Remote Endarterectomy Update

Similar documents
Remote superficial femoral artery endarterectomy and distal aspire stenting: Multicenter mediumterm

John E. Campbell, MD Assistant Professor of Surgery and Medicine Department of Vascular Surgery West Virginia University, Charleston Division

Remote endarterectomy: Lessons learned after more than 100 cases

Stratifying Management Options for Patients with Critical Limb Ischemia: When Should Open Surgery Be the Initial Option for CLI?

Christian Wissgott MD, PhD Assistant Director, Radiology Westküstenkliniken Heide

Step by step Hybrid procedures in peripheral obstructive disease. Holger Staab, MD University Hospital Leipzig, Germany Clinic for Vascular Surgery

Turbo-Power. Laser atherectomy catheter. The standard. for ISR

Intervention for Lower Extremity PAD: When, why and what?! Robert F Cuff, MD FACS RVT RPVI

Endovascular Should Be Considered First Line Therapy

Managing Conditions Resulting from Untreated Cardiometabolic Syndrome

Utility of Image-Guided Atherectomy for Optimal Treatment of Ambiguous Lesions by Angiography

Surgery is and Remains the Gold Standard for Limb-Threatening Ischemia

PAD and CRITICAL LIMB ISCHEMIA: EVALUATION AND TREATMENT 2014

There are multiple endovascular options for treatment

Management of In-stent Restenosis after Lower Extremity Endovascular Procedures

Endovascular Is The Way To Go: Revascularize As Many Vessels As You Can

Plaque Excision Infrainguinal PAD An update on this nonstenting alternative, with intermediate-term results of the ongoing TALON Registry.

Disclosures. Tips and Tricks for Tibial Intervention. Tibial intervention overview

Which Stent Is Best for Various Femoropopliteal Anatomy? 2018 Pacific Northwest Endovascular Conference June 15-26, 2018 Seattle, WA

Peripheral Vascular Disease

Remote Endarterectomy: First Choice in Surgical Treatment of Long Segmental SFA Occlusive Disease?

The ZILVERPASS study a randomized study comparing ZILVER PTX stenting with Bypass in femoropopliteal lesions

Endovascular Repair of Combined Occluded Femoral and Popliteal Arteries

The ZILVERPASS study a randomized study comparing ZILVER PTX stenting with Bypass in femoropopliteal lesions Preliminary report

OCT Guided Atherectomy: Initial Results of the VISION Trial Using the Pantheris Catheter. Patrick Muck, MD

Vasile Goldiş Western University of Arad Faculty of Medicine, Pharmacy and Dental Medicine, Arad, Romania

Robert W. Fincher, DO The Ritz-Carlton, Dove Mountain Marana, Arizona February 7th, 2015

Mechanical thrombectomy in peripheral interventions: A multitask and effective tool in a widening scenario. Current evidence and technical tips.

Disclosures. In-Stent Restenosis: The Tail IS Wagging the Dog 4/15/2016. Restenosis: The Continuing Challenge for Peripheral Vascular Intervention

Case Discussion. Disclosures. Critical Limb Ischemia: A Selective Approach to Revascularization Works Best 4/28/2012. None. 58 yo M, DM, CAD, HTN

Recommendations for Follow-up After Vascular Surgery Arterial Procedures SVS Practice Guidelines

IVUS Guided Case Review Case Performed by Frank R. Arko III, MD Charlotte, NC

Popliteal Aneurysm: When is surgical therapy indicated? PROF. GRZEGORZ OSZKINIS

9/7/2018. Disclosures. CV and Limb Events in PAD. Challenges to Revascularization. Challenges. Answering the Challenge

Accurate Vessel Sizing Drives Clinical Results. IVUS In the Periphery

Safety and Feasibility of Intravascular Lithotripsy for Treatment of Common Femoral Artery Stenoses

BC Vascular Day. Contents. November 3, Abdominal Aortic Aneurysm 2 3. Peripheral Arterial Disease 4 6. Deep Venous Thrombosis 7 8

Current Status and Limitations in the Treatment of Femoropopliteal In-Stent Restenosis

2-YEAR DATA SUPERA POPLITEAL REAL WORLD

Update on Tack Optimized Balloon Angioplasty (TOBA) Below the Knee. Marianne Brodmann, MD Medical University Graz Graz, Austria

RadRx Your Prescription for Accurate Coding & Reimbursement Copyright All Rights Reserved.

THE NEW ARMENIAN MEDICAL JOURNAL

TurboHawk. Plaque Excision System

The present status of selfexpanding. for CLI: Why and when to use. Sean P Lyden MD Cleveland Clinic Cleveland, Ohio

Disclosures. Talking Points. An initial strategy of open bypass is better for some CLI patients, and we can define who they are

Endovascular and Hybrid Treatment of TASC C & D Aortoiliac Occlusive Disease

Comparing endoluminal bypass to open fem-pop bypasses; Final 1-year results of the SUPERB trial

TOBA II 12-Month Results Tack Optimized Balloon Angioplasty

The Crack and Pave technique for highly resistant calcified lesions. Manuela Matschuck MD University Hospital Leipzig Department Angiology

CLI Treatment Using Long and Scoring Balloons

William A. Gray MD System Chief of Cardiovascular Services, Main Line Health President, Lankenau Heart Institute Wynnewood, PA USA

Interventional Radiology in Peripheral Vascular Disease: How Far Can We Go? Dr. L. F. CHENG Department of Radiology Princess Margaret Hospital

The Utility of Atherectomy and the Jetstream Atherectomy System

Use of Laser In BTK Disease (CLI)

Critical Limb Ischemia A Collaborative Approach to Patient Care. Christopher LeSar, MD Vascular Institute of Chattanooga July 28, 2017

DCB in my practice: How the evidence influences my strategy. Yang-Jin Park

The Role of Lithotripsy in Solving the Challenges of Vascular Calcium. Thomas Zeller, MD

Endovascular treatment (EVT) has markedly advanced,

Outcome and Good Indication of Laser Angioplasty

PATIENTS WITH CLI THE THREE YEARS OUTCOME OF ENDOLUMINAL BYPASS FOR PATIENTS WITH CLI

RevIewS. Interventions for lower extremity peripheral artery disease

Do the newest grafts achieve comparable results to saphenous vein bypass? THE HEPARIN-BONDED eptfe GRAFT. C. Pratesi

Clinical and morphological features of patients who underwent endovascular interventions for lower extremity arterial occlusive diseases

Present & future of below the knee stenting

The femoropopliteal (FP) artery refers to the composite

New Data to Shape the Era of Drug Elution in Peripheral Interventions

Update from Korea on the Lutonix SFA registry 12 month data

CHALLENGING ILIAC ACCESSES AND THROMBOSIS PREVENTION

Device Evolution. Atherectomy: Where Do We Stand After 12 Years Since FDA Clearance. Where Do We Stand? 4/18/2015

SAFETY AND EFFECTIVENESS OF ENDOVASCULAR REVASCULARIZATION FOR PERIPHERAL ARTERIAL OCCLUSIONS

Surgical Bypass or. Zilver PTX. 12 months preliminary data. LINC 2016, Leipzig. Marc Bosiers, MD. Marc Bosiers Koen Deloose Joren Callaert

Evidence-Based Optimal Treatment for SFA Disease

Distal By-Pass procedures can reduce limb loss

Hypothesis: When compared to conventional balloon angioplasty, cryoplasty post-dilation decreases the risk of SFA nses in-stent restenosis

Practical Point in Diabetic Foot Care 3-4 July 2017

Clinical failure after percutaneous transluminal angioplasty of the superficial femoral and popliteal arteries

Disclosures. Objectives. Bypass vs. Endo for SFA Disease: Reaching Consensus on a Rational Approach. Christopher D. Owens, MD 4/23/2009

Stents for The Common Femoral Artery: The Good, The Bad and The Ugly

Boca Raton Regional Hospital Grand Rounds September 13, 2016

Lessons & Perspectives: What is the role of Cryoplasty in SFA Intervention?

NCVH. What's New on the Vascular Horizons? Craig M. Walker, MD, FACC, FACP. New Cardiovascular Horizons

Introduction 3. What is Peripheral Vascular Disease? 5. What Are Some of the Symptoms of Peripheral Vascular Disease? 6

Peripheral Arterial Disease: A Practical Approach

Copyright HMP Communications

Peripheral Arterial Disease: the growing role of endovascular management

RESULTS OF VIABAHN IN AORTO ILIAC OCCLUSION

Comparison Of Primary Long Stenting Versus Primary Short Stenting For Long Femoropopliteal Artery Disease (PARADE)

Cryoplasty versus conventional angioplasty in peripheral arterial disease: 3 year analysis of reintervention free survival by treatment received.

Endovascular Treatment of Aortoiliac Occlusive Disease: What s in My Toolbox in Jade S. Hiramoto, MD, MAS UCSF Vascular Symposium April 20, 2018

Access strategy for chronic total occlusions (CTOs) is crucial

Copyright HMP Communications

The incidence of peripheral artery disease (PAD)

LIMB SALVAGE IN THE DIABETIC PATIENT

Current Status of Endovascular Therapies for Critical Limb Ischemia

BIODEGRADABLE PERIPHERAL IGAKI-TAMAI STENTS PERSEUS STUDIES

RadRx Your Prescription for Accurate Coding & Reimbursement Copyright All Rights Reserved.

Transcription:

Remote Endarterectomy Update An endovascular alternative to bypass? BY JOHN D. MARTIN, MD Treating the superficial femoral artery (SFA) is still one of the most highly debated topics among vascular specialists. The SFA has unique characteristics that require special consideration when deciding on treatment options. Arterial disease in the SFA is generally more occlusive than stenotic and, with few collateral vessels, long-segment diffuse disease is not uncommon. In addition, the mechanical forces of the SFA, in particular near the abductor canal, exert significant stresses and result in challenges for endovascular devices. Bypass surgery has long been accepted as the standard of care of patients who have long-segment SFA disease, but it also carries the highest risk of complications, including wound infection, myocardial infarction, early graft failure, acute leg ischemia, operative mortality, and the need for surgical revision. Where eptfe is the graft of choice, there is even greater risk of complications associated with graft occlusion. Remote endarterectomy (RE), a hybrid of minimally invasive open and endovascular techniques, offers a new, less-invasive treatment option for long-segment disease. This procedure achieves extensive debulking of the entire involved segment of the artery, re-establishing flow with a minimal incision. This hybrid approach offers a low morbidity alternative, shorter length of hospital stay, and allows preservation of venous conduits for future intervention if needed. Recent US and European clinical study results are encouraging, with primary patency rates of 60% to 70% at 24 months, demonstrating results comparable to above-the-knee femoropopliteal bypass surgery. 1,2 Figure 1. An angiogram of the reconstitution point. 80 IENDOVASCULAR TODAYIJUNE 2005

Figure 2. The plane dissection. TREATMENT OPTIONS Numerous percutaneous treatment options are available for the treatment of the SFA, including balloon angioplasty, stents, laser-assisted angioplasty, and rotational atherectomy. Many of these techniques have been evaluated in clinical trials for lesions less than 10 cm long and have demonstrated reasonable results. However, these techniques have demonstrated disappointing long-term results when addressing long-segment SFA disease. 3-8 As a result of poor endovascular outcomes, surgical bypass is the most common procedure performed for the treatment of long-segment SFA disease. A recent review by Klinkert et al 4 of numerous studies assessing the patency results of bypasses demonstrated that patency at 2-years was 81% for venous conduits and 67% for PTFE grafts. At 5 years, patency decreased to 69% and 49% for veins and eptfe, respectively. As noted by Jackson et al, 9 the complications associated with restenosis or occlusion of prosthetic bypass grafts can be detrimental to the patient, resulting in acute limb ischemia, emergency revascularization, and in some cases, amputation. REMOTE ENDARTERECTOMY Remote endarterectomy is a hybrid of minimally invasive surgical and endovascular techniques that offers a safe and effective option for treatment of long-segment SFA disease with a single small incision in the groin. This minimally invasive procedure provides extensive debulking using specifically designed surgical instrumentation combined with standard endovascular equipment. The RE procedure involves standard surgical exposure of the common femoral artery and proximal portion of the SFA. An arteriogram is then performed to identify the point of reconstitution, which is the endpoint for the RE (Figure 1) The patient is then heparinized and a longitudinal arteriotomy in the proximal SFA is performed. Flow to the leg is maintained during the procedure through the profunda femoris. This not only reduces ischemia time but also provides retrograde flow back up the SFA during endarterectomy, eliminating the risk of distal embolization. A dissection plane is then established, ideally, between the media and the smooth elastic lamina of the adventitia (Figure 2). In the exposed SFA area, blunt dissection for approximately 3 cm to 4 cm is performed using standard endarterectomy instruments separating the core of plaque from the wall of the vessel. Once the plane is created proximately, the dissection is then continued under fluoroscopic guidance down the entire length of the obstruction with either a Martin Dissector (Vascular Architects, San Jose, CA) or an appropriately sized ring dissector. Once the dissection has been completed to the endpoint identified on the arteriogram, the dissection device is removed and a MollRing Cutter (Vascular Architects) is passed over the atheromatous core along the same dissection plane to the same endpoint (Figure 3). The plaque is then remotely transected and the entire atheromatous core is removed. The atheromatous cores, which are typically >20-cmlong cores and range in weight from 4 g to 17 g, are removed through the small proximal incision in the SFA (Figure 4). The final step of Figure 3. The MollRing cutter transecting plaque during RE. JUNE 2005 I ENDOVASCULAR TODAY I 81

Figure 4. Excised atheroma core removed after RE (14 grams, 29 cm in length). the procedure is to tack down the distal dissection flap where the transection occurred and provide a smooth transition zone to the popliteal artery. 12 This is completed using a variety of endovascular techniques, including passing a guidewire across the endpoint and performing balloon angioplasty and stent placement (Figure 5). DISCUSSION The introduction of new instrumentation has facilitated more efficient and effective performance of the procedure. Additionally, issues related to effective management of the distal endpoint have become less challenging with the advent of new stent technology and A design. Advances in antiplatelet therapy and understanding of the need for dilligent, ongoing surveillance of the patient and vessel have led to improved durability and potential for reintervention when required. Recent clinical study has involved performing RE in combination with placement of a distal aspire Covered Stent (Vascular Architects). This stent consists of a crush-resistant nitinol framework shaped into a spiral design. The entire framework is covered in eptfe eliminating metal in contact with the vessel wall, in contrast to bare-metal designs. This helical design offers a combination of exceptional radial strength and flexibility capable of withstanding torsional stresses at the knee B Figure 5. Pre- and post-re images. 82 IENDOVASCULAR TODAYIJUNE 2005

joint. The stent delivery mechanism allows evaluation of stent placement and positioning prior to final stent deployment. If adjustments are required, the stent may be wrapped down and repositioned before final deployment. This allows accurate placement within the vessel without compromising collateral flow. Rosenthal et al recently reported medium-term results of RE and distal aspire stenting. 1 Between October 2000 and July 2003, 40 patients underwent RE of the distal SFA with distal aspire stenting. All subjects had documented SFA occlusions >13 cm in length (TASC C) and were considered candidates for a revascularization procedure. RE was selected when the proximal popliteal artery was >4 mm in diameter. The indications for intervention were assessed using the suggested standards for reports dealing with lower-extremity ischemia by Rutherford et al. 13 Indications included claudication in 36 patients and limb salvage in four patients. The average length of lesion or occlusion was 26.2 cm. RE was performed as described previously and the distal outflow track was tacked utilizing the aspire Covered Stent. All patients underwent clinical evaluation after the procedure, and evaluation for restenosis and calculation for primary and assisted primary patency rates. The primary cumulative patency rate by means of life table analysis was 68.6+13.5% (SE) at 18 months (mean, 13.2 months; range, 1-31 months) (Figure 6). Repeat radiologic intervention was necessary in six patients (four PTA, two stent angioplasty), for a primary assisted patency rate of 88.5+8.5% at 15 months. The locations of the stenoses after RE included two over the course of the SFA, two at the adductor canal, and two at the distal stent. One above-the-knee amputation was performed during follow-up in an elderly diabetic patient who had gangrene of the foot. There were no deaths, and one wound complication occurred. The mean hospital length of stay was 2.1+0.5 days. Ankle-brachial indices rose from 0.58 (+0.14) preoperatively to 0.95 (+0.04) postoperatively. These data have subsequently been verified with our personal experience of more than 100 SFA REs. Each of these patients were considered femoropopliteal bypass candidates. In our series, 40% underwent surgery for limb-threatening ischemia. Perioperative morbidity was remarkably low and limb salvage occurred in all but two patients. Primary patency was 70% at 30 months by life table analysis and, more importantly, of the 19 late failures we have treated, only one had to go emergently to the operating room for intervention. This is distinctly different than what has been observed with standard eptfe bypass as reported by Jackson et al. 9 Acute limbthreatening ischemia is common with failed eptfe bypass patients. Optimal case selection remains a challenge due to the unpredictability of the ease of dissection and core extraction in those patients with heavily calcified arteries. Technical issues precluded successful endarterectomy in 10% of our patients in whom we intend to perform RE. Early in our experience, we avoided RE in these heavily calcified patients, but now with the new tools and techniques, and encouraged by our long-term success, we are aggressive with these patients as well. The benefits associated with RE include use of a single, short groin incision, making the operation less invasive while still allowing common femoral and profunda femoris endarterectomy, if required. The associated reduction in surgical trauma facilitates more rapid patient recovery, reduced postoperative leg edema, and earlier hospital discharge. Avoiding the use of eptfe bypass reduces infection risk and the acute ischemia that often accompanies thrombosis of these types of bypasses. Finally, preservation of venous conduits,

event more extensive revascularization is needed once minimally invasive options have been exhausted. 12,13 Figure 6. Cumulative RE patency. specifically the saphenous vein, makes subsequent use in the cardiovascular or peripheral circulation possible. RE is our primary strategy for long-segment infrainguinal disease. Restenosis due to intimal hyperplasia and inability to complete dissection of the desired endpoint (due to heavy calcification) remain the limiting factors of the procedure. However, experience and new instrumentation has greatly expanded our application and ability to successfully treat complex cases. Managing fractured cores, calcified vessels, small perforations, and difficult-to-manage endpoints are no longer the stumbling blocks they once were. The effort to become proficient with the new tools and techniques has been well worth the investment in our practice. Vigilant attention to surveillance is critical for optimal results because restenosis continues to plague the SFA even after complete debulking. Secondary procedures with percutaneous angioplasty and stenting extend the patency of the original procedure in many who exhibit focal restenosis. Fortunately for most patients, the failure sites are often focal and even when a reocclusion occurs, the patients do not fall all the way back to their pretreatment state. The remainder of the SFA remains open with collaterals, and many if not most can avoid additional interventions, even with restenosis. Van der Heijden et al 10 previously reported that nearly half of failed endarterectomies remained asymptomatic. Given this observation, the decision for repeat intervention can be made on the basis of clinical symptoms. As stated previously, RE leaves the saphenous vein intact in the CONCLUSION The treatment of femoropopliteal occlusive disease with RE continues to evolve. Growing experience has demonstrated that RE is a safe and durable procedure that enables the preservation of SFA collateral vessels. With long-term patency rates rivaling to those of above-the-knee femoropopliteal bypass grafting, RE may prove to be a reasonable endovascular alternative to bypass surgery for the treatment of longsegment SFA disease. Further developments in RE are focused on drug-eluting stents, pharmaceutical innovations, and advances in instrumentation for the procedure. John D. Martin, MD, is from Cardiology Associates, PC, and is Director, Vascular Institute Anne Arundel Medical Center, Annapolis, Maryland. He has disclosed that he has a patent or part ownership in the product mentioned herein and is an owner or shareholder in the company. Dr. Martin may be reached at (410) 571-8430; jmartin@cardiologyassociatespc.com. 1. Rosenthal D, Martin JD, Schubart PJ, et al. Remote superficial femoral artery endarterectomy. J Vasc Surg. 2004;40:67-71. 2. Knight JS, Smeets L, Morris GE, et al. Multi centre study to assess the feasibility of a new covered stent and delivery system in combination with remote superficial femoral artery endarterectomy (RSFAE). Eur J Vasc Endovasc Surg. 2005;29:287-294. 3. Matsi PJ, Manninen HI, Vanninen RL, et al. Femoropopliteal angioplasty in patients with claudication: primary and secondary patency in 140 limbs with 1-3 year follow-up. Radiology. 1992;191:727-733. 4. Klinkert P, Post PN, Breslau PJ, et al. Saphenous vein versus PTFE for above-knee femoropopliteal bypass: a review of the literature. Eur J Vasc Endovasc Surg. 2004;27:357-362. 5. The Collaborative Rotablator Atherectomy Group (CRAG). Peripheral atherectomy with the rotablator: a multicenter report. J Vasc Surg. 1994;19:509-515. 6. Diethrich EB. Laser angioplasty: a critical review based on 1849 clinical procedures. Angiology. 1990;41:757-767. 7. Johnston KW, Rae M, Hogg-Johnston SA, et al. Five-year results of a prospective study of percutaneous transluminal angioplasty. Ann Surg. 1987;206:403-413. 8. Bergeron P, Pinot JJ, Poyen V, et al. Long-term results with the Palmaz stent in the superficial femoral artery. J Endovasc Surg. 1995;2:161-167. 9. Jackson MR, Belott TP, Dickason T, et al. The consequences of a failed femoropopliteal bypass grafting: comparison of saphenous vein and PTFE grafts. J Vasc Surg. 2000;32:498-504. 10. van der Heijden FH, Eikelboom BC, van Reedt, et al Superficial femoral artery endarterectomy: a procedure worth reconsidering. Eur J Vasc Surg. 1993;6:651-58. 11. Ho GH, Moll FL, Joosten PP, et al. The Mollring Cutter remote endarterectomy: preliminary experience with a new endovascular technique for treatment of occlusive superficial femoral artery disease. J Endovasc Surg. 1995;2:278-287. 12. Smeets L, Ho G, Moll F. Radiological guided endarterectomy with stenting for femoropopliteal reconstruction. Hybrid Vascular Procedures, European Vascular Course. Blackwell Publishing, May 2004. 13. Rutherford RB, Flanigan DP, Gupta SK, et al. Suggested standards for reports dealing with lower extremity ischemia. J Vasc Surg. 1986;4:80-94. 84 IENDOVASCULAR TODAYIJUNE 2005