Correspondence should be addressed to L. E. Walther;

Similar documents
Video Head Impulse Testing

VEMP: Vestibular Evoked Myogenic Potential

Test-retest Reliability of Ocular Vestibular Myogenic Potential in Healthy Pilots G Meng 1, C Shan 1, L Han 1, SJ Xie 2 ABSTRACT

Comparison of vestibulo-ocular reflex instantaneous gain and velocity regression in differentiating the peripheral vestibular disorders

Spontaneous Plugging of the Horizontal Semicircular Canal With Reversible Canal Dysfunction and Recovery of Vestibular Evoked Myogenic Potentials

Ocular Vestibular Evoked Myogenic Potentials to Air Conducted Tone Bursts in Patients with Unilateral Definite Ménière s Disease

Current Perspectives in Balance Assessment. Topics for Today. How are we doing? 3/5/2010. Scott K. Griffiths, Ph.D. March 26, 2010

Application of the Video Head Impulse Test to Detect Vertical Semicircular Canal Dysfunction

A NORMATIVE STUDY ON AIR AND BONE CONDUCTION OCULAR VESTIBULAR EVOKED MYOGENIC POTENTIALS. Ho Sen Kee

Supplementary appendix

VESTIBULAR LABYRINTHS comprising of 3 semicircular canals, saccule, utricle VESTIBULAR NERVE with the sup. & inf. vestibular nerves VESTIBULAR

latest development in advanced testing the vestibular function

DOWNLOAD OR READ : VESTIBULAR EVOKED MYOGENIC POTENTIAL ITS BASICS AND CLINICAL APPLICATIONS PDF EBOOK EPUB MOBI

Application of the video head impulse test to detect vertical semicircular canal dysfunction

Hot Topics in Vestibular Research. Neil Todd, Manchester, UK

Case Report Intra-Attack Vestibuloocular Reflex Changes in Ménière s Disease

Air Conduction Ocular Vestibular-Evoked Myogenic Potentials (AC ovemps): Diagnostic Correlates in Peripheral Vestibular Disorders

New perspectives on vestibular evoked myogenic potentials

New approaches to VEMP measurement

G. Doobe, 1 A. Ernst, 1 R. Ramalingam, 2 P. Mittmann, 1 and I. Todt Introduction. 2. Materials and Methods

Evaluation of the otolith function using c/ovemps in patients with Ménière s disease

Three-Dimensional Eye-Movement Responses to Surface Galvanic Vestibular Stimulation in Normal Subjects and in Patients

Case Report Relapsing Ipsilateral Vestibular Neuritis

Clinical Policy Title: Video head impulse testing

Sasan Dabiri, MD, Assistant Professor

Window to an Unusual Vestibular Disorder By Mark Parker

Evaluation & Management of Vestibular Disorders

Medical Coverage Policy Vestibular Function Tests

15 Marzo 2014 Aspetti radiologici dei disordini vestibolari: approccio multidisciplinare

Monitoring of Caloric Response and Outcome in Patients With Benign Paroxysmal Positional Vertigo

Update on the Clinical Utility of Vestibular Evoked Myogenic Potentials

Vestibular-Evoked Myogenic Potentials as a Test of Otolith Function

Vestibulotoxicity: strategies for clinical diagnosis and rehabilitation

Research Article Hypersensitivity of Vestibular System to Sound and Pseudoconductive Hearing Loss in Deaf Patients

INCIDENCE OF SUSPECTED OTOLITHIC ABNORMALITIES IN MILD TRAUMATIC BRAIN INJURED VETERANS OBSERVATIONS FROM A LARGE VA POLYTRAUMA NETWORK SITE

Diagnostic criteria for vestibular neuritis

Acknowledgements. Changes in Saccular Function after Cochlear Implantation. Background. CI and Vestibular Injury. Vestibular System Injury after CI

