Clinical Study Automated Fluid Management for Treatment of Rhabdomyolysis

Similar documents
Rationale for renal replacement therapy in ICU: indications, approaches and outcomes. Richard Beale

CRRT Fundamentals Pre- and Post- Test. AKI & CRRT Conference 2018

Continuous renal replacement therapy. David Connor

Research Article Changes in Renal Function in Elderly Patients Following Intravenous Iodinated Contrast Administration: A Retrospective Study

Initiation Strategies for Renal Replacement Therapy in ICU

Correspondence should be addressed to Lantam Sonhaye;

Correspondence should be addressed to Martin J. Bergman;

Research Article Opioid Use Is Not Associated with Incomplete Wireless Capsule Endoscopy for Inpatient or Outpatient Procedures

Management of the patient with established AKI. Kelly Wright Lead Nurse for AKI King s College Hospital

Conference Paper Antithrombotic Therapy in Patients with Acute Coronary Syndromes: Biological Markers and Personalized Medicine

Managing Acid Base and Electrolyte Disturbances with RRT

INTRAVENOUS FLUID THERAPY

Research Article Comparison of Colour Duplex Ultrasound with Computed Tomography to Measure the Maximum Abdominal Aortic Aneurysmal Diameter

Correspondence should be addressed to Alicia McMaster;

Research Article Predictions of the Length of Lumbar Puncture Needles

Sebastião Rodrigues Ferreira-Filho, Camila Caetano Cardoso, Luiz Augusto Vieira de Castro, Ricardo Mendes Oliveira, and Renata Rodrigues Sá

Prevention of Acute Renal Failure Role of vasoactive drugs and diuretic agents

Early-goal-directed therapy and protocolised treatment in septic shock

BPG 03: Continuous Renal Replacement Therapy (CRRT)

Research Article Urinary Catheterization May Not Adversely Impact Quality of Life in Multiple Sclerosis Patients

Dr.Nahid Osman Ahmed 1

INTRAVENOUS FLUIDS PRINCIPLES

Case Report Acute Kidney Injury Induced by Systemic Inflammatory Response Syndrome is an Avid and Persistent Sodium-Retaining State

GUIDELINE FOR THE MANAGEMENT AND PREVENTION OF ACUTE TUMOUR LYSIS SYNDROME IN HAEMATOLOGICAL MALIGNANCIES

Research Article Predictive Factors for Medical Consultation for Sore Throat in Adults with Recurrent Pharyngotonsillitis

Contrast Induced Nephropathy

Research Article The Cost of Prolonged Hospitalization due to Postthyroidectomy Hypocalcemia: A Case-Control Study

5-FU & Cisplatin + Cetuximab

R. J. L. F. Loffeld, 1 P. E. P. Dekkers, 2 and M. Flens Introduction

Acute Renal Failure. Dr Kawa Ahmad

Case Report Three-Dimensional Dual-Energy Computed Tomography for Enhancing Stone/Stent Contrasting and Stone Visualization in Urolithiasis

PREVENTION OF RENAL FAILURE

CRRT Fundamentals Pre-Test. AKI & CRRT 2017 Practice Based Learning in CRRT

Research Article Continuous Positive Airway Pressure Device Time to Procurement in a Disadvantaged Population

ECMO & Renal Failure Epidemeology Renal failure & effect on out come

Fluid assessment, monitoring and therapy for the acute nurse

Research Article Identifying Prognostic Criteria for Survival after Resuscitation Assisted by Extracorporeal Membrane Oxygenation

Clinical Study Changing Trends in Use of Laparoscopy: A Clinical Audit

Management of Acute Kidney Injury in the Neonate. Carolyn Abitbol, M.D. University of Miami Miller School of Medicine / Holtz Children s Hospital

WEEK. MPharm Programme. Acute Kidney Injury. Alan M. Green MPHM13: Acute Kidney Injury. Slide 1 of 47

Clinical Study Patient Aesthetic Satisfaction with Timing of Nasal Fracture Manipulation

