Original Article Ulinastatin attenuates cerebral ischemia-reperfusion injury in rats

Similar documents
Function of aquaporin in the brain and brain edema

Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors *

Original Article Effects of mannitol on hypoxic-ischemic brain edema and aquaporin-4 expression in neonatal rats

Int J Clin Exp Med 2014;7(11): /ISSN: /IJCEM Qiuxia Wan 1*, Peng Pan 1*, Changqing Xu 2, Wenzhi Li 1

Implication of aquaporins in ischemic stroke. New target?

Original Article Clinical application of butylphthalide in massive cerebral infarction treatment

Original Article Bumetanide protects focal cerebral ischemia-reperfusion injury in rat

SUPPLEMENTARY INFORMATION

Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-α and IL-1β-induced Na-K-Cl Cotransporter up-regulation

Supporting Information

FOCUS SubCell. For the Enrichment of Subcellular Fractions. (Cat. # ) think proteins! think G-Biosciences

Original Article Activation of STAT3 is involved in neuronal apoptosis in focal cerebral ischemia/reperfusion rats via Bcl 2/Fas pathway

Effect of anesthetic post-treatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats

Effect of low temperatures on BAX and BCL2 proteins in rats with spinal cord ischemia reperfusion injury

Chemical Chaperones Mitigate Experimental Asthma By Attenuating Endoplasmic

Anti-Lamin B1/LMNB1 Picoband Antibody

Human Obestatin ELISA

SUPPLEMENTAL MATERIAL. Supplementary Methods

Mouse C-peptide EIA. Cat. No. YII-YK013-EX FOR LABORATORY USE ONLY

Expression of acid base transporters in the kidney collecting duct in Slc2a7 -/-

Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by

Protein MultiColor Stable, Low Range

(A) PCR primers (arrows) designed to distinguish wild type (P1+P2), targeted (P1+P2) and excised (P1+P3)14-

Dissected tissues were minced and lysed in lysis buffer (1x Tris buffered saline (TBS), 1% NP-40,

Cell Culture. The human thyroid follicular carcinoma cell lines FTC-238, FTC-236 and FTC-

Imaging ischemic strokes: Correlating radiological findings with the pathophysiological evolution of an infarct

A Microfluidic ExoSearch Chip for Multiplexed Exosome Detection Towards Bloodbased Ovarian Cancer Diagnosis

Strep-tag HRP Detection Kit (Horse Radish Peroxidase)

TSH Receptor Monoclonal Antibody (49) Catalog Number MA3-218 Product data sheet

Blood Supply. Allen Chung, class of 2013

Supplementary Figure 1

Sestrin2 and BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting. protein3) regulate autophagy and mitophagy in renal tubular cells in. acute kidney injury

Supplemental Information

Protocol for Western Blo

Comparison of Young and Old Cardiac Telocytes Using Atomic Force Microscopy

Neuroprotective effects of LBP on brain ischemic reperfusion neurodegeneration

ECL Plex Western Blotting Detection System

RayBio KinaseSTAR TM Akt Activity Assay Kit

For the rapid, sensitive and accurate quantification of Ras in various samples

Mouse Cathepsin B ELISA Kit

Human Cathepsin D ELISA Kit

Hongbei Xu 1,2, Wenyi Qin 3, Xiao Hu 4, Song Mu 5, Jun Zhu 1,2, Wenhao Lu 1,2 and Yong Luo 1,2*

EXPERIMENTAL AND THERAPEUTIC MEDICINE 7: , 2014

Western Blot Analysis of Rat Pituitar Recognized by Human Antipituitary. y Antigens A. antibodies

Neuroprotective effect of ONO-1078, a leukotriene receptor antagonist, on focal cerebral ischemia in rats 1

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

Data Sheet. PCSK9[Biotinylated]-LDLR Binding Assay Kit Catalog # 72002

Original Article Pre-ischemic exercise mitigates brain injury via MEK1/2 and PI3K after ischemic stroke in rats

Islet viability assay and Glucose Stimulated Insulin Secretion assay RT-PCR and Western Blot

The effect of ulinastatin combined with bone marrow mesenchymal stem cells on directional repairing of liver ischemia and reperfusion injury in rats

Mouse Myeloperoxidase/MPO ELISA Kit

GLP-2 (Rat) ELISA. For the quantitative determination of glucagon-like peptide 2 (GLP-2) in rat serum and plasma

EXPERIMENTAL AND THERAPEUTIC MEDICINE 7: , 2014

Supplemental Figure 1. (A) Western blot for the expression of RIPK1 in HK-2 cells treated with or without LPS (1 µg/ml) for indicated times.

1. Materials and Methods 1.1 Animals experiments process The experiments were approved by the Institution Animal Ethics Committee of Jilin University

High expression of fibroblast activation protein is an adverse prognosticator in gastric cancer.

VEGFR2-Mediated Vascular Dilation as a Mechanism of VEGF-Induced Anemia and Bone Marrow Cell Mobilization

Assessment performed on Friday, September 18, 2015, at Vancouver General Hospital

Supplementary Information

Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced

The Schedule and the Manual of Basic Techniques for Cell Culture

Product Datasheet. EMMPRIN/CD147 Antibody (MEM-M6/1) NB Unit Size: 0.1 mg. Store at 4C. Do not freeze. Publications: 2

Mammalian Tissue Protein Extraction Reagent

Protocol for Gene Transfection & Western Blotting

Product Datasheet. HLA ABC Antibody (W6/32) NB Unit Size: 0.25 mg. Store at -20C. Avoid freeze-thaw cycles. Reviews: 1 Publications: 22

Product Datasheet. CD133 Antibody NB Unit Size: 0.1 mg

Silencing of the Activated Protein-1 Transcription Factor JunD Exacerbates Ischemia/Reperfusion-induced Cerebral Injury

Neural stem cells and the neurobiology of ageing. Chen Siyun 1, Dawe G.S. 2

Instructions for Use. APO-AB Annexin V-Biotin Apoptosis Detection Kit 100 tests

Supporting Information

Evaluation of directed and random motility in microslides Assessment of leukocyte adhesion in flow chambers

A Long-Term and Slow-Releasing Hydrogen Sulfide Donor Protects against Myocardial. Ischemia/Reperfusion Injury

KILLER CARBS: EFFECTS OF 50% DEXTROSE TREATMENT ON POSTNATAL HYPOGLYCEMIC RATS

ab E3 Ligase Auto- Ubiquitilylation Assay Kit

ROS Activity Assay Kit

Mingjin Jiang 1, Jing Li 1, Qiuxian Peng 1,2, Yi Liu 1, Wei Liu 1, Chaohua Luo 1, Ju Peng 1, Junkui Li 1, Ken Kin Lam Yung 2* and Zhixian Mo 1*

Improvement of the suture-occluded method in rat models of focal cerebral ischemia-reperfusion

Downregulation of angiotensin type 1 receptor and nuclear factor-κb. by sirtuin 1 contributes to renoprotection in unilateral ureteral

Experimental Assessment of Infarct Lesion Growth in Mice using Time-Resolved T2* MR Image Sequences

Role of suture diameter and vessel insertion position in the establishment of the middle cerebral artery occlusion rat model

human Total Cathepsin B Catalog Number: DY2176

Title. CitationNeuroscience Letters, 495(3): Issue Date Doc URL. Type. File Information

Philadelphia College of Osteopathic Medicine Annual Progress Report: 2011 Formula Grant

Mouse GLP-2 EIA FOR LABORATORY USE ONLY

Original Article Effect of activation of the Ca 2+ -permeable acid-sensing ion channel 1a on focal cerebral ischemia in diabetic rats

Supplementary Information POLO-LIKE KINASE 1 FACILITATES LOSS OF PTEN-INDUCED PROSTATE CANCER FORMATION

Supplementary Information

Mouse C-Peptide I EIA

Research on the inhibitory effect of metformin on human oral squamous cell carcinoma SCC-4 and CAL-27 cells and the relevant molecular mechanism.

General Laboratory methods Plasma analysis: Gene Expression Analysis: Immunoblot analysis: Immunohistochemistry:

Supplementary Fig. 1. Identification of acetylation of K68 of SOD2

Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signalling pathway

The neuro-protective effects of water extract of Faces Trogopterori on transient MCAO rats.

Rat Leptin-HS ELISA FOR LABORATORY USE ONLY YANAIHARA INSTITUTE INC AWAKURA, FUJINOMIYA - SHI SHIZUOKA, JAPAN

SUPPLEMENTARY INFORMATION

Bile acids initiate cholestatic liver injury by triggering a hepatic specific inflammatory response. Supplementary Results

IKKα Causes Chromatin Modification on Pro-Inflammatory Genes by Cigarette Smoke in Mouse Lung

Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive

Transcription:

Int J Clin Exp Med 2014;7(5):1483-1489 www.ijcem.com /ISSN:1940-5901/IJCEM0000298 Original Article Ulinastatin attenuates cerebral ischemia-reperfusion injury in rats Hai-Ming Chen, Huan-Sen Huang, Lin Ruan, Yan-Bing He, Xiong-Juan Li Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China Received March 22, 2014; Accepted April 6, 2014; Epub May 15, 2014; Published May 30, 2014 Abstract: To investigate the effects of Ulinastatin (UTI) in cerebral ischemia-reperfusion (IR) injury in rats and whether this effect might be related to Aquaporin 4 (AQP4), one hundred and eighty adult male Sprague Dawley (SD) rats, weighing 230-280 g, were randomly divided into 3 groups: sham (S) group, IR group and UTI (U) group. Every group was further divided into 3 sub-groups: 6 h group, 24 h group and 48 h group. The transient focal IR injury was induced by inserting a silicone-coater monofilament nylon suture (0.28 mm) from the right external carotid artery to the origin of the left middle cerebral artery. The suture was removed after 2 h to allow reperfusion. UTI treatment group was injected with UTI 100000 u/kg at the beginning of the reperfusion period, while S group and IR group were injected with the same volume of saline. Samples were taken according to the reperfusion time (6 h, 12 h and 24 h). Infract volume was measured by triphenyl tetrazolium chloride staining, and brain water content was determined by wet-dry weight method and neurological scores were checked with a five-point scale. Expression levels of AQP4 were checked with immunohistochemistry and Western blot. Results: Compared with S group, the infarct volume, water content, neurological scores and AQP4 levels in the rat brain tissues were significantly increased in IR group. Administration of UTI significantly decreased the infarct volume, water content of the brain tissue and neurological scores. Moreover, the expression levels of AQP4 were also down-regulated by UTI treatment. Conclusion: UTI improves cerebral IR injury in rats potentially via decreasing the expression levels of AQP4. Keywords: Ulinastatin, cerebral ischemic reperfusion, brain edema, aquaporin 4 Introduction Cerebral ischemia is among the diseases that most compromise the human species [1]. Occlusion of a cerebral artery impairs blood flow and will lead to neuronal death. Early reperfusion is necessary. However, reperfusion of the tissue is also associated with inflammation, increased reactive oxygen species, necrosis and apoptosis. These damages to the brain will continue even after the blood flow is restored and cause cerebral edema [2]. Thus, ischemia-reperfusion (IR) injury is a complicated pathologic procedure [2]. Novel method to prevent the IR injury is highly needed [1, 2]. Ulinastatin (urinary trypsin inhibitor, UTI) is a 67 kda glycoprotein purified from the urine of healthy humans. With its anti-protease and anti-inflammatory effects, UTI has been widely used as a drug for patients with acute inflammatory disorders, such as disseminated intravascular coagulation, shock, and pancreatitis [3]. Some studies have reported that UTI protected against cerebral IR injury [4-6]. Aquaporin-4 (AQP4) is a water-channel protein enriched in the brain. It controls water fluxes into and out of the brain parenchyma and plays an important role in cerebral ischemia. In the present study, we aim to investigate the effects of UTI in cerebral IR injury and whether this effect might be related to AQP4. Materials and methods This study was conducted in accordance to the guidelines for the care and use of animals in research, and under the protocols approved by the Guangzhou University of Connecticut Animal Care and Use Committee. Establishment of cerebral IR model in rat One hundred and eighty adult male SD rats, weighing 230-280 g, obtained from the

Figure 1. Ulinastatin improves the neurological score in cerebral ischemia-reperfusion. Neurological scores of all groups. Date are expressed as Mean ± SEM (n = 5). *P < 0.05 vs. S group; **P < 0.05 vs. IR group. Experimental Animal Center of Guangdong was used in this study. These rats were randomly divided into 3 groups: Sham (S) group, IR group and UTI treatment (U) group. IR group and U group were further divided into 3 sub-groups: 6 h reperfusion group, 24 h reperfusion group and 48 h reperfusion group. Middle cerebral artery occlusion (MCAO) was induced by intraluminal filament method as described previously [7]. Briefly, after the exposure of right common carotid artery (CCA), internal carotid artery (ICA) and the external carotid artery (ECA), a siliconecoater monofilament nylon suture (0.28 mm) was carefully inserted from the CCA into the ICA and was advanced towards to occlude the origin of the left middle cerebral artery (MCA) until a light resistance was felt (18-20 mm from CCA bifurcation). Two hours later, the suture was removed to allow reperfusion. U group was injected with UTI 100000 u/kg at the beginning of the reperfusion period, while S group and IR group were injected with the same volume of saline. Samples were taken according to the reperfusion time (6 h, 12 h and 24 h). Determination of the neurological score The neurological deficit score was assessed according to previous described [8]. At different time points of reperfusion, the animals were scored blindly based on a five-point scale: 0: normal; 1: drags forepaw, twisting when lifted; 2: circling spontaneously; 3: falls; 4: does not walk, comatose; 5: dead. Measurement of cerebral infarct volume At the end of the reperfusion period, animals were anesthetized with 10% chloral hydrate and the brain was separated and kept at -20 C for 30 min for uniform sectioning. The brain was sliced into 2 mm thick transverse sections and was allowed to thaw at room temperature. Each slice was incubated separately in 1% triphenyl tetrazolium chloride (TTC) (SI- GMA Chemical Co., MO, USA) for 20 min at 37 C. TTC staining could discriminate infracted brain tissue (unstained and appearing white) from non-infarcted brain tissue (deep red). The cerebral infarction was expressed as the ratio of the infarct volume to total brain volume. Calculation of brain water contents Four days after MCAO, rats were killed and brains were removed. The pons and olfactory bulb were removed and the brains were weighted to obtain their wet weight (ww). Thereafter brains were dried at 110 C for 24 h for determining their dry weight (dw). Brain water content was calculated by using the following formula: (ww-dw)/ww 100 as an index for brain edema. Immunohistochemistry for AQP4 expression Slices from the brain tissue were serially cut into 20 μm thick frontal sections. All sections were incubated in 30% H 2 O 2 in Tris-buffered saline (PBS) for 30 min at room temperature to quench endogenous peroxidase. Sections were incubated with 5% fetal bovine serum (Fredensborg, Denmark, cat. no.: 04009-1B) for 30 min at room temperature to block non-specific binding. After that, sections were incubated with rabbit anti-aqp4 diluted at 1:200 overnight at 4 C (Alomone Labs Ltd., cat. no.: AQP- 004). The primary antibody of AQP-4 was detected by using biotinylated goat anti-rabbit IgG diluted at 1:400 (Sigma-Aldrich, cat. no.: 3275) for 30 min at room temperature followed by streptavidin-biotin-peroxidase complex (StreptABComplex/HRP, DAKO, DK, cat. no.: K377) prepared for 30 min at room temperature. The immunoreaction was visualized using 0.015% H 2 O 2 in 3, 3-diaminobenzidine-tetrahydrochloride (DAB) as chromogen for 10 min at room temperature. The sections were counterstained with Mayer s hematoxylin, and mounted, and 1484 Int J Clin Exp Med 2014;7(5):1483-1489

Figure 2. Representative pictures of TTC staining. A: Infarct volume of Sham (S) group. B: Infarct volume of ischemiareperfusion (IR) group. C: Infarct volume of Ulinastatin (U) treatment group. then examined under an Axioskope microscope. Western blot for AQP4 expression Figure 3. Ulinastatin decreases cerebral infarct volume in cerebral ischemiareperfusion. Infarct volume of three groups. Date are expressed as Mean ± SEM (n = 5). *p < 0.05 vs. S group; **P < 0.05 vs. IR group. Figure 4. Ulinastatin reduces brain water contents in cerebral ischemia-reperfusion. Water content alterations after MCAO and reperfusion. Date are expressed as Mean ± SE (n = 5), *P < 0.05 vs. S Group; **P < 0.05 vs. IR group. Left parietal lobe cortex was homogenized in 10 mmol/l Tris homogenization buffer (ph 7.4) with protease inhibitors (1 tablet in 50 ml; Sigma, USA). The samples were centrifuged at 12,000 rpm for 20 min and the supernatant was collected for Western blot. After determining the protein concentrations of the supernatants (BCA method, standard BSA), 50 μg protein of each sample was loaded onto the 8% SDS gel, and was separated by electrophoresis and then was transferred to PVDF membrane. The membranes were incubated with rabbit anti-aqp4 polyclonal IgG (1:500, Boster, CHINA) or mouse anti-β-actin monoclonal IgG (1:1000, Boster, CHINA) overnight at 4 C. After being washed three 1485 Int J Clin Exp Med 2014;7(5):1483-1489

Figure 5. Immunohistochemistry of Aquaporin-4 (AQP4) expressions in ependyma, choroid plexus and blood capillary. A: Sham (S) group. B: Ischemia-reperfusion (IR) 6 h group. C: Ulinastatin (U) 6 h group. D: IR 24 h group. E: U 24 h group. F: IR 48 h group. G: U 48 h group. H: Blood capillary. I: Choroid plexus. Expression of AQP4 was found in ependyma appeared clay bank. Date are expressed as Mean ± S.E.M (n = 5). IR group vs. S group, P < 0.05. U group vs. IR group, P < 0.05. times for 10 min with washing solution, the membranes were incubated with goat anti-rabbit IgG-HRP (1:2000, Boster, CHINA) or goat anti-mouse IgG-HRP (1:2000, Boster, CHINA). The immune-reactive bands were visualized by an ECL Western blotting detection kit (Pierce, USA) on light sensitive film. Statistical analysis All data are presented as the means ± SD. Differences among multiple groups were statistically analyzed using one-way ANOVA, followed by Bonferroni test. Statistical significance was assumed if P < 0.05. 1486 Int J Clin Exp Med 2014;7(5):1483-1489

UTI reduces brain water contents in cerebral IR Figure 6. Representative western blotting of AQP4 expression. A: Sham (S) group; B: Ischemia-reperfusion (IR) 6 h group; C: Ulinastatin (U) 6 h group; D: IR 24 h group; E: U 24 h group; F: IR 48 h group; G: U 48 h group. The brain water content was used to evaluate cerebral edema. IR significantly increased the water content of the ischemic hemisphere and reached a peak at 24 h (Figure 4), whereas the water content of nonischemic hemisphere remained unchanged. Administration of UTI at the beginning of reperfusion period significantly reduced the water content of the right hemisphere (Figure 4). Figure 7. Ulinastatin down-regulates the expression level of AQP4 in cerebral ischemia-reperfusion. Date are expressed as Mean ± S.E.M (n = 5). IR group vs. S group, P < 0.05. U group vs IR group, P < 0.05. Result UTI improves the neurological score in cerebral IR We investigated whether UTI could improve neurological scores in threats subjected to cerebral IR. As shown in Figure 1, compared with S group, the neurological scores of IR group significantly increased and reached a peak at 24 h. Administration of UTI could significantly reduce neurological scores in IR. UTI decreases cerebral infarct volume in cerebral IR UTI down-regulates the expression level of AQP4 in cerebral IR Immunohistochemistry and Western blot analysis were used to investigate the AQP4 expression patterns. Both methods consistently showed that IR reduced the expression level of AQP4 while it was suppressed by administration of UTI (Figures 5-7), indicating that UTI might improve cerebral IR injury in rats potentially via decreasing the expression levels of AQP4. Discussion The major findings of the present study are as follows. Firstly, UTI improves the neurological score in cerebral IR. Secondly, UTI decreases cerebral infarct volume in cerebral IR. Thirdly, UTI reduces brain water contents in cerebral IR. Finally, UTI down-regulates the expression level of AQP4 in cerebral IR. To determine the cerebral infarct volume, TTC staining was used in the present study. The infarcted tissue of MCAO rats appeared white, whereas the normal non-infarcted tissue was red. Consistent with the results of neurological deficits, IR induced obvious infarct (Figure 2), indicating that an exacerbated brain damage occurred. Interestingly, UTI treatment also decreased cerebral infarct volume in rat subjected to IR (Figure 3). AQP water-channel proteins are a family of membrane channels that serve as selective pores through which water crosses the plasma membranes of many human tissues and cell types [9-12]. To date, 13 mammalian AQPs have been cloned and identified in human. Among them, AQP4 is a water-selective transporter originally cloned in 1994 from lung tissue and has been shown to be enriched in the brain [9-12]. The role of AQP4 in brain edema is 1487 Int J Clin Exp Med 2014;7(5):1483-1489

still on debate [13, 14]. One study has showed that mortality after acute water intoxication and ischemic stroke was markedly reduced in AQP4-null mice, which was associated with reduced blood-brain barrier water permeability and decreased rate of water flow into the brain parenchyma. However, another study has showed that AQP4-null mice had more brain swelling compared with wild-type mice after cortical freeze injury and brain tumor implantation [14]. In the present study, a predominant expression of AQP4 was identified in ependyma, choroid plexus and blood capillary by immunocytochemistry. The results of our study indicate that AQP4 is expressed at the membrane, which adjust water in the brain, while it is much less expressed in cerebral parenchyma. We also found that in MACO model, infarct sizes and brain water contents were positively correlated with the expression of AQP4. It is speculated that over-expression of AQP4 enhances a rapid influx of water and is responsible for the infarct of brain tissue after focal brain ischemia. However, Western blot showed no difference of AQP4 expression between 6 h IR group and S group. Another report also indicated that in the early stage of cerebral edema, AQP4 was not increased, and was even reduced following the exacerbation of brain [15]. The reduction of AQP4 expression prevents water fluxed into cerebral cell to protect brain tissue. Thus, it may be a self-protection of the brain. The main objective of this study was to characterize the effects of UTI in cerebral IR injury and whether this effect might be related to AQP4. UTI is a human urinary trypsin inhibitor. A previous study has showed that UTI offered a protective effect against cerebral IR injury [16]. However, in our study, we identified the downregulation of AQP4 in a rat MCAO model in UTI treatment group accompanied by an obvious reduction in cerebral edema. Meanwhile, in the UTI treatment group, infarct sizes and brain water contents were also decreased. It is speculated that AQP4 down-regulation may alleviate cerebral edema. Thus, suppressing expression of AQP4 in the early stage of IR injury might be an alternative way for brain protection. In conclusion, UTI improves cerebral IR injury in rats potentially via decreasing the expression levels of AQP4. Administration of UTI might be a novel way for cerebral protection. Acknowledgements This work was supported by the grants from Guangzhou Medical University (HS. Huang). Disclosure of conflict of interest None. Address correspondence to: Huan-Sen Huang, Department of Anesthesiology, Second Affiliated Hospital of Guang Zhou Medical University, 250 Chang Gangdong Road, Guang Zhou, 510260, China. Tel: 86-20-34152535; Fax: 86-20-3415 2003; E-mail: huanghs5480_gz@163.com References [1] Colli BO, Tirapelli DP, Carlotti CG Jr, Lopes Lda S, Tirapelli LF. Biochemical evaluation of focal non-reperfusion cerebral ischemia by middle cerebral artery occlusion in rats. Arq Neuropsiquiatr 2008; 66: 725-730. [2] Xu D, Du W, Zhao L, Davey AK, Wang J. The neuroprotective effects of isosteviol against focal cerebral ischemia injury induced by middle cerebral artery occlusion in rats. Planta Med 2008; 74: 816-821. [3] Chen CC, Wang SS, Lee FY. Action of antiproteases on the inflammatory response in acute pancreatitis. JOP 2007; 8: 488-494. [4] Abe H, Sugino N, Matsuda T, Kanamaru T, Oyanagi S, Mori H. Effect of ulinastatin on delayed neuronal death in the gerbil hippocampus. Masui 1996; 45: 38-43. [5] Yano T, Anraku S, Nakayama R, Ushijima K. Neuroprotective effect of urinary trypsin inhibitor against focal cerebral ischemia-reperfusion injury in rats. Anesthesiology 2003; 98: 465-473. [6] Koga Y, Fujita M, Tsuruta R, Koda Y, Nakahara T, Yagi T, Aoki T, Kobayashi C, Izumi T, Kasaoka S, Yuasa M, Maekawa T. Urinary trypsin inhibitor suppresses excessive superoxide anion radical generation in blood, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats. Neurol Res 2010; 32: 925-932. [7] Kikuchi K, Kawahara KI, Tancharoen S, Matsuda F, Morimoto Y, Ito T, Biswas KK, Takenouchi K, Miura N, Oyama Y, Nawa Y, Arimura N, Iwata M, Tajima Y, Kuramoto T, Nakayama K, Shigemori M, Yoshida Y, Hashiguchi T, Maruyama I. The free-radical scavenger edaravone rescues rats from cerebral infarction by attenuating the release of high-mobility group box-1 in neuronal cells. J Pharmacol Exp Ther 2009; 329: 865-874. 1488 Int J Clin Exp Med 2014;7(5):1483-1489

[8] Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84-91. [9] Hasegawa H, Ma T, Skach W, Matthay MA, Verkman AS. Molecular cloning of a mercurialinsensitive water channel expressed in selected water-transporting tissues. J Biol Chem 1994; 269: 5497-5500. [10] Yang B, Ma T, Verkman AS. cdna cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units. J Biol Chem 1995; 270: 22907-22913. [11] Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemisty of aquaporin-4 in rat brain. J Neurosci 1997; 17: 171-180. [12] Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P. Molecular characterization of an aquaporin cdna from brain: canidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci U S A 1994; 91: 13052-13056. [13] Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 2000; 6: 159-163. [14] Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 2004; 18: 1291-1293. [15] Zeng XN, Xie LL, Liang R, Sun XL, Fan Y, Hu G. AQP4 Knockout Aggravates Ischemia/Reperfusion Injury in Mice. CNS Neurosci Ther 2012; 18: 388-394. [16] Yano T, Anraku S, Nakayama R, Ushijima K. Neuroprotective effect of urinary trypsin inhibitor against focal cerebral ischemia reperfusion injury in rats. Anesthesiology 2003; 98: 465-473. 1489 Int J Clin Exp Med 2014;7(5):1483-1489