Decline in Semicircular Canal and Otolith Function With Age

Effects of varying linear acceleration on the vestibularevoked myogenic potential (VEMP)

ORIGINAL ARTICLE. Short Tone Burst Evoked Myogenic Potentials

Intratympanic Therapies for Menière s Disease

Normative vestibulo-ocular reflex data in 6-12 year-old children using video head-impulse test

Follow this and additional works at: Part of the Medicine and Health Sciences Commons

Balance Function Assessment and Management

On-Road Assessment of Driving Performance in Bilateral Vestibular-Deficient Patients

Dynamic visual acuity following high-frequency head vibration

Clinical Significance of Vestibular Evoked Myogenic Potentials in Benign Paroxysmal Positional Vertigo

Clinical Uses of Cervical Vestibular-Evoked Myogenic Potential Testing in Pediatric Patients

/WNL

ORIGINAL ARTICLE. Motorized Head Impulse Rotator for Horizontal Vestibulo-ocular Reflex

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Corporate Medical Policy

In a Spin: Welcome to the Modern Era of Vestibular Science

Potential Application of Ocular and Cervical Vestibular-Evoked Myogenic Potentials in Meniere s Disease: A Review

Non-commercial use only

TIME SPEAKER TITLE CONTACT

Sohil Vadiya, Vibhuti Parikh, Saumya Shah, Parita Pandya, and Anuj Kansara

Asymmetric vestibular evoked myogenic potentials in unilateral Menière patients

Dizziness Handicap After Cartilage Cap Occlusion for Superior Semicircular Canal Dehiscence

Paediatric Balance Assessment

Protocol. Vestibular Function Testing. Medical Benefit Effective Date: 10/01/17 Next Review Date: 05/18 Preauthorization No Review Dates: 05/17

Single trial detection of human vestibular evoked myogenic potentials is determined by signal-to-noise ratio

JARO. Three-Dimensional Vibration-Induced Vestibulo-ocular Reflex Identifies Vertical Semicircular Canal Dehiscence ABSTRACT INTRODUCTION

Control of eye movement

THE FUNCTIONAL HEAD IMPULSE TEST (FHIT)

functiestoornissen van het evenwichtssysteem: een wereld van onbegrip

The High-Frequency/Acceleration Head Heave Test in Detecting Otolith Diseases

Effect of Intratympanic Dexamethasone on Controlling Tinnitus and Hearing loss in Meniere s Disease

Saccades. Assess volitional horizontal saccades with special attention to. Dysfunction indicative of central involvement (pons or cerebellum)

Hearing Function After Intratympanic Application of Gadolinium- Based Contrast Agent: A Long-term Evaluation

About the pathophysiology of acute unilateral vestibular deficit vestibular neuritis (VN) or peripheral vestibulopathy (PVP)?

Vestibular Symptoms in Concussion: Medical/Surgical Perspective. Jacob R. Brodsky, MD Boston Children s Hospital

Vestibular Function in Cochlear Implantation: Correlating Objectiveness and Subjectiveness

Cold Thermal Irrigation Decreases the Ipsilateral Gain of the Vestibulo-Ocular Reflex

The Dizziness Handicap Inventory and Its Relationship with Vestibular Diseases

Disclosures. Vestibular Loss in the Pediatric Population: Does vestibular loss. affect more than balance? Learner Objective. Outline 12/15/2015

Rapid cvemp and ovemp Responses Elicited by a Novel Head Striker and Recording Device

VOR Gain by Head Impulse Video-Oculography Differentiates Acute Vestibular Neuritis from Stroke

Clinical diagnosis of bilateral vestibular loss: three simple bedside tests

Review Article Audiovestibular Function Deficits in Vestibular Schwannoma

Inner Ear Deficits in Irradiated Nasopharyngeal Carcinoma Survivors

CITY & HACKNEY PATHFINDER CLINICAL COMMISSIONING GROUP. Vertigo. (1) Vertigo. (4) Provisional Diagnosis. (5) Investigations. lasting days or weeks