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE

Supplemental Information

UNDERSTANDING THE CRRT MACHINE

Case Report Complete Obstruction of Endotracheal Tube in an Infant with a Retropharyngeal and Anterior Mediastinal Abscess

Clinical Study The Incidence and Management of Pleural Injuries Occurring during Open Nephrectomy

Serum Myoglobin Predictive of Acute Kidney Injury (AKI) After High Voltage Electrical Contact Injuries

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

London Strategic Clinical Networks. My AKI. Guidance for patients with, or recovering from, acute kidney injury

Baris Beytullah Koc, 1 Martijn Schotanus, 1 Bob Jong, 2 and Pieter Tilman Introduction. 2. Case Presentation

Research Article Photovoice: A Novel Approach to Improving Antituberculosis Treatment Adherence in Pune, India

Medical therapy of AKI complications. Refik Gökmen AKI Academy 18 October 2014

PD In Acute Kidney Injury. February 7 th -9 th, 2013

Fluid bolus of 20% Albumin in post-cardiac surgical patient: a prospective observational study of effect duration

Research Article Subcutaneous Single Injection Digital Block with Epinephrine

Department of Internal Medicine, Saitama Citizens Medical Center, Saitama , Japan

SAFETY IN THE CATH LAB How to Minimise Contrast Toxicity

Ascites, a New Cause for Bilateral Hydronephrosis: Case Report

Case Report Crossed Renal Ectopia without Fusion An Unusual Cause of Acute Abdominal Pain: A Case Report

Acute Kidney Injury (AKI) How Wise is Early Dialysis in Critically Ill Patients? Modalities of Dialysis

Wales Critical Care & Trauma Network (North) Management of Hyponatraemia in Intensive Care Guidelines

ISOVALERIC ACIDAEMIA -ACUTE DECOMPENSATION (standard version)

Acute Kidney Injury. Eleanor Haskey BSc(hons) RVN VTS(ECC) VPAC A1

Correspondence should be addressed to Taha Numan Yıkılmaz;

DOCUMENT CONTROL PAGE

Research Article Self-Monitoring of Blood Pressure in Hypertension: AUKPrimaryCareSurvey

Section 3: Prevention and Treatment of AKI

A Paradigm Shift in Contrast-Induced Acute Kidney Injury (CI-AKI) Prevention

Basic Fluid and Electrolytes

Learning Objectives. How big is the problem? ACUTE KIDNEY INJURY

METHODS RESULTS. Int. J. Med. Sci. 2012, 9. Methods of measurement. Outcome measures. Primary data analysis. Study design and setting

Research Article Reduction of Pain and Edema of the Legs by Walking Wearing Elastic Stockings

Case Report Asymptomatic Pulmonary Vein Stenosis: Hemodynamic Adaptation and Successful Ablation

Research Article Abdominal Aortic Aneurysms and Coronary Artery Disease in a Small Country with High Cardiovascular Burden

Timing, Dosing and Selecting of modality of RRT for AKI - the ERBP position statement

Clinical Study The Value of Programmable Shunt Valves for the Management of Subdural Collections in Patients with Hydrocephalus

Research Article Challenges in Assessing Outcomes among Infants of Pregnant HIV-Positive Women Receiving ART in Uganda

Sylwia Mizia, 1 Dorota Dera-Joachimiak, 1 Malgorzata Polak, 1 Katarzyna Koscinska, 1 Mariola Sedzimirska, 1 and Andrzej Lange 1, 2. 1.

16/05/2018 NEFROPATIA DA MEZZO DI CONTRASTO: ANCORA UNA VECCHIA NEMICA?

Case Report Two Cases of Small Cell Cancer of the Maxillary Sinus Treated with Cisplatin plus Irinotecan and Radiotherapy

Research Article Maintenance of the Results of Stage II Lower Limb Lymphedema Treatment after Normalization of Leg Size

Acute Kidney Injury in the ED

When and how to start RRT in critically ill patients? Intensive Care Training Program Radboud University Medical Centre Nijmegen

Clinical Study Incidence of Retinopathy of Prematurity in Extremely Premature Infants

Research Article Correlation between Arterial Lactate and Central Venous Lactate in Children with Sepsis

Research Article Patient Attitudes to Tonsillectomy

Daofang Zhu, Xianming Dou, Liang Tang, Dongdong Tang, Guiyi Liao, Weihua Fang, and Xiansheng Zhang

Case Report Spontaneous Pelvic Rupture as a Result of Renal Colic in a Patient with Klinefelter Syndrome

London Strategic Clinical Networks. Quality Standard. Version 1.0 (2015)

Research Article Prevalence and Trends of Adult Obesity in the US,

COMPLIANCE WITH THIS DOCUMENT IS MANDATORY

Case Report Bilateral Distal Femoral Nailing in a Rare Symmetrical Periprosthetic Knee Fracture

Research Article Epidemiological Patterns of Varicella in the Period of 1977 to 2012 in the Rijeka District, Croatia

Acute Kidney Injury in The Acute Oncology Patient

Research Article The Impact of the Menstrual Cycle on Perioperative Bleeding in Vitreoretinal Surgery

Managing Patients with Sepsis

Case Report Evolution of Skin during Rehabilitation for Elephantiasis Using Intensive Treatment

The Safety of a Conservative Fluid Strategy in Adults Hospitalised with Malaria

Research Article Clinical Outcome of a Novel Anti-CD6 Biologic Itolizumab in Patients of Psoriasis with Comorbid Conditions

Histological Value of Duodenal Biopsies

Transcription:

International Nephrology Volume 2016, Article ID 2932593, 6 pages http://dx.doi.org/10.1155/2016/2932593 Clinical Study Automated Fluid Management for Treatment of Rhabdomyolysis Christian M. Beilstein, John R. Prowle, and Christopher J. Kirwan AdultCriticalCareUnit,TheRoyalLondonHospital,BartsHealthNHSTrust,WhitechapelRoad,LondonE11BB,UK Correspondence should be addressed to Christopher J. Kirwan; christopher.kirwan@bartshealth.nhs.uk Received 1 July 2016; Revised 3 October 2016; Accepted 23 October 2016 Academic Editor: Frank Park Copyright 2016 Christian M. Beilstein et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. Fluid therapy aimed at increasing urine output is a commonly employed strategy to prevent acute kidney injury (AKI) in critically ill patients with rhabdomyolysis. Automated fluid management has the potential to optimise urine output while avoiding fluid accumulation in rhabdomyolysis patients. Methods.In asingle centreclinical serviceevaluation we compared aconvenience sample of critically ill adults with rhabdomyolysis treated with automated fluid management using the RenalGuard device to patients managed with manual fluid adjustment following our standard rhabdomyolysis protocol. Primary outcome was number of hours with urine output >2 ml/kg during first 48 h of therapy. Results. Eight patients treated with RenalGuard were compared to 28 patients treated with manual fluid management. Number of hours of target urine output was greater in the RenalGuard versus the Standard group (176/312 (56.4%) versus 534/1305 (40.9%); p < 0.01). Urine output was significantly higher in the first 24 h in the RenalGuard group (median (IQR) 4033 ml (3682 7363) versus 2913 ml (2263 4188 ml); p < 0.01). Fluid balance, electrolyte, diuretics, and bicarbonate use were comparable between groups. Conclusions. Automated fluid management resulted in a higher urine output more quickly in the treatment of rhabdomyolysis. Further research is needed to analyse the effect of diuresis-matched hydration for the prevention of AKI in rhabdomyolysis. 1. Introduction Rhabdomyolysis is the dissolution of striped muscle and has numerous causes. The leakage of muscle-cell contents including electrolytes, myoglobin, and Creatine Phosphokinase (CK) into the blood stream has toxic effects on the kidneys in a number of ways and may lead to acute kidney injury (AKI). Renal injury is understood to be caused by intrarenal vasoconstriction, direct tubular toxicity, and tubular obstruction by Tamm-Horsfall protein containing casts all of which are precipitated by the presence of myoglobin. AKI is reported to complicate between 13 and 50% of cases of rhabdomyolysis [1]. Whilst peak myoglobin predicts AKI better, serum CK remains elevated for longer following rhabdomyolysis and is therefore more widely used to guide therapy [2, 3]. A CK level of greater 5000 U/l is widely accepted as threshold indicating serious muscle injury [4, 5]. The prevention of AKI in patients with significant rhabdomyolysis includes treating the underlying cause (e.g., fasciotomy to relieve compartment syndrome), fluid resuscitation (hypovolaemia is common at diagnosis), and maintaining high urine output with alkalinisation of the urine to prevent precipitation of casts in the renal tubules [6 8]. High volume haemofiltration or super high flux haemodialysis has been used for extracorporeal elimination of myoglobin in severe cases [9, 10]. Rhabdomyolysis is common in our critical care unit (about 7% of all admissions [11]) and treatment is a protocolled high fluid output/input strategy for any patient with a CK greater than 5000 U/l. The protocol targets a urine output of greater than 2 ml per kg estimated body weight (EBW) per hour, a urine ph of greater than 6, and allows the use of loop diuretics and intravenous sodium bicarbonate 1.26% to achieve this. The aim is to replace 100% urine output of the previous hour in the following hour. Our concern is that the delay in manual fluid replacement results in episodic hypovolaemia as it is always behind the previous hours output.

2 International Nephrology The RenalGuard System (PLC Medical Systems, Milford, Massachusetts, USA) works by replacing the patient s urine output millilitre-for-millilitre, minute-by-minute. This accurate, automated real-time replacement reduces the risk of over- or underhydration (i.e., episodic hypovolaemia) relative to standard infusion in the presence of desired high volume diuresis. RenalGuard has previously been tested and evaluated in patients at risk for developing acute kidney injury following coronary or peripheral angiography. It is believed that maintaining a high urine flow rate leads to lower concentration and a faster transit of potentially toxic molecules trough the kidneys, respectively, [12]. There are promising results which suggest a 50 80% relative risk reduction for the development of contrast-induced nephropathy [13, 14]. The aim of this clinical service evaluation is to demonstratethattherenalguarddevicecanbesafelyandpractically incorporated into a rhabdomyolysis treatment protocol for critically ill patients that will perform better than the established standard protocol. Our primary outcome measure was number of hours of urine output greater than 2 ml/kg/h. Secondary outcomes were primarily focused on safety (in terms of fluid balance and electrolyte disturbance) and usability, achieving daily set fluid balance, use of electrolyte substitution, loop diuretics and sodium bicarbonate, and premature protocol cessation. 2. Methods 2.1. Governance. This was a prospective clinical service evaluation audit of a commercial medical device and was registered as an audit with the Clinical Effectiveness Unit, Barts Health NHS Trust. All patients were managed using our existing clinical protocol for fluid therapy in rhabdomyolysis. 2.2. Setting. This single-center study was conducted in a 44- bedded general adult critical care unit in East London, United Kingdom. The case mix is split between medical (40%), surgical (30%), and major trauma (30%) patients. 2.3. Outcome Measures. Primary outcome measure: number of hours with urine output greater 2 ml/kg estimated body weight within the first 48 hours using a standard rhabdomyolysis protocol versus one incorporating the Renal- Guard. Secondary outcome measures were the maintenance of a set fluid balance, the need for electrolyte replacement, the administration of loop diuretics and bicarbonate, and premature protocol cessation. 2.4. Patient Groups. Patientsalreadyonorwithacuteindications for renal replacement therapy or patients with a diagnosis of diabetes insipidus were excluded from use of out rhabdomyolysis management protocol. A convenience sample of patients from 01.01.2015 to 31.04.2015 with a CK greater than 5000 U/l were commenced on rhabdomyolysis treatment using the RenalGuard device if the RebalGuard wasnotinusealreadyandalsoiftherewasamember of the investigating team present to support setting it up. The final decision regarding management of rhabdomyolysis protocol was with the treating clinician. Data from patients with a transient CK rise of <48 hours were prospectively excluded from our analysis as they would not receive 48 h of protocolled therapy. We compared automated fluid management with the RenalGuard to manual fluid management using the same therapeutic protocol. For our comparison group we audited charts from ICU patients with more than one CK measurement of >5000 U/l in our electronic clinical records system between 01.01.2014 and 31.12.2014. Patients were excluded if they required RRT, had a CK > 5000 U/I for less than 48 hours, and the treatment protocol stopped before 48hoursoftreatmenthadoccurredattheinstructionofthe treating clinician. 2.5. Protocol Application. Rhabdomyolysis protocol using manual fluid management was initiated and implemented by the clinical team without any external intervention and discontinued when the CK fell below 5000 U/l. The RenalGuard protocol required the investigators to help set up and use the RenalGuard device for the bedside nurse who then followed the protocol independently. The use of the RenalGuard was discontinued by one of the following scenarios: CK fell below 5000 U/l, at the treating clinician s discretion or after 72 h of therapy. If required, the rhabdomyolysis protocol using manual fluid management was continued thereafter. 2.6. Observation Period. Wecollectedobservationsonall patients for the first 48 hours after the first CK measurement of >5000 U/l. 2.7. Data Collection. All data was collected from the bedside charts, medical notes, and electronic records, retrospectively for the standard group and prospectively for the RenalGuard group. Baseline data included demographic information, diagnosis, and serum Creatinine value on admission to the critical care unit. At 12 h intervals following the diagnosis of rhabdomyolysis, total fluid input, output, and balance were recorded along with hourly urine output, electrolyte, and metabolic indicators from blood gas analysis. In both groups, hours off the ward (e.g., in radiology) were not counted to allow correct calculation of the primary outcome measure as theprotocolwaspausedduringthesetimes.wealsocollected the dose of intravenous electrolyte substitution, loop diuretic, and sodium bicarbonate 1.26%. In addition we recorded >1L deviations from the set fluid balance, new onset pulmonary oedema, and premature protocol cessation. 2.8. Data Analysis. The number of hours where the target urine output was >2 ml/kg was calculated for every 12- hour period. Average urine output (absolute and per kg) was calculated for every 24-hour period, fluid balance as wellasdeviationfromasettargetbalanceforthewhole observation period (48 hours). Data is presented as median (interquartile range) for continuous variables and absolute or relative frequencies as percentages for categorical variables. Serial measures were analysed comparing the area under the

International Nephrology 3 Intensive care patients 01.01.2014 31.12.2014 screened Intensive care patients 01.01.2015 31.04.2015 screened 162 patients with at least one measurement of CK > 5000 U/l 34 patients on standard protocol meeting inclusion criteria 28 patients included into analysis (Standard) 128 patients excluded: (i) 11 for CRRT (ii) 117 for CK > 5000 U/l for less than 48 hours 6 patients excluded: (i) 4 for insufficient data (ii) 2 for diabetes insipidus 10 patients enrolled on modified protocol 8 patients included into analysis (RenalGuard ) 2 patients excluded for CK > 5000 U/l for less than 48 hours Figure 1: Recruitment flow chart. Table 1: Baseline Characteristics (median, interquartile range) and number (percentage); ICU, Intensive Care Unit, IQR, interquartile range; CK, Creatine Phosphokinase; U/l, international units per Litre. Manual RenalGuard Number (n) 28 8 Age (median, IQR) (years) 31 (21.5 43) 44 (24.5 63) Gender (n,%) Female 6 (21.4) 1 (12.5) Male 22 (78.6) 7 (87.5) BMI(median,IQR)(kg/m 2 ) 24.9 (22.2 26.9) 25 (23.5 29.5) Creatinine at ICU admission (median, IQR) (mmol/l) 102 (75 133) 99 (92 112) Peak CK (median, IQR) (U/l) 14 431 (9372 21578) 13 965 (10606 33225) Primary cause of rhabdomyolysis (n,%) Seizure 1 (3.6) 1 (12.5) Trauma 21 (75.0) 5 (62.5) Muscle/limb ischaemia 4 (14.3) 2 (25.0) Postoperative 2 (7.1) 0 (0.0) curve using the trapezoid method as described by Matthews et al. [15]. Differences in between groups were compared using Mann Whitney U test and Pearson s chi-square (χ 2 ) test with continuous and categorical date, respectively. All statistical analysis was carried out using IBM SPSS Statistics 22 (IBM Corp, USA) and Microsoft Excel 2011 (Microsoft Corp, USA). 3. Results 3.1. Baseline Characteristics. We compared 8 patients using automated fluid management with RenalGuard to 28 patients who received manual rhabdomyolysis treatment (Figure 1). Baseline characteristics were comparable (Table 1). 3.2. Hours within Urine Output Target. The urine output target of 2 ml/kg EBW/hour was reached in the first 48 hours in 56.4% hours (176 of 312) in the RenalGuard group and 40.9% (534 of 1305) in the Standard group (p < 0.01). The RenalGuard group produced on average more hours of higher urine output more quickly that the standard group (p = 0.0003) (Figure 2). 3.3. Urine Output. Urine output in the first 24 hours was significantly higher in the RenalGuard group in comparison to the standard group (Table 2). There was no significant difference in the second 24 hours of the observation period. 3.4. Fluid Balance, Electrolyte Replacement, Loop Diuretic, and Sodium Bicarbonate Administration. Fluid balance at 48 hours was comparable in both groups as was deviation from clinician set daily fluid balance. Electrolyte replacement, dose ofloopdiuretics,andnumberofsodiumbicarbonateadministrationsduringtheprotocolperiodwerealsocomparable (Table 3). Creatinine and blood urea nitrogen (BUN) trends can be found in Table 4. There were no significant differences in acid-base status, electrolytes, or Creatinine Phosphokinase levels at 48 hours between groups (data not shown).

4 International Nephrology Total hours 12 6 0 12 24 36 48 Number of hours since starting protocol RenalGuard Standard Figure 2: The number of hours of urine output >2 ml/kg in each 12 hours of treatment ( p < 0.01). Table 2: Comparison of urine output between groups (median, interquartile range). Manual RenalGuard p value Absolute urine output (ml) First 24 hours 3006 (2263 4188) 4054 (3682 7363) 0.01 Second 24 hours 4228 (3246 7655) 4311 (3173 11263) 0.58 Observation period (48 hours) 7228 (6044 9454) 7834 (7103 20259) 0.22 Urine output (ml/kg/h) First 24 hours 1.6 (1.2 2.2) 2.6 (1.7 4.4) 0.03 Second 24 hours 2.4 (1.9 2.8) 2.3 (1.6 6.7) 0.88 Observation period (48 hours) 1.9 (1.7 2.6) 2.3 (1.7 6.0) 0.41 3.5. Protocol Cessation. The RenalGuard protocol was stopped prematurely in two cases, one for haemodynamic instability and one for the initiation of renal replacement therapy, and both are included in the analysis. A third patient, whoisalsoincludedintheanalysis,hadtherenalguard protocol discontinued at 48 hours of treatment by the treating clinician due to concerns over excessive urine output (30 865 ml over 48 hours) even though the fluid balance had not deviated from the set target. In the remaining 5 patients the RenalGuard was discontinued in line with our rhabdomyolysis protocol for CK lower 5000 U/l after at least 48 hours of treatment in 4. A further case switched to the standard protocol after 72 hours. One patient had a brief interruption of the protocol to change a blocked urinary catheter but was still included in the final analysis. There were no episodes of hypotension requiring the institution of new vasopressors nor were there any episodes of pulmonary oedema requiring invasive or noninvasive ventilation. 4. Discussion In critically ill patients with rhabdomyolysis, incorporating automatic fluid management using the RenalGuard device increased the number of hours with urine output >2 ml/kg/h in the first 48 hours of treatment. This was primarily due to a reduction in time taken to achieve target urine output compared to a standard protocol in the first 24 hours (Figure 2). These findings are supported by the observation that absolute urine output and urine output per kg per hour were only significantly higher in the RenalGuard group in the first 24 hours of therapy but not thereafter. However, overall, an average target urine output of 2 ml/kg per hour was reached in the RenalGuard group for the whole 48 hours but not in the control group. We hypothesise that automatic urine output replacement might be superior by eliminating the need for error-prone manual calculations and delayed infusion pump adjustments, by avoiding transient intravascular hypovolaemia. Fluid balances at 48 hours as well as Creatinine trends were similar in both groups. Electrolyte replacement and the administration of loop diuretics and sodium bicarbonate did not significantly differ between the groups demonstrating safety and the efficacy of an automated fluid management approach. 4.1. Strengths and Limitations. This single centre service evaluation is with only a small number of patients aimed at demonstrating that we could use the RenalGuard to implement our current Rhabdomyolysis treatment protocol safely and effectively; these goals were achieved and we were able to easily employ this device to provide comparable management to our current standard of care. To our knowledge, this is the first application of the RenalGuard in critically ill patients with significant rhabdomyolysis. As this was not a trial, small sample size, lack of prospective randomisation, and the use of retrospectively collected control data mean that any findings are susceptible to bias and random effects; therefore, the resultscanonlybetakenashypothesisgeneratingonly.in particular the mandatory presence and surveillance by an investigator of patients using RenalGuard during the initial stages of treatment may have enforced better compliance with treatment protocols. Finally, the study was too small to analyse any effect of the different protocols on kidney function and development of AKI, which is the overall intent of fluid administration in Rhabdomyolysis. 5. Conclusions and Future Research We have demonstrated that the use of a protocol incorporating RenalGuard is effective at rapidly increasing urine output without the need for additional electrolyte replacement and diuretic administration and can achieve results at least comparable to manual fluid management in these patients. A randomised trial would be required to assess the effect of diuresis-matched hydration on prevention of acute kidney injury in severe rhabdomyolysis to demonstrate a therapeutic benefit of automated fluid management to these patients our preliminary data would support further study of the

International Nephrology 5 Table 3: Fluid balance, electrolyte replacement, and furosemide and sodium bicarbonate administration (median, interquartile range). Deviation from fluid balance is a delta from set target so positive and negative changes do not cancel each other out. Manual RenalGuard p value Actual fluid balance at 48 hours (ml) 2024 (178 4096) 2215 (1278 5170) 0.39 Deviation (above orbelow) fromsettarget balance (ml) 1720 ( 201 2595) 1253 (528 3545) 0.87 Magnesium (g) 0 (0 10) 5 (0 12.5) 0.79 Potassium (mmol) 40 (0 160) 0 (0 40) 0.26 Phosphate (mmol) 0 (0 40) 20 (0 50) 0.69 Sodium bicarbonate 1.26% (n, %) 13 (46.4) 4 (50.0) 0.93 Furosemide (mg) 98 (0 110) 60 (30 102) 0.67 Table 4: Creatinine and blood urea nitrogen (BUN) trends in mmol/l, respectively, median (interquartile range). Patient number BUN (mmol/l) Creatinine (mmol/l) First Maximal Last First Maximal Last 1 13 24 6 92 232 55 2 6.3 5.3 4.9 121 163 25 3 3.5 9.8 5 149 149 95 4 2.2 5.6 5.6 102 102 49 5 5.7 4.8 4.8 107 107 69 6 4.8 11.2 7.2 77 116 88 7 8.4 16.1 15.8 88 388 188 8 5.4 5.4 3.7 96 96 82 RenalGuard 6 (5 8) 8 (5 12) 5 (5-6) 99 (92 112) 115 (103 160) 66 (56 87) Manual 102 (75 133) 113 (86 156) 57 (48 67) RenalGuard device in this context as well as in other groups of critically ill patients who might benefit from precise fluid management. Competing Interests The authors have no competing interests in regard to this paper. Acknowledgments John R. Prowle has received consulting and speaker fees for Baxter Ltd (Europe) and Nikisso Ltd (Japan). Christopher J. Kirwan has received Speaker fees for Baxter Ltd (Europe). References [1] X. Bosch, E. Poch, and J. M. Grau, Rhabdomyolysis and acute kidney injury, The New England Medicine, vol. 361, no. 1, pp. 62 72, 2009. [2] A. R. de Meijer, B. G. Fikkers, M. H. de Keijzer, B. G. M. Van Engelen, and J. P. H. Drenth, Serum creatine kinase as predictor of clinical course in rhabdomyolysis: a 5-year intensive care survey, IntensiveCareMedicine, vol. 29, no. 7, pp. 1121 1125, 2003. [3] S. Kasaoka, M. Todani, T. Kaneko et al., Peak value of blood myoglobin predicts acute renal failure induced by rhabdomyolysis, Critical Care, vol. 25, no. 4, pp. 601 604, 2010. [4] P. Brancaccio, G. Lippi, and N. Maffulli, Biochemical markersofmusculardamage, Clinical Chemistry and Laboratory Medicine,vol.48,no.6,pp.757 767,2010. [5] C.V.R.Brown,P.Rhee,L.Chan,K.Evans,D.Demetriades,and G. C. Velmahos, Preventing renal failure in patients with rhabdomyolysis: do bicarbonate and mannitol make a difference? The Trauma Injury, Infection and Critical Care,vol. 56,no.6,pp.1191 1196,2004. [6] L. Brochard, F. Abroug, M. Brenner et al., An official ATS/ERS/ESICM/SCCM/SRLF statement: prevention and management of acute renal failure in the ICU patient: an international consensus conference in intensive care medicine, American Respiratory and Critical Care Medicine, vol. 181, no. 10, pp. 1128 1155, 2010. [7] A.I.Gunal,H.Celiker,A.Dogukanetal., Earlyandvigorous fluid resuscitation prevents acute renal failure in the crush victims of catastrophic earthquakes, the American Society of Nephrology,vol.15,no.7,pp.1862 1867,2004. [8] N. Iraj, S. Saeed, H. Mostafa et al., Prophylactic fluid therapy in crushed victims of Bam earthquake, The American Journal of Emergency Medicine,vol.29,no.7,pp.738 742,2011. [9] L. Zhang, Y. Kang, P. Fu et al., Myoglobin clearance by continuous venous-venous haemofiltration in rhabdomyolysis with acute kidney injury: a case series, Injury, vol. 43, no. 5, pp. 619 623, 2012. [10] T. Naka, D. Jones, I. Baldwin et al., Myoglobin clearance by super high-flux hemofiltration in a case of severe rhabdomyolysis: a case report, Critical Care, vol. 9, no. 2, pp. R90 R95, 2005.

6 International Nephrology [11] N. Chakkalakal, R. Taylor, G. Marshall et al., Rhabdomyolysis and acute kidney injury: incidence, treatments, and outcomes in the ICU, IntensiveCareMedicine,vol.39,2014. [12] C. Briguori, Renalguard system: a dedicated device to prevent contrast-induced acute kidney injury, International Cardiology,vol.168,no.2,pp.643 644,2013. [13] C. Briguori, G. Visconti, A. Focaccio et al., Renal insufficiency after contrast media administration trial II (REMEDIAL II): RenalGuard system in high-risk patients for contrast-induced acute kidney injury, Circulation, vol. 124, pp. 1260 1269, 2011. [14]J.-F.Dorval,S.R.Dixon,R.B.Zelman,C.J.Davidson,R. Rudko,andF.S.Resnic, FeasibilitystudyoftheRenalGuard balanced hydration system: a novel strategy for the prevention of contrast-induced nephropathy in high risk patients, International Cardiology,vol.166,no.2,pp.482 486,2013. [15] J.N.S.Matthews,D.G.Altman,M.J.Campbell,andP.Royston, Analysisofserialmeasurementsinmedicalresearch, British Medical Journal,vol.300,no.6719,pp.230 235,1990.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity