Basal Ganglia Anatomy, Physiology, and Function. NS201c

Similar documents
NS219: Basal Ganglia Anatomy

Anatomy of the basal ganglia. Dana Cohen Gonda Brain Research Center, room 410

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D.

Teach-SHEET Basal Ganglia

Basal Ganglia. Introduction. Basal Ganglia at a Glance. Role of the BG

Connections of basal ganglia

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

Basal Ganglia George R. Leichnetz, Ph.D.

Computational cognitive neuroscience: 8. Motor Control and Reinforcement Learning

Developmental regulation of Medium Spiny Neuron dendritic arborization. Lorene M. Lanier Department of Neuroscience

Basal Ganglia General Info

Dopamine-endocannabinoid interactions mediate spike-timing dependent potentiation in the striatum

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

The Neuroscience of Addiction: A mini-review

GBME graduate course. Chapter 43. The Basal Ganglia

BIPN140 Lecture 12: Synaptic Plasticity (II)

Basal ganglia macrocircuits

Input- and Cell-Type-Specific Endocannabinoid- Dependent LTD in the Striatum

A Role for Dopamine-Mediated Learning in the Pathophysiology and Treatment of Parkinson s Disease

BIPN 140 Problem Set 6

Striatal Plasticity and Basal Ganglia Circuit Function

BIPN 140 Problem Set 6

A. General features of the basal ganglia, one of our 3 major motor control centers:

Making Things Happen 2: Motor Disorders

DOPAMINE DA NEURON ANATOMY AND PHYSIOLOGY

A. General features of the basal ganglia, one of our 3 major motor control centers:

Damage on one side.. (Notes) Just remember: Unilateral damage to basal ganglia causes contralateral symptoms.

Modeling Excitatory and Inhibitory Chemical Synapses

Beyond Vanilla LTP. Spike-timing-dependent-plasticity or STDP

MOLECULAR BIOLOGY OF DRUG ADDICTION. Sylvane Desrivières, SGDP Centre

9 Group Report: Microcircuits, Molecules, and Motivated Behavior

Cellular mechanisms of information transfer: neuronal and synaptic plasticity

Synaptic Plasticity and the NMDA Receptor

COGNITIVE SCIENCE 107A. Sensory Physiology and the Thalamus. Jaime A. Pineda, Ph.D.

nucleus accumbens septi hier-259 Nucleus+Accumbens birnlex_727

神經解剖學 NEUROANATOMY BASAL NUCLEI 盧家鋒助理教授臺北醫學大學醫學系解剖學暨細胞生物學科臺北醫學大學醫學院轉譯影像研究中心.

Cellular Neurobiology BIPN140

Basal Ganglia. Steven McLoon Department of Neuroscience University of Minnesota

Supplementary Figure 1

Part 11: Mechanisms of Learning

Synaptic plasticity and addiction

Brain Dynamics, Reward, & Mocap

The Basal Ganglia and Motor Control

Synaptic Integration

Embryological origin of thalamus

The basal ganglia work in concert with the

Role of excitatory serotonergic signaling in the. pathway-specific neuromodulation of striatal. synaptic plasticity

The Nucleus Accumbens Core Dopamine D1 and Glutamate AMPA/NMDA Receptors Play a Transient Role in the Performance of Pavlovian Approach Behavior

Levodopa vs. deep brain stimulation: computational models of treatments for Parkinson's disease

Network Effects of Deep Brain Stimulation for Parkinson s Disease A Computational. Modeling Study. Karthik Kumaravelu

The motor regulator. 1) Basal ganglia/nucleus

Chapter 2: Studies of Human Learning and Memory. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D.

Basal Ganglia. Today s lecture is about Basal Ganglia and it covers:

The Wonders of the Basal Ganglia

PII: S (99) COMMENTARY

VL VA BASAL GANGLIA. FUNCTIONAl COMPONENTS. Function Component Deficits Start/initiation Basal Ganglia Spontan movements

CASE 49. What type of memory is available for conscious retrieval? Which part of the brain stores semantic (factual) memories?