Evaluation of the Adult Dizzy Patient Elizabeth Kelly, MD Boys Town National Research Hospital ENT Institute Neurotology/Otology September 27, 2018

On Signal Analysis of Three-Dimensional Nystagmus

VESTIBULAR PHYSIOTHERAPY the pivot in the contemporary ethical and rational management of balance disorders

Research Article Predictive Factors for Medical Consultation for Sore Throat in Adults with Recurrent Pharyngotonsillitis

Vestibular Evoked Myogenic Potentials : Preliminary Report

THE NEW ZEALAND MEDICAL JOURNAL

Superior Semicircular Canal Dehiscence Mimicking Otosclerotic Hearing Loss

Best practices for ocular and cervical VEMP tests

Vestibular testing: what patients can expect

¹ Faculty of Medicine and Health Sciences, Department of Speech, Language and Hearing Sciences, Ghent University, Ghent, Belgium

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Normal Caloric Responses during Acute Phase of Vestibular Neuritis

Application of vestibular autorotation test in patients with vestibular migraine

Neurovestibular Compensation following Ototoxic Lesion and Labyrinthectomy

Head Impulse Test REVIEW ARTICLE ABSTRACT

Air-conducted and skull-tap cervical vestibular evoked myogenic potentials in determining nerve division involvement in vestibular schwannoma patients

Ocular Tilt Reaction: Vestibular Disorder in Roll Plane

ORIGINAL ARTICLE. Study Using Click and Galvanic Vestibular Evoked Myogenic Potentials

Transcription:

Case Reports in Otolaryngology Volume 2013, Article ID 168391, 5 pages http://dx.doi.org/10.1155/2013/168391 Case Report Dynamic Change of VOR and Otolith Function in Intratympanic Gentamicin Treatment for Ménière s Disease: Case Report and Review of the Literature L. E. Walther, 1 R. Huelse, 1 K. Blättner, 1 M. B. Bloching, 2 and A. Blödow 2 1 Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Mannheim, Ruprecht-Karls-University Heidelberg, 68135 Mannheim, Germany 2 Department of Otorhinolaryngology, Head and Neck Surgery, Helios Clinic Berlin-Buch, 13125 Berlin, Germany Correspondence should be addressed to L. E. Walther; leif.walther@hno-praxis-sulzbach.de Received 14 December 2012; Accepted 28 January 2013 Academic Editors: M. Berlucchi, J. I. De Diego, M. T. Kalcioglu, and K. Morshed Copyright 2013 L. E. Walther et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Intratympanic gentamicin treatment (IGT) is an evidence-based therapeutic option for recurrent vertigo attacks in Ménière s disease (MD). Today, in MD it is possible to monitor changes of vestibular receptor function, induced by IGT, with objective test methods such as the video head impulse test (vhit) and cervical and ocular vestibular evoked myogenic potentials (cvemp, ovemp) in a dynamic, time-and frequency-dependent manner. We report on a 65-year-old female patient with recurrent vertigo attacks in a right-sided MD, where receptor function was followed up before and up to 4 weeks after IGT (time dynamic). Quantitative changes of vestibular function (frequency dynamic) were detected with bithermal calorics and vhit, with air-conducted sound (ACS) cvemp and bone-conducted vibration (BCV) ovemp at 500 Hz. The horizontal vestibuloocular reflex (hvor) gain in vhit decreased successively until the 4th week with the appearance of catch-up covert and catch-up overt refixation saccades, and side asymmetry increased in caloric testing. Saccular function was extinguished within 4 weeks, whereas utricular function was diminished after 4 weeks. Monitoring vestibular receptor function with objective test methods provides a quantitative insight into the dynamic activity of vestibular function and is therefore applicable in order to adjust IGT regimen at different therapeutic stages. 1. Introduction Gentamicin plays an important role in otorhinolaryngology due to its ototoxic side effects. Intravenous administration maycausesevereuni-orbilateralvestibularlosswithimbalance and oscillopsia. If administered intratympanically, gentamicin vestibulotoxicity can be used to eliminate recurrent vertigoattacks incases ofintractableménière s disease (MD) [1 3]. For many patients, even at a higher age, intratympanic gentamicin treatment (IGT) is an evidence-based therapeutic option to restore quality of life [1, 2]. In IGT either a partial deficit or a complete loss of vestibular receptor function may occur. Today, canal and otolith functions are capable of being measured objectively and quantitatively by means of the video head impulse test (vhit), cervical and ocular vestibular evoked myogenic potentials (ovemp, cvemp) [4 7]. These new tests provide the opportunity to monitor IGT-induced changes of vestibular function. Additional methods such as subjective visual vertical (SVV) and caloric irrigation may be helpful to confirm the functional status. When these tests are performed in a follow-up setting, a dynamic insight in receptor function with regard to time periods (dynamic of time) and frequency working range of receptor function (dynamic of frequency) can be yielded. Inthisarticlewewanttohighlightthediagnosticresults in a patient with recurrent vertigo attacks in MD, who was successfully treated with IGT. Changes of the horizontal vestibuloocular reflex (hvor), sacculocollic and utriculoocular reflexes were controlled dynamically by means of vhit, bithermal irrigation, cvemp, ovemp, and SVV in a frequency- and time-dependent manner.

2 Case Reports in Otolaryngology (a) (b) (c) (d) Figure 1: Monitoring of dynamic changes of hvor with the vhit in intratympanic gentamicin treatment. (a) Before therapy, (b) (e) 1 4 weeks after therapy. Grey: hvor: eye acceleration, black: head acceleration. Time-dependent reduction of hvor gain and appearance of overt and covert refixation saccades. (e) 2. Case report A 65-year-old female was diagnosed with MD on the right side 6 years ago. Diagnosis of definite MD was made according to the criteria of AAO-HNS since the patient complaint of tinnitus and rotational vertigo (up to several hours) and a fluctuating hearing loss were documented. For the last 8 months she suffered from several severe disabling vertigo attacks, up to at least twice per week. Medication with cinnarizine and Diamox as well as betahistine in a highdosage regimen (3 48 mg) did not reduce the symptoms effectively. The quality of life assessed with dizziness handicap inventory (DHI) deteriorated within the last few months. IGT was recommended, and therefore 12 mg of gentamicin was instilled into the tympanic cavity after surface anaesthesia (4% Lidocaine) of the tympanic membrane. Hearing (pure tone audiogram) and vestibular tests (bithermal caloric irrigation, vhit, cvemp, ovemp, and SVV) were performed at the same time. Before gentamicin treatment,thepuretoneaudiogramshowedasensorineural hearing loss on the right side (mean hearing loss at 0.5, 1, 2, and 3 khz = 63.75 db). It changed until the 4th week after therapy (mean hearing loss = 75 db). HVOR was measured in vestibular low-frequency range using bithermal caloric irrigation with water (44 and 20 Celsius) in supine position. Before treatment, the side difference was 46% (normal <25%) but deteriorated to 75% within 4 weeks after treatment. Highfrequency changes of hvor were monitored using the vhit. Before IGT, the vhit revealed a gain of 0.95 (normal hvor gain >0.68) and few physiological saccades. One week after IGT, the hvor gain was reduced but was normal at 0.86 and few compensational refixation saccades (catch-up covert) occurred. At week 2, the hvor gain was deficient at 0.36 and decreasedfurtherto0.25and0.21atweeks3and4withaclear appearance of catch-up overt saccades (Figure1). Otolith function was measured with using air-conducted sound stimulation (ACS) cvemp (500 Hz), with boneconducted vibration (BCV) ovemp (500 Hz) using a handheld minishaker 4810 (Bruel&Kjaer, Denmark) (100 db nhl) and SVV (5 repetitions). The ACS cvemp, reflecting saccular function, showed normal latencies but a slightly abnormal amplitude asymmetry ratio (AR) of 40% (normal <33%). ACS cvemp-ar was further reduced from week 1 until week 4 after therapy (Figures 2 and 3).BCVoVEMPlatenciesand AR were normal (<30%) before IGT administration, but AR was successively reduced from week 1 to 4 (Figure 4). SVV was normal (<2.5 degrees) before treatment and shifted to abnormal ranges to the affected side after weeks 2 and 3 (4.2 degrees and 3.8 degrees) but returned to normal values in week 4. The patient vestibular rehabilitation program started immediately at week 1, when IGT-induced vertigo occurred andchangeofhvorandotolithfunctionwereprovenin order to provide early central vestibular compensation. The compensational process went well; 1.5 years after IGT the patient still lacks any rotational vertigo attack. 3. Discussion Disabling vertigo in MD can be treated with intratympanic gentamicin application, which is an evidence-based therapeutic option to reduce recurrent vertigo attacks. Reported success rates of vertigo control using several IGT protocols are >85% [1, 2]. Intratympanically applied, gentamicin is distributed by the round window to the perilymph in the vestibular organ and causes a damage of sensory epithelia, particularly type I hair cells, and nonsensory epithelia in order to reduce vestibular receptor function and to avoid endolymphatic hydrops [2, 3].

