectively. When the monitoring period was reduced stepwise and the 1-hour frequency was subsequently calculated (instead of measured), the following calculation of the estimated risk of a subsequent ischemic event (according to the above-mentioned equation)

Blaser et al Time Period Required to Monitor Embolic Signals 2157 TABLE 1. Effect of the Time Period of Transcranial Doppler Monitoring on the No. of Positive for Embolic Signals, No. of Recurrent Ischemic Events in Positive and Negative, and Adjusted Odds Ratio for a Recurrent Ischemic Event in the Presence of ESs From Cox Regressions Time Period of TCD Monitoring ES-Negative ES-Positive Recurrent Ischemic Events in ES-Negative Recurrent Ischemic Events in ES-Positive OR 95% CI P 60 minutes 61 25 1 6 37.037 3.534 333.448 0.003 50 minutes 61 25 1 6 37.037 3.534 333.448 0.003 40 minutes 63 23 2 5 13.587 2.200 83.905 0.005 30 minutes 64 22 3 4 10.846 1.779 66.109 0.010 20 minutes 64 22 3 4 10.846 1.779 66.109 0.010 10 minutes 70 16 4 3 8.838 1.290 60.534 0.026 These regressions include presence of embolic signals (ESs), age, type of initial event (persistent vs transient), multiple initial events, time since the initial event, and degree and localization (extracranial vs intracranial) of the stenosis. Only the odds ratio (OR) of the presence vs absence of ESs is presented from each of the 6 regression analyses. revealed substantial differences for numerous patients compared with the risk derived from the 1-hour measurement. For each of the 5 reduced monitoring periods, these differences were plotted against the number of embolic signals detected in the corresponding monitoring period (Figure 2). Plots suggest for each of the reduced periods a medium range of frequencies associated with a considerable deviation that is maximal for the shortest monitoring period and decreases with prolongation of the monitoring. Discussion Our study demonstrates that in patients with recently symptomatic arterial stenosis, the combination of the length of the monitoring period and the number of embolic signals counted within this period has major impact on the reliability of estimated recurrent ischemic risk derived from presence and frequency of embolic signals. Varying monitoring periods may be responsible primarily for the diverging odds of the presence of embolic signals on an early ischemic recurrence. In patients with recent cerebral ischemia and a corresponding arterial embolic source, Valton et al described a 10 higher risk for an early recurrent ischemic event if embolic signals were detected during a 20-minute transcranial Doppler monitoring. 3 In the cohort of our patients with recently symptomatic carotid or middle cerebral artery stenosis and 1-hour transcranial Doppler monitoring, former evaluation has found an even 40 higher risk of an early ischemic recurrence in the presence of embolic signals when compared with patients without detectable signals. 1 The higher risk in our patients might be explained by the smaller time window since the index event, the noninclusion of patients with arterial lesions at other localizations than carotid or middle cerebral artery, and that we used an alteration of the antithrombotic medication since the last monitoring as an end point of follow-up. However, the present investigation on the same cohort of patients suggests that this difference also might be caused solely by the different monitoring periods. Shortening of the monitoring period from 60 to 20 minutes in our patients resulted in a pseudoreduction of risk in patients positive for embolic signals from 40-fold to 10-fold of that in patients without detectable embolic signals. Although the largest decline of risk was between 50 and 40 minutes, conclusions about the relationship between shortening of the monitoring period and reduction of risk cannot be drawn reliably on the basis of our data. For that, the number of patients investigated and the number of outcome events were too low, resulting in rather wide CIs. However, it seems obvious that with shorter monitoring periods, a larger number of patients is classified as negative for embolic signals compared with the 1-hour assessment. This might lead to an ignorance of an increased ischemic risk in these patients if the risk is predicted solely on the basis of presence or absence of embolic signals. TABLE 2. Interaction Between Risk Factors and Early Recurrent TIA or Stroke in 86 With Recently Symptomatic Arterial Stenosis Risk Factor b OR 95% CI P Age (years) 0.010 1.010 0.933 1.094 0.800 Time since initial ischemic event (days) 0.200 0.818 0.613 1.093 0.175 Stroke as initial ischemic event 1.037 0.354 0.047 2.691 0.316 Recurrent initial ischemic event 0.134 1.143 0.158 8.254 0.894 Extracranial (nonintracranial) stenosis 0.697 2.008 0.199 20.300 0.555 High-grade (nonmedium grade) 0.503 1.654 0.236 11.580 0.612 stenosis ESs during 1-hour monitoring (number) 0.177 1.194 1.052 1.355 0.006 Regression coefficient (b ) and odds ratio (OR) derived from Cox regression analysis.