Lack of GPR88 enhances medium spiny neuron activity and alters. motor- and cue- dependent behaviors

STRUCTURE AND CIRCUITS OF THE BASAL GANGLIA

VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker. Neuronenmodelle III. Modelle synaptischer Kurz- und Langzeitplastizität

Full file at TEST BANK. R.H. Ettinger. Eastern Oregon University. Psychopharmacology. 1/e. R.H. Ettinger

Implications of a Dynamic Causal Modeling Analysis of fmri Data. Andrea Stocco University of Washington, Seattle

The basal forebrain: Questions, chapter 29:

1/2/2019. Basal Ganglia & Cerebellum a quick overview. Outcomes you want to accomplish. MHD-Neuroanatomy Neuroscience Block. Basal ganglia review

The Neurobiology of Schizophrenia

Astrocytes gate Hebbian synaptic plasticity in the striatum

The control of spiking by synaptic input in striatal and pallidal neurons

Supplementary Figure 1. Basic properties of compound EPSPs at

Perturbations of cortical "ringing" in a model with local, feedforward, and feedback recurrence

Nervous System, Neuroanatomy, Neurotransmitters

Biological Bases of Behavior. 8: Control of Movement

Supplementary Figure 1

The Basal Ganglia in Parkinson s Disease: Current Concepts and Unexplained Observations

A New Interpretation of the Drug Levodopa in the Treatment of Parkinson's Disease

The Role of AMPAR Trafficking Mediated by Neuronal Pentraxins in Cocaine-induced Neuroadaptations

Neuromorphic computing

An in vitro analysis of striatal microcircuitry

Cellular Neurobiology / BIPN 140

What do you notice?

Cogs 107b Systems Neuroscience lec9_ neuromodulators and drugs of abuse principle of the week: functional anatomy

Neurotransmitter Systems III Neurochemistry. Reading: BCP Chapter 6

Basal ganglia Sujata Sofat, class of 2009

Chapter 8. Control of movement

Cell Responses in V4 Sparse Distributed Representation

INTRINSIC AND INTEGRATIVE PROPERTIES OF SUBSTANTIA NIGRA PARS RETICULATA NEURONS

Synaptic Plasticity and Memory

Following the seminal proposal of Hebb1 and many others, acquired learning

MOLECULAR AND CELLULAR NEUROSCIENCE

You submitted this quiz on Sun 19 May :32 PM IST (UTC +0530). You got a score of out of

Parkinsonism or Parkinson s Disease I. Symptoms: Main disorder of movement. Named after, an English physician who described the then known, in 1817.

General introduction. Chapter 1

2 CNS & Neurological Disorders - Drug Targets, 2011, Vol. 10, No. 7 Pierucci et al. topographically and functionally segregated pathways. The cortical

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses

Vizcarra-Chacón et al. BMC Neuroscience 2013, 14:60

Dynamic Behaviour of a Spiking Model of Action Selection in the Basal Ganglia

Washtenaw Community College Comprehensive Report. PSY 296 Neuropsychology of Addiction Effective Term: Winter 2019

Activity-Dependent Development II April 25, 2007 Mu-ming Poo

Behavioral Neuroscience: Fear thou not. Rony Paz

Transcription:

Basal Ganglia Anatomy, Physiology, and Function NS201c

Human Basal Ganglia Anatomy

Basal Ganglia Circuits: The Classical Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum Dopamine + - GABA GPe GPi/SNr - Motor Thalamus SNc STN

Analagous rodent basal ganglia nuclei

Gross anatomy of the striatum: gateway to the basal ganglia rodent Dorsomedial striatum: -Inputs predominantly from mpfc, thalamus, VTA Dorsolateral striatum: -Inputs from sensorimotor cortex, thalamus, SNc Striatal subregions: Dorsomedial (caudate) Dorsolateral (putamen) Ventral (nucleus accumbens) Ventral striatum: -Inputs from vpfc, hippocampus, amygdala, thalamus, VTA

Gross anatomy of the striatum: patch and matrix compartments Patch/Striosome: -substance P -mu-opioid receptor Matrix: -ChAT and AChE -somatostatin

Microanatomy of the striatum: cell types Projection neurons: MSN: medium spiny neuron (GABA) striatonigral projecting direct pathway striatopallidal projecting indirect pathway Interneurons: FS: fast-spiking interneuron (GABA) LTS: low-threshold spiking interneuron (GABA) LA: large aspiny neuron (ACh) 30 um

Cellular properties of striatal neurons

Microanatomy of the striatum: striatal microcircuits Feedforward inhibition (mediated by fast-spiking interneurons) Lateral feedback inhibition (mediated by MSN collaterals)

Basal Ganglia Circuits: The Classical Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum Dopamine + - GABA GPe GPi/SNr - Motor Thalamus SNc STN

The simplified classical model of basal ganglia circuit function Information encoded as firing rate Basal ganglia circuit is linear and unidirectional Dopamine exerts opposing effects on direct and indirect pathway MSNs

Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum Dopamine + GABA GPe GPi/SNr Motor Thalamus SNc STN Direct pathway MSNs express: D1, M4 receptors, Sub. P, dynorphin

Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum Dopamine + GABA GPe GPi/SNr Motor Thalamus SNc STN

Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum Dopamine + GABA GPe GPi/SNr Motor Thalamus SNc STN

Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum Dopamine + GABA GPe GPi/SNr Motor Thalamus SNc STN

Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum Dopamine + GABA GPe GPi/SNr Motor Thalamus SNc STN

Basal ganglia motor circuit: indirect pathway Motor Cortex Premotor Cortex Striatum Dopamine Glutamate GABA GPe GPi/SNr - Motor Thalamus SNc STN Indirect pathway MSNs express: D2 receptors, enkephalin

Basal ganglia motor circuit: indirect pathway Motor Cortex Premotor Cortex Striatum Dopamine Glutamate GABA GPe GPi/SNr - Motor Thalamus SNc STN

Basal ganglia motor circuit: indirect pathway Motor Cortex Premotor Cortex Striatum Dopamine Glutamate GABA GPe GPi/SNr - Motor Thalamus SNc STN

Basal ganglia motor circuit: indirect pathway Motor Cortex Premotor Cortex Striatum Dopamine Glutamate GABA GPe GPi/SNr - Motor Thalamus SNc STN

Basal ganglia motor circuit: indirect pathway Motor Cortex Premotor Cortex Striatum Dopamine Glutamate GABA GPe GPi/SNr - Motor Thalamus SNc STN

Basal ganglia motor circuit: indirect pathway Motor Cortex Premotor Cortex Striatum Dopamine Glutamate GABA GPe GPi/SNr - Motor Thalamus SNc STN

Basal ganglia motor circuit: indirect pathway Motor Cortex Premotor Cortex Striatum Dopamine Glutamate GABA GPe GPi/SNr - Motor Thalamus SNc STN

Summary of the classical model of basal ganglia circuit function Activation of the direct pathway facilitates/selects/initiates proper movements Activation of the indirect pathway inhibits/terminates unwanted movements Dopamine normally inhibits the indirect pathway and potentiates the direct pathway

The Hyperdirect Pathway: Critical for Rapid Behavioral Inhibition? Motor Cortex Premotor Cortex Striatum + GPe GPi/SNr - Motor Thalamus SNc STN

Targeting Proteins to Different MSN Subtypes with BAC Transgenic Mice Fluorophores Cre Recombinase Channelrhodopsin-2 D2-GFP D2-Cre D1-RFP Shuen et al, 2008 D1-Cre Gong et al, 2007 Kravitz et al, 2010 Also see http://www.gensat.org

Cell-Type Specific Lesions of Basal Ganglia Circuitry Durieux et al 2009, Nat Neurosci

anesthetized ChR2-Mediated Activation of Striatal MSNs In Vivo awake Kravitz et al, Nature 2010

Bilateral Activation of Striatal Direct Pathway MSNs in Freely Moving Mice

Bilateral Activation of Striatal Indirect Pathway MSNs in Freely Moving Mice

Regulation of Motor Behavior by Optogenetic Activation of Basal Ganglia Circuits D2-ChR2 post Kravitz et al, Nature 2010

Activity of Basal Ganglia Circuits During Motor Behavior Cui et al, Nature 2013

A Role for Basal Ganglia Circuits in Addiction Lobo et al, Science 2010

Activation of the Direct Pathway is Sufficient for Reinforcement Learning Kravitz et al, Nat Neurosci 2012

Only Direct Pathway Activation Induces Persistent Learning Kravitz et al, Nat Neurosci 2012

Direct and Indirect Pathway Activation Regulates Place Preference Kravitz et al, Nat Neurosci 2012

Hyperdirect Pathway and Behavioral Inhibition Schmidt et al, Nat Neurosci 2013

Hyperdirect Pathway and Behavioral Inhibition Schmidt et al, Nat Neurosci 2013

Striatal synaptic plasticity can regulate basal ganglia circuit activity Striatum is the major input nucleus to the basal ganglia Striatal MSNs exhibit very negative resting potentials (-85 mv), due to high Kir expression Striatal MSNs require coordinated presynaptic excitatory activity in order to depolarize sufficiently to fire action potentials Changes in excitatory synaptic strength have a major impact on MSN firing patterns and downstream circuit activity

Long-term synaptic plasticity at excitatory striatal afferents Long-term potentiation (LTP) Direct-pathway MSNs Indirect-pathway MSNs Long-term depression (LTD) Direct-pathway MSNs Indirect-pathway MSNs

Induction of LTP or LTD: methods High-frequency stimulation (HFS) 100 Hz for 1 second, repeated 4 times at 10 second intervals Paired with postsynaptic depolarization from -70 to 0 mv pre post Spike-timing-dependent plasticity (STDP)

STDP-LTP in striatal indirect-pathway MSNs (pre-post) Shen et al, Science 2008

Indirect-pathway LTP requires adenosine A2A and NMDA receptors APV: NMDA antagonist SCH58261: adenosine A2A antagonist CGS21680: adenosine A2A agonist Quinpirole: D2 agonist

Direct-pathway LTP requires NMDA, dopamine D1 receptors APV: NMDA antagonist SCH23390: D1 antagonist AM251: CB1 antagonist

Synaptic plasticity in striatal MSNs Long-term potentiation (LTP) Direct-pathway MSNs Indirect-pathway MSNs Long-term depression (LTD) Direct-pathway MSNs Indirect-pathway MSNs

LTD occurs preferentially at indirect pathway synapses EPSC (% baseline) 100 50 100 50 direct indirect indirect, AM251 0 0 20 40 0 0 20 40 Time (min) Time (min)

Postsynaptic ecb release occurs preferentially at indirect pathway MSNs DHPG EPSC (% baseline) 100 50 direct indirect 0 0 20 Time (min) 40 DHPG: group I mglur agonist

Dopamine D2 receptors are required for indirect-pathway ecb-ltd EPSC (% baseline) 100 50 sulpiride 0 0 20 Time (min) 40 sulpiride: dopamine D2 receptor antagonist

Indirect-pathway STDP-LTD requires ecbs, activation of D2 receptors (post-pre) Sulpiride: D2 antagonist CGS21680: A2A agonist

Direct-pathway STDP-LTD requires ecbs, inhibition of D1 receptors SCH23390: D1 antagonist AM251: CB1 antagonist

Striatal Plasticity: Summary Direct Pathway: LTP requires NMDA, D1 activation LTD requires ecbs blocked by D1 activation Indirect Pathway: LTP requires NMDA, A2A activation LTD requires ecbs and D2 activation blocked by A2A activation Striatal dopamine predicted to facilitate direct-pathway LTP, indirect-pathway LTD