Case Reports in Otolaryngology 3 ACS cvemps 10 0 10 20 30 40 50 60 70 80 90 100 110 120 0.125 0.25 0.5 0.75 1 1.5 2 3 4 6 8 (khz) N23 (A) (B) (C) (db HL) (D) 50 μv P13 (E) 10 ms Figure 2: ACS cvemp at 500 Hz (100 db nhl) before (A) and after intratympanic gentamicin treatment from week 1 (B) to week 2 (C), week 3 (D), and week 4 (E). Figure 4: Pure tone audiogram before (open triangle) and 4 weeks after intratympanic gentamicin treatment (open circle) in rightsided Ménière s disease, unaffected left side (asterix). N10 P15 BCV ovemps (A) (B) (C) (D) (E) 10 ms 10 μv Figure 3: BCV ovemp at 500 Hz (100 db nhl) before (A) and after intratympanic gentamicin treatment from week 1 (B) to week 2 (C), week 3 (D), and week 4 (E). Impairment of semicircular canal (SCC) and otolith function (saccule and utricle) can now be recorded objectively and quantitatively by means of the vhit, cvemp, and ovemp [4 7]. By means of recording eye/head velocity, the vhit captures changes of high-frequency VOR and reflects therefore the VOR in its physiological way of ordinary head movements in the daily environment. Alterations of VOR are represented by a decrease in VOR gain and the occurrence of compensational refixation saccades (catch-up overt and/or catch-up covert saccades). Changes of hvor can already be measured reliably with vhit [6, 7]. Otolith function can be assessed by vestibular evoked myogenic potentials. Saccular function can be measured by ACS cvemp, but BCV ovemp reflects predominantly utricularfunction [8 10]. Changes in threshold levels, amplitude, or amplitude asymmetry as well as latency and latency differences are indicators of a disturbed saccular or utricular function. Since vhit, cvemp, and ovemp represent receptor-specific, objective, and quantitative methods, they can be used to detect degraded vestibular receptor function as induced by the vestibulotoxic effect in IGT. Because in MD receptor function can already have deteriorated due to the disease itself, it is of clinical interest whether or not this degraded function can be further demolished by IGT to gain vertigo control. As demonstrated in our case, before IGT, vestibular receptor function was either normal (vhit, BCV ovemp) or already reduced (ACS cvemp). Data concerning evaluation of natural course in MD with vhit is rare. A recent study revealed that the hvor gain was normal in up to 45% of MD cases, whereas up to 55% exhibited a reduced hvor gain (0.60 ± 0.20)withcompensational refixation saccades. Distribution of refixation saccades was found to be 17% for covert, 33% for overt, and 50% for combined overt and covert saccades [11]. Furthermore, it has recentlybeenshownthatvhitisabletoseparateacutemd attacks due to a gain enhancement from other peripheral vestibulopathies [12]. Untilnow,thereisonesinglepatientnoteconcerning examination of hvor using vhit in IGT [13]. With search coil technique, Weber et al. have shown that high-frequency hvor changes can occur after intravenous gentamicin [14]. Also with search coils, Carey et al. have demonstrated that IGT leads to a measurable and graded impairment of all SCC, but search coil technique is not suitable for daily clinical practice [15]. As demonstrated in our case, hvor changes before and after IGT can reliably be recorded with the vhit. Compared to vhit, a great number of studies exist on VEMP. The ACS cvemp and ovemp at 500 Hz is the standard diagnostic tool in MD [16 20]. At early stages of MD, saccular function may be already partially impaired,

4 Case Reports in Otolaryngology andaspresentedinourcase,amildimpairmentofotolith function can be identified using the cvemps at 500 Hz [17]. Furthermore, VEMP may enable separation of MD from other peripheral vestibulopathies [16, 19, 20]. In IGT at higher dosages it was confirmed by cvemp that saccular function is impaired after therapy [21]. Helling et al. found in a low-dosage regimen that saccular function is impaired, but utricular function, recorded by SVV on eccentric rotation, appears to be maintained in up to 40% of cases [22]. Furthermore, especially the status of cvemp at the second week after IGT seems to be a significant predictor of vertigo control [23]. The effect of IGT on the ovemp has recently been evaluated in an animal study [24]. Since the vestibulotoxic effect in IGT is delayed and depends on several individual factors such as round window anatomy and middle ear mucosa thickness, several treatment protocols have been developed [1, 2, 25].ChangesofvestibularfunctioninIGT have therefore to be considered under dynamic aspects, that is, time and frequency dependent. Concerning the VOR, dynamic hvor changes may be recorded by several methods such as thermal irrigation (lowfrequency), rotational tests (low- and middle-frequency), and the clinical HIT and the vhit (high-frequency). This frequency spectrum offers an overview concerning impaired dynamic hvor working ranges in MD, it is one specific dynamic pattern of MD that the low-frequency hvor is impaired whereas high-frequency tests still show normal results [26]. As in this case, before treatment hvor showed a frequency-dynamic impairment of the hvor with a pathologic side asymmetry of 36% in bithermal calorics (lowfrequency vestibular testing lower than 0.1 Hz) but a normal vhit (high-frequency vestibular testing with head impulses of 200 /s and up to 5 Hz). This result is analogical to the investigation of Black and Peterka using rotational tests, whorecordedadeclineofvorfunctionwhichwaslarger in lower-frequency stimuli compared to those in higher frequencies [27]. In contrast, Manzari et al. recently demonstrated shortterm related dynamic changes of hvor during acute MD attacks using the vhit with an enhanced hvor gain (>1). Therefore in acute vestibular syndromes such as MD, rotational vertigo can be distinguished from an attack induced by a vestibular neuritis, where hvor gain is reduced [12, 20]. When hvor function is not impaired in early MD stages, otolith function may be already altered [22, 23]. Therefore in IGT an insight into dynamic changes of otolith function is also important. Dynamic changes of otolith function may be objectified if VEMP are recorded using different stimulation frequencies (250 4000 Hz). Several works showed in patients with definite MD alterations in tuning responses by means of cvemp and ovemp with an amplitude shift up to 1000 Hz, which produces normally the largest amplitude using a 500 Hz stimulus [28]. With regard to dynamic changes during attacks it has been shown that utricular function can be enhanced, whereas saccular function was not affected [19]. However, Kuo et al. showed that during MD attacks saccular function was impaired in 67% [29]. In the presented case the patient is free of attacks 1.5 years after treatment, although it is well known that vertigo recurrences after IGT may occur. Low recurrence rates seem to depend on a low hvor gain (0.4-0.5) after IGT [30]. Therefore, we emphasize the use of vhit as an objective method to detect high-frequency changes of hvor gain. With respect to dynamic control of otolith function it has recently been shown in single-shot, low-dose IGT regimen that cvemps were a significant predictor of posttreatment visual analog scale score, whereas a caloric test was not [23]. Since the outcome in vertigo control in different IGT protocols can hardly be predicted and several dynamic changes may occur before and after IGT, monitoring of dynamic changes of vestibular receptor function has to be recommended. 4. Conclusion New tests such as vhit, cvemp and ovemp provide an insight into vestibular receptor function. In combination with standard tests bithermal caloric irrigation and SVV, it is now possible to gain a dynamic view on the topological and functional status of vestibular receptors. Furthermore, with these complementary tests short-term and long-term dynamic changes of vestibular receptor function can be detected quantitatively and objectively. Therefore, SCC and otolith functions should be monitored in all therapeutic regimens, especially in IGT in order to gain permanent vertigo control. Conflict of Interests The authors report no conflict of interest. References [1] B. Pullens and P. P. van Benthem, Intratympanic gentamicin for Ménière s disease or syndrome, Cochrane Database of Systematic Reviews, vol. 3, Article ID CD008234, 2011. [2]S.H.Chia,A.C.Gamst,J.P.Anderson,andJ.P.Harris, Intratympanic gentamicin therapy for Ménière s disease: a meta-analysis, Otology and Neurotology, vol. 25, no. 4, pp. 544 552, 2004. [3] T. P. Hirvonen, L. B. Minor, T. E. Hullar, and J. P. Carey, Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla, Neurophysiology, vol.93,no. 2,pp.643 655,2005. [4] J. G. Colebatch and G. M. Halmagyi, Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation, Neurology, vol. 42, no. 8, pp. 1635 1636, 1992. [5]N.P.Todd,I.S.Curthoys,S.T.Awetal., Vestibularevoked ocularresponsestoair-(ac)andbone-conducted(bc)sound I: eye movements and timing in relation to vestibular evoked peri-ocularpotentials(vepp), Vestibular Research, vol. 14, pp. 123 124, 2004. [6] K. Bartl, N. Lehnen, S. Kohlbecher, and E. Schneider, Head impulse testing using video-oculography, Annals of the New York Academy of Sciences,vol.1164,pp.331 333,2009.

Case Reports in Otolaryngology 5 [7]K.P.Weber,H.G.MacDougall,G.M.Halmagyi,andI.S. Curthoys, Impulsive testing of semicircular-canal function using video-oculography, Annals of the New York Academy of Sciences,vol.1164,pp.486 491,2009. [8] L.Manzari,A.Tedesco,A.M.Burgess,andI.S.Curthoys, Ocular vestibular-evoked myogenic potentials to bone-conducted vibration in superior vestibular neuritis show utricular function, Otolaryngology Head and Neck Surgery, vol.143,no.2, pp.274 280,2010. [9] I. S. Curthoys, A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli, Clinical Neurophysiology, vol. 121, no. 2, pp. 132 144, 2010. [10] M. S. Welgampola and J. P. Carey, Waiting for the evidence: VEMP testing and the ability to differentiate utricular versus saccular function, Otolaryngology Head and Neck Surgery, vol. 143, no. 2, pp. 281 283, 2010. [11] A. Blödow, S. Pannasch, and L. E. Walther, Detection of isolated covert saccades with the video head impulse test in peripheral vestibular disorders, Auris Nasