RETINA SURGERY SURGICAL UPDATES

Similar documents
Conjunctival displacement to the corneal side for oblique-parallel insertion in 25-gauge vitrectomy

Evaluation of Wound Morphology of Sclerotomy Sites of Sutureless Vitrectomy Using Spectralis Anterior Segment Optical Coherence Tomography

Safety of 23 Gauge Transconjunctival Sutureless 3 Port Pars Plana Vitrectomy for Vitreoretinal Diseases

Comparison between 23 Gauge and 25 Gauge Pars Plana Vitrectomy for Posterior Segment Disease

Comparison Between 20- Gauge And 23-Gauge Vitrectomy In Diabetic Patients

J of Evolution of Med and Dent Sci/ eissn , pissn / Vol. 4/ Issue 78/ Sept 28, 2015 Page 13570

Venturi versus peristaltic pumps 33 vitrectomy dynamics 34 Fluorescein, vitreous staining 120

Changes in corneal topography following 25-gauge transconjunctival. sutureless vitrectomy versus 20-gauge standard vitrectomy

Vit-Buckle. Society. Forum for Innovation and Camaraderie Among the New Generation of Vitreoretinal Surgeons. Feature Story

Repair of retinal detachments associated with giant

Long-term Outcomes of Vitreous Floaters Management with 23-Gauge Transconjunctival Sutureless Vitrectomy

Incidence of endophthalmitis after 23-gauge pars plana vitrectomy

ENDOPHTHALMITIS IS A SERIOUS, SIGHT-THREATENing

Hirotsugu Takashina 1,2*, Akira Watanabe 2 and Hiroshi Tsuneoka 2

Anina Abraham, Consultant, Swarup Eye Centre, Hyderabad, India. The author has no financial interests

Go in with confidence. Choose the game-changing performance of Alcon s MIVS for every challenge.

Wataru Kobayashi, MD,* Hiroshi Kunikata, MD, PhD,* Toshiaki Abe, MD, PhD,Þ and Toru Nakazawa, MD, PhD*

Clinical Study Passive Removal of Silicone Oil with Temporal Head Position through Two 23-Gauge Cannulas

An Injector s Guide to OZURDEX (dexamethasone intravitreal implant) 0.7 mg

ICO-Ophthalmology Surgical Competence Assessment Rubric Vitrectomy (ICO-OSCAR:VIT)

The Foundation WHAT IS THE RETINA? continued next page. RETINA HEALTH SERIES Facts from the ASRS

VITREOUS INCARCERATION IN SCLEROTOMIES AFTER VALVED 23-, 25-, OR 27-GAUGE AND NONVALVED 23- OR 25-GAUGE MACULAR SURGERY

TROCAR/CANNULA ROUNDUP

The US Food and Drug Administration

Surgical outcomes of 25-gauge pars plana vitrectomy for diabetic tractional retinal detachment

In the absence of capsular support, the ophthalmic

A Guide to Administering

Highlights from a roundtable discussion in September 2007 at the AVTT meeting in Chicago.

Changes in Day 1 Post-Operative Intraocular Pressure Following Sutureless 23-Gauge and Conventional 20-Gauge Pars Plana Vitrectomy

Surgical Maneuvers RETINA TODAY. Vitrectomy Surgery. With Microincisional

Minimally Invasive Surgery for the Removal of Posterior Intraocular Foreign Bodies

Anatomical results and complications after silicone oil removal

Comparison of Surgically-induced Astigmatism after Combined Phacoemulsification and 23-Gauge Vitrectomy: 2.2-mm vs mm Cataract Surgery

Introduction. e203. Acta Ophthalmologica 2013

Learn Connect Succeed. JCAHPO Regional Meetings 2017

at the Leading Edge Cannulas 20 & 23 Gauge Instruments Vitreoretinal

Objectives. Tubes, Ties and Videotape: Financial Disclosure. Five Year TVT Results IOP Similar

Optometric Postoperative Cataract Surgery Management

Prompt 27-gauge sutureless transconjunctival vitrectomy for bleb-associated endophthalmitis

PRECISION PROGRAM. Injection Technique Quick-Reference Guide. Companion booklet for the Video Guide to Injection Technique

Outcomes of 140 Consecutive Cases of 25-Gauge Transconjunctival Surgery for Posterior Segment Disease

Millennium TM TSV25: System Enhancements Bring Added Safety, Efficiency and Ease-of-Use to 25-gauge Vitrectomy

Secondary management and outcome of massive suprachoroidal hemorrhage

Sutureless Intrascleral Pocket Technique of Transscleral Fixation of Intraocular Lens in Previous Vitrectomized Eyes

Disclosures. Objectives. Small gauge vitrectomy POD 1. The routine postoperative course 1/24/2018. None

Scleral Buckling Using a Non-contact Wide-Angle Viewing System with a 25-Gauge Chandelier Endoilluminator

Changes in Retinochoroidal Thickness After Vitrectomy for Proliferative Diabetic Retinopathy

Cataract surgery: from less drops to drop less.

84 Year Old with Rosacea

SURGICAL TECHNIQUE. Suture Loop to Aid in Ganciclovir Implant Removal

Sudden Vision Loss. Brendan Girschek, MD, FRCSC, FACS Vitreoretinal Surgery Cedar Valley Medical Specialists

Intrascleral-fixated intraocular lenses for aphakic correction in the absence of capsular support

COURSE DESCRIPTION BASIC FUNDAMENTALS

Clinical Study Intravitreal Dexamethasone in the Management of Delayed-Onset Bleb-Associated Endophthalmitis

Anterior segment imaging

Surgical outcome of pars plana vitrectomy: a retrospective study in a peripheral tertiary eye care centre of Nepal

The Outcome Of 23 Gauge Pars Plana Vitrectomy Without Scleral Buckle For Management Of Rhegmatogenous Retinal Detachment. By:

Closed System and Expanded Instrumentation Improves MIVS Outcomes

Role of Operative Subconjunctival Antibiotic in Preventing Postoperative Endophthalmitis

The Foundation WHAT IS THE RETINA? continued next page. RETINA HEALTH SERIES Facts from the ASRS

Postoperative Adverse Events, Interventions, and the Utility of Routine Follow-Up After 23-, 25-, and 27-Gauge Pars Plana Vitrectomy

Preoperative preparation of eye with chlorhexidine solution significantly reduces bacterial load prior to 23-gauge vitrectomy in Swedish health care

Combined 23-gauge transconjunctival vitrectomy and scleral fixation of intraocular lens without conjunctival dissection in managing lens complications

Endoscope-Assisted and Controlled Argus II Epiretinal Prosthesis Implantation in Late-Stage Retinitis Pigmentosa: A Report of 2 Cases

Transvitreal Fine Needle Aspiration Biopsy of Choroidal Melanoma via Pars Plana Vitrectomy

Foveal Red Spot, Macular Microhole and Foveal Photoreceptor Defect in the Era of High-Resolution Optical Coherence Tomography

Basic microsurgical suturing techniques for beginners

EXP11677SK. Financial Disclosure. None to be Declared EXP11677SK

SALLY 46TH. 46th Sally Letson Symposium September 18-20, 2014 The Global Impact of Retinal Innovations

Short- and Long-Term Outcomes of Vitreoretinal Surgeries With Deferred First Postoperative Visits at Day 3 or Later

Intravitreal versus Posterior Subtenon Injection of Triamcinolone Acetonide for Diabetic Macular Edema

The Foundation. RETINA HEALTH SERIES Facts from the ASRS

Low Illumination 3-D Heads-Up Vitrectomy for Diabetic Macular Edema

EndoGlide Ultrathin Surgical Pearls Prof. Donald Tan

Encircling silicone rod without drainage

Life Science Journal 2015;12(4)

Laser pointer phototoxicity. Antonio Ciardella Bologna, Italy

EX-PRESS Glaucoma Filtration Device Surgical Procedure

Scleral buckling. Surgical Treatment

WGA. The Global Glaucoma Network

Intraoperative Visualization of Peripheral Retina with Wide-Angle Viewing Systems

Royal Berkshire Hospital Dunedin Hospital. Prince Charles Eye Unit Pi Princess Margaret Hospital

Conjunctival Incisions for Strabismus Surgery: A Comparison of Techniques

Review Article Exogenous Endophthalmitis in Diabetic Patients: ASystemicReview

Vitrectomy for Diabetic Retinopathy The current role of pars plana vitrectomy for diabetic macular edema and proliferative diabetic retinopathy.

Intraoperative biometry for intraocular lens (IOL) power calculation at silicone oil removal

NEW YORK UNIVERSITY SCHOOL OF MEDICINE DEPARTMENT OF OPHTHALMOLOGY EDUCATIONAL OBJECTIVES AND GOALS

Clinical Study Air Bubble Technique for Fundus Visualization during Vitrectomy in Aphakia

Scleral buckling is a common surgical procedure for

The Egyptian Journal of Hospital Medicine (October 2018) Vol. 73(1), Page

Case Report Combined Scleral Flap with Donor Scleral Patch Graft for Anterior Tube Placement in Glaucoma Drainage Device Surgery

Clinical characteristics and prognostic factors of posterior segment intraocular foreign body in a tertiary hospital

Non Phaco Sutureless Cataract Surgery with Small Scleral Tunnel Incision Using Rigid PMMA IOLS

DIABETIC VITRECTOMY INDICATIONS AND TECHNIQUES. steve charles

Eyesi Surgical Simulator

SURGICAL VITREORETINAL FELLOWSHIP PROGRAM. UNIVERSITY OF KENTUCKY AND RETINA ASSOCIATES OF KENTUCKY Lexington, Kentucky

RETINAL DISORDERS. Roberto dell Omo & Francesco Barca & H. Stevie Tan & Heico M. Bijl & Sarit Y. Lesnik Oberstein & Marco Mura

The period called the Arab Spring occurred

STAB INCISION GLAUCOMA SURGERY (SIGS) AMAR AGARWAL

Guidelines for Performing Intravitreal Therapy

Transcription:

SECTION CO-EDITORS: ROHIT ROSS LKHNPL, MD; ND THOMS LINI, MD print & video series from the Vit-uckle Society eyetube.net Improvements in Small-gauge Vitrectomy May Reduce Potential Complications Y ROHIT ROSS LKHNPL, MD The Vit-uckle Society (VS) was originally formed by a group of vitreoretinal surgical fellows at the annual Fellow s Forum in Chicago in January 2006. The group, Derek Y. Kunimoto, MD, Rohit Ross Lakhanpal, MD, Thomas. lbini, MD, Charles Mango, MD, and R.V. Paul Chan, MD, had become friends during the interview process 2 years earlier. t that time, they decided to form a new vitreoretinal society for emerging surgeons focusing on surgical innovation and technique while also fostering an atmosphere of discussion and camaraderie. Thus, the VS mission statement is to provide an open forum for innovative vitreoretinal surgeons to share best practices, to foster the development and use of novel surgical technologies and strategies for retinal diseases, and to demonstrate the value of mentorship of emerging vitreoretinal surgeons. This includes mentoring upcoming vitreoretinal fellows. Subsequently, new members joined the Steering Committee, which includes the original members along with udina errocal, MD, John Kitchens, MD, and ndrew Moshfeghi, MD. Recently, in association with the merican Society of Retina Specialists, VS has conducted three annual meetings in which surgical challenges, techniques, and new innovations are openly discussed among 50 to 60 participating attendees. Timothy G. Murray, MD, M, has been the VS mentor and has been invaluable in terms of his enthusiasm and expertise. NEW COLUMN IN RETIN TODY eginning with this issue of Retina Today, the VS will participate in a regular column featuring articles authored by VS members to highlight topics of interest to the membership.many of these articles will be cross-referenced to surgical videos on EYETUE.NET, the ophthalmic video resource produced by ryn Mawr Communications, publishers of Retina Today. -Rohit Ross Lakhanpal, MD; and Thomas lbini, MD Small-gauge vitrectomy system (25-gauge and 23-gauge) use has increased rapidly since 2002 due to its advantages of decreased surgical time, reduced postoperative inflammation, and faster visual recovery compared with 20-gauge vitrectomy. 1-5 The 2009 Preferences and Trends (PT) Survey from the merican Society of Retina Specialists reported that nearly 80% of respondents commonly employ smallgauge systems. Recently, however, concerns have arisen that use of small-gauge systems may increase the risk of endophthalmitis. 6-9 Proper preoperative sterilization techniques along with improved methods in entry, exit and surgical technique should decrease these risks. This article highlights some of these methods. POTENTIL RISKS OF SMLL-GUGE SYSTEMS The risk of endophthalmitis in 20-gauge systems has been previously reported to be 0.03% to 0.05%. 10-13 Retrospective reviews of 25-gauge endophthalmitis data have reported conflicting information: s compared with 20-gauge studies, Kunimoto et al 7 reported a 12-fold increased risk, Scott et al 8 reported a 28-fold increased risk, but Hu et al 14 reported no statistically significant difference (a 0.07% [1/1424] rate for the 25-gauge cases). Several hypotheses have been proposed to explain why 25-gauge vitrectomy may lead to a higher rate of postoperative endophthalmitis: Complete wound closure may not be achieved; 15 unsutured wounds may lead to early 38 IRETIN TODYINOVEMER/DECEMER 2009

C D Figure 1. First-generation 23-gauge trocar system (lcon Surgical, Ft. Worth, TX): Insertion of 23-gauge trocars and microcannulas. The microcannulas are inserted through the conjunctiva into the eye by means of a trocar (). Insertion is accomplished by first displacing the conjunctiva laterally by approximately 2 mm (). n initial oblique, then a perpendicular tunnel is made parallel to the limbus through the conjunctiva and sclera (C), thus, creating a self-sealing wound (D). postoperative hypotony, allowing an intraocular influx of extraocular fluid and microorganisms; 1-4,10,16,17 lower infusion rates with reduced influx and efflux of fluid may allow a greater bacterial inoculum to remain in the eye; 1-3 residual vitreous skirt may facilitate bacterial adherence and sequester bacteria from normal immunologic factors and extraocular antibiotics; 18 vitreous wick prolapse through the sclerotomy site may create a potentially open conduit through the conjunctival and scleral wound that may facilitate entry of bacteria into the eye. 19 Figure 2. Representations of oblique, beveled incision after conjunctival displacement (top row) and direct, perpendicular incision without conjunctival displacement (bottom row). IMPROVEMENTS IN ENTRY TECHNIQUE Successful outcomes in small-gauge vitrectomy are highly dependent upon preoperative preparation and entry technique. Preoperatively, the use of povidoneiodine along the lid margin and/or perioperative area significantly reduces bacterial flora, thus decreasing the risk of endophthalmitis. Furthermore, placing povidoneiodine for a few seconds near entry sites may further lower the risk, as direct application has been demonstrated in well-controlled studies to decrease the microbiologic flora before intraocular surgery. 20,21 Modifications in entry technique have also decreased complication risk. Original 25-gauge surgical systems employed a direct perpendicular entry through intact NOVEMER/DECEMER 2009 IRETIN TODYI 39

Figure 3. Dugel EndPlate (DEP). nterior surface of DEP displays angled grooves that approximate the beveled incision angle necessary for self-sealing sclerotomies; two other semi-circular indentations are used to remove the trocar from the microcannula in small-gauge surgery (). Posterior surface of DEP demonstrates grooved ridges that assist in displacing the conjunctiva and firmly stabilizing the eye (). C D E F Figure 4. Use of the DEP to stabilize the eye and displace the conjunctiva (). Use of the angled groove to approximate the angle of entry into the globe with the second generation 23-gauge trocar system (). ngled entry into the globe (C). Use of semi-circular indentations to free the microcannula from the trocar (D). Once the trocar blade is removed, the microcannula is seen at the appropriate oblique angle, designating the correct angle of entry (E). ll three microcannulas in place prior to vitrectomy (F). conjunctiva without displacement. 1-3 This allowed a direct opening to the vitreous cavity, thus increasing the risks of endophthalmitis, hypotony, and choroidal detachment in early studies. Lakhanpal et al 3 reported no cases of endophthalmitis, but did report incidence of 4% of hypotony and persistent choroidal detachments associated with small blebs. Gupta et al 22 reported hypotony within the first 24-hour period in numerous eyes as well. Such complications necessitated the following improvements in entry technique (Figure 1): First, the conjunctiva and sclera should be flattened in order to allow entry more parallel to the limbus; next, the conjunctiva should be displaced laterally in order to prevent communication between this incision and the scleral incision; third, rather than a perpendicular incision, a two-step incision should be used, in which an oblique, beveled incision parallel to the limbus through the conjunctiva and sclera is followed by a perpendicular tunnel entry, thus creating a self-sealing wound. 23 In one study, angled incisions were associated with significantly lower risk for external communication as opposed to straight incisions (Figure 2). 24 Flattening and displacing the conjunctiva in order to create a self-sealing incision was an important development. This may be performed with a variety of instru- 40 IRETIN TODYINOVEMER/DECEMER 2009

C D Figure 5. The light pipe is inserted through the microcannula prior to removal to prevent vitreous wick prolapse (). With the light pipe still positioned through the sclerotomy, the microcannula is removed with a plug-puller (). Once the microcannula is removed, the light pipe is safely removed, and no discernible bleb or sign of extrusion is noted (C). Subconjunctival antibiotics are placed adjacent to the sclerotomy site as an added deterrent to bacterial migration into the eye (D). ments, such as a cotton-tip applicator, 0.3 forceps, or plug-pulling forceps. nother option is the Dugel End Plate (Peregrine Surgical, New ritain, P): This instrument simultaneously flattens and displaces the conjunctiva, then designates the angle of entry, and finally aids in trocar removal (Figures 3 and 4). IMPROVEMENTS IN SURGICL PROCEDURE ND CNNUL REMOVL variety of techniques may be employed during smallgauge vitrectomy in order to decrease the risks of hypotony and endophthalmitis. Previous studies have postulated that insufficient vitreous removal during 25-gauge vitrectomy may provide an area for bacterial adherence. 25 Thus, performing a more complete vitrectomy, particularly with triamcinolone staining near the sclerotomy sites, is a simple way to correct this problem. nother potential issue is that prolapse of a vitreous wick through the sclerotomy site may create a potentially open conduit through the conjunctival and scleral wound that may facilitate entry of bacteria into the eye. 19 Once again, more complete vitrectomy at or near the sclerotomy sites decreases this risk. lso, the use of air tamponade at the conclusion of surgery may act as both a barrier to bacterial inoculation and a way to prevent hypotony. Improvements in cannula removal and appropriate use of subconjunctival antibiotics near the sclerotomy sites may reduce potential complication risks. Vitreous wick prolapse may be prevented 19 during closure by simply placing the light pipe through the microcannula during removal (Figure 5). This prevents the suction-like effect that can occur during cannula removal. This mechanism of cannula removal with air tamponade may allow air rather than vitreous to seal the sclerotomy site wound. Finally, injection of subconjunctival antibiotics adjacent to the sclerotomy sites may decrease bacterial entry through sclerotomy sites. Some authors have recently proposed that there is a correlation between NOVEMER/DECEMER 2009 IRETIN TODYI 41

relative hypotony at the conclusion of surgery and the influx of bacteria through sclerotomy sites, increasing the risk of endophthalmitis. 26, 27 ir tamponade and relatively higher intraocular pressure may be a deterrent to bacterial influx. 27 Extra insufflation of air may also be necessary if the intraocular pressure is deemed to be too low. Many of these recommendations for small-gauge surgery improvements have been proposed by the Microsurgical Safety Task Force at the most recent meeting of the merican Society of Retina Specialists. 28 CONCLUSIONS Small-gauge vitrectomy systems have been in widespread use since 2002. For experienced surgeons, there has been a steep learning curve in terms of entry techniques, surgical technique and instrumentation, and microcannula removal. These improvements have decreased the relative risk of endophthalmitis, but longer-term study must be done. Hu et al 14 determined that there is no statistically significant difference in endophthalmitis rates between 20- gauge and 25-gauge systems, directly contradicting two previous studies. 7,8 Currently, the prevailing evidence emphasizes the importance of the following measures to reduce endophthalmitis risk: Infection prevention measures, including lid scrubbing and direct povidone-iodine application; conjunctival displacement and angled/beveled incision; more complete vitreous removal adjacent to the sclerotomies; air tamponade; repositing potential extraconjunctival vitreous wick with light-pipe assisted cannula removal and subconjunctival antibiotic injection; and extra insufflation of air/gas, if necessary, to stabilize intraocular pressure. Having performed thousands of small gauge vitrectomies since 2002 without a case of endophthalmitis, I believe that the increased risk is largely techniquedependent. The documented risk modifications described above should decrease the endophthalmitis risk dramatically. Rohit Ross Lakhanpal, MD is a Partner at Eye Consultants of Maryland and a Clinical ssistant Professor of Ophthalmology at The University of Maryland School of Medicine. He reports no financial or proprietary interest in any of the products or techniques mentioned in this article. He has been a Consultant in the past for both ausch & Lomb and lcon Surgical. He is currently the Vice-president of the Vit-uckle Society (VS). Dr. Lakhanpal is Section Co-Editor of the VS page in Retina Today and on EYETUE.NET. He can be reached at +1 410 581 2020 or via e-mail at retinaross@yahoo.com. Thomas lbini, MD is ssistant Professor of Clinical Ophthalmology at the ascom Palmer Eye Institute in Miami, FL. He specializes in vitreoretinal diseases and surgery and uveitis. He has served as a speaker for both ausch & Lomb and lcon Surgical, as well as consultant for lcon Surgical. He is currently the Membership Chair of the Vit-uckle Society (VS). Dr. lbini is Section Co-Editor of the VS page in Retina Today and on EYETUE.NET. He can be reached at +1 305 482 5006; or via e-mail at talbini@med.miami.edu. 1. Fuji GY, de Juan E Jr, Humayun MS, et al. new 25-gauge instrument system for transconjunctival sutureless vitrectomy surgery. Ophthalmology. 2002:109:1807 1812. 2. Fujii GY, de Juan E Jr, Humayun MS, et al. Initial experience using the transconjunctival sutureless vitrectomy system for vitreoretinal surgery. Ophthalmology. 2002;109:1814 1820. 3. Lakhanpal RR, Humayun MS, de Juan E, et al. Outcomes of 140 consecutive cases of 25- gauge transconjunctival surgery for posterior segment disease. Ophthalmology. 2005;112(5):817 824. 4. Ibarra MS, Hermel M, Prenner JL, Hassan TS.Longer-term outcomes of transconjunctival sutureless 25-gauge vitrectomy. m J Ophthalmol. 2005;139(5):831 836. 5. Eckardt C. Transconjunctival sutureless 23-gauge vitrectomy. Retina. 2005;25:208 211. 6. car N, Unver Y, ltan T, Kapran Z. cute endophthalmitis after 25-gauge sutureless vitrectomy. Int Ophthalmol. 2007;27:361 363. 7. Kunimoto DY, Kaiser RS, Willis Eye Retina Service. Incidence of endophthalmitis after 20- and 25-gauge vitrectomy. Ophthalmology. 2007;114:2133 2137. 8. Scott IU, Flynn HW Jr, Dev S, et al. Endophthalmitis after 25-gauge and 20-gauge pars plana vitrectomy: incidence and outcomes. Retina. 2008;28:138 142. 9. Taban M, Ufret-Vincenty RL, Sears JE. Endophthalmitis after 25-gauge transconjunctival sutureless vitrectomy. Retina. 2006;26:830 831. 10. aberg TM Jr, Flynn HW Jr, Schiffman J, Newton J. Nosocomial acute-onset postoperative endophthalmitis survey: a 10-year review of incidence and outcomes. Ophthalmology. 1998;105:1004 1010. 11. Eifrig CW, Flynn HW Jr, Scott IU, Newton J. cute-onset postoperative endophthalmitis: review of incidence and visual outcomes (1995 2001). Ophthalmic Surg Lasers. 2002;33:373 378. 12. Eifrig CW, Scott IU, Flynn HW Jr, et al. Endophthalmitis after pars plana vitrectomy: incidence, causative organisms, and visual acuity outcomes. m J Ophthalmol. 2004;138:799 802. 13. Sakamoto T, Enaida H, Kubota T, et al. Incidence of acute endophthalmitis after triamcinolone-assisted pars plana vitrectomy. m J Ophthalmol. 2004;138:137 8. 14. Hu Y, ourges JL, Shah SP, et al. Endophthalmitis after pars plana vitrectomy a 20- and 25-gauge comparison. Ophthalmology. 2009;116(7):1360-5. 15. Keshavamurthy R, Venkatesh P, Garg S. Ultrasound biomicroscopy findings of 25 G transconjunctival sutureless (TSV) and conventional (20G) pars plana sclerotomy in the same patient. MC Ophthalmol [serial online] 2006;6:7. vailable at: http://www.biomedcentral.com/1471-2415/6/7. ccessed January 21, 2009. 16. Shimada H, Nakashizuka H, Mori R, Mizutani Y. Expanded indications for 25-gauge transconjunctival vitrectomy. Jpn J Ophthalmol. 2005;49:397 401. 17. Yanyali, Celik E, Horozoglu F, et al. 25-Gauge transconjunctival sutureless pars plana vitrectomy. Eur J Ophthalmol. 2006;16:141 147. 18. Meredith T. ntimicrobial pharmacokinetics in endophthalmitis treatment: studies of ceftazidime. Trans m Ophthalmol Soc. 1993;91:653 699. 19. Chen SD, Mohammed Q, owling, Patel CK. Vitreous wick syndrome a potential cause of endophthalmitis after intravitreal injection of triamcinolone through the pars plana [letter]. m J Ophthalmol. 2004;137:1159 1160. 20. pt L, Isenberg S, Yoshimori R, Paez JH. Chemical preparation of the eye in ophthalmic surgery. III. Effect of povidone-iodine on the conjunctiva. rch Ophthalmol. 1984;102:728 729. 21. pt L, Isenberg SJ, Yoshimori R. ntimicrobial preparation of the eye for surgery. J Hosp Infect. 1985;6(suppl):163 72. 22. Gupta et al Invest Ophthalmol Vis Sci.2003, v 44 23. Inoue M, Shinoda K, Shinoda H, et al. Two-step oblique incision during 25-gauge vitrectomy reduces incidence of postoperative hypotony. Clin Experiment Ophthalmol. 2007;35:693 696. 24. Singh RP, ando H, rasil OFM, et al. Evaluation of wound closure using different incision techniques with 23-gauge and 25-gauge microincision vitrectomy systems. Retina. 2008;828:242 248. 25. Meredith T. ntimicrobial pharmacokinetics in endophthalmitis treatment: studies of ceftazidime. Trans m Ophthalmol Soc. 1993;91:653 699. 26. Taban M, Sharma S, Ventura, Kaiser PK. Evaluation of wound closure in oblique 23- gauge sutureless sclerotomies with visante optical coherence tomography. m J Ophthalmol. 2009;147(1):101 107.e1. Epub 2008 Oct 4 27. Lakhanpal RR. ir tamponade reduces complications in 23-gauge vitrectomy. Presented at: 2009 Retina Congress; September 30-October 4, 2009; New York. 28. Kaiser RK. Endophthalmitis in sutureless vitrectomy surgery and the findings of the micro-surgical safety task force. Presented at: 2009 Retina Congress; September 30-October 4, 2009; New York. 42 IRETIN TODYINOVEMER/DECEMER 2009