2158 Stroke September 2004 Figure 1. Probability of a recurrent ischemic event within 6 weeks in relation to the number of embolic signals at 1-hour monitoring derived from Cox regression analysis. Mean values of covariates are assumed. Recommendation for 1-hour monitoring is derived from long-term monitoring periods that had demonstrated only very few gaps without embolic signals lasting 1 hour in patients in whom signals could be detected at all. 4 Nevertheless, depending on a patient s individual signal frequency and signal variability over time, embolic signals might be detected only after prolonged or repetitive monitoring. 11 In contrast, studies on acute stroke patients suggest that even 1-hour monitoring may neither be tolerated by a substantial number of patients nor be applicable in the setting of acute stroke management. 5,6 However, with respect to a patient s ischemic risk, less the presence of embolic signals in general (especially as a single signal), their specific relevance at distinct constellations seems to be clinically important. In our patients with recent embolic TIA or stroke caused by carotid or middle cerebral artery stenosis, detection of a single or even several embolic signals at 1-hour monitoring was not associated with a relevant risk increase for an early ischemic recurrence. Prolonged monitoring for embolic signals may not be necessary in this situation. Moreover, because of the S-shaped relationship between the 1-hour frequency of embolic signals and the predicted risk of a subsequent ischemic event, risk may be estimated without clinically relevant deviation by means of reduced monitoring periods if a single or several embolic signals occur during these periods (eg, 2 signals within 20 minutes or 3 signals within 30 minutes). This also may hold true for already high numbers of signals at reduced monitoring periods (eg, 10 signals within 20 minutes or 15 signals within 30 minutes). Stroke risk predicted from embolic signals was already maximal at 30 signals per hour without further increase at increasing signal frequency. It should be emphasized that our findings must not be transferred to situations other than recently symptomatic arterial stenosis. In patients with asymptomatic stenoses, the rate of embolic signals is much lower, and a relationship between the occurrence of signals and the risk of a subsequent ischemic event has not been evaluated yet. 12 In contrast to symptomatic patients, a considerable number of patients with asymptomatic stenosis may be without an antithrombotic medication during monitoring as well as follow-up. This also Figure 2. Difference of the estimated probability of a recurrent ischemic event within 6 weeks derived from reduced and 1-hour monitoring in relation to the number of embolic signals at the reduced monitoring. Data are plotted separately for reduced monitoring periods lasting 50 minutes to 10 minutes. holds true for patients with a potential cardiac source of embolism, in whom the variability of embolic signals over time is also considerably high compared with that in patients with an arterial stenosis. 13

Blaser et al Time Period Required to Monitor Embolic Signals 2159 But also in patients with recently symptomatic carotid or middle cerebral artery stenosis, the encouraging results of our study must be interpreted with caution. If tolerance for and applicability of 1-hour transcranial Doppler monitoring for embolic signals is limited, monitoring may be stopped after 20 to 30 minutes without loss of clinically relevant information if no more than 2 signals in 20 minutes or 3 signals in 30 minutes have been detected or if their number already exceeds 10 signals in 20 minutes or 15 signals in 30 minutes. Otherwise, patients should be encouraged to tolerate ongoing monitoring for a maximum of 1 hour. However, this cannot be recommended in general until our results (assessed by post hoc analysis of data from a previously published cohort of patients) have been externally validated on an independent cohort of patients or confirmed by a larger prospective study. Acknowledgments We thank Jane Heisinger for technical assistance. References 1. Goertler M, Blaser T, Krueger S, Hofmann K, Baeumer M, Wallesch CW. Cessation of embolic signals after antithrombotic prevention is related to reduced risk of recurrent arterioembolic transient ischemic attack and stroke. J Neurol Neurosurg Psychiatry. 2002;72:338 342. Erratum in: J Neurol Neurosurg Psychiatry. 2002;73:102. 2. Molloy J, Markus HS. Asymptomatic embolization predicts stroke and TIA risk in patients with carotid artery stenosis. Stroke. 1999;30: 1440 1443. 3. Valton L, Larrue V, le Traon AP, Massabuau P, Geraud G. Microembolic signals and risk of early recurrence in patients with stroke or transient ischemic attack. Stroke. 1998;29:2125 2128. 4. Droste DW, Decker W, Siemens HJ, Kaps M, Schulte-Altedorneburg G. Variability in occurrence of embolic signals in long term transcranial Doppler recordings. Neurol Res. 1996;18:25 30. 5. Koennecke HC, Mast H, Trocio SHJ, Sacco RL, Ma W, Mohr JP, Thompson JL. Frequency and determinants of microembolic signals on transcranial Doppler in unselected patients with acute carotid territory ischemia. A prospective study. Cerebrovasc Dis. 1998;8:107 112. 6. Sliwka U, Lingnau A, Stohlmann WD, Schmidt P, Mull M, Diehl RR, Noth J. Prevalence and time course of microembolic signals in patients with acute stroke. Stroke. 1997;28:358 363. 7. De Bray J, Glatt B. Quantification of atheromatous stenosis in the extracranial internal carotid artery. Cerebrovasc Dis. 1995;5:414 426. 8. Baumgartner RW, Mattle HP, Schroth G. Assessment of 50% and 50% intracranial stenoses by transcranial color-coded duplex sonography. Stroke. 1999;30:87 92. 9. Goertler M, Baeumer M, Kross R, Blaser T, Lutze G, Jost S, Wallesch CW. Rapid decline of cerebral microemboli of arterial origin after intravenous acetylsalicylic acid. Stroke. 1999;30:66 69. 10. Altman DG. Analysis of survival times. In: Altman DG, ed. Practical Statistics for Medical Research. London, UK: Chapman and Hall; 1991:365 395. 11. Molloy J, Khan N, Markus HS. Temporal variability of asymtomatic embolization in carotid artery stenosis and optimal recording protocols. Stroke. 1998;29:1129 1132. 12. Reihill S, Markus HS. Asymptomatic Carotid Emboli Study (ACES). Cerebrovasc Dis. 2003;16(suppl 2):10. 13. Tinkler K, Cullinane M, Kaposzta Z, Markus HS. Asymptomatic embolisation in non-valvular atrial fibrillation and its relationship to anticoagulation therapy. Eur J Ultrasound. 2002;15:21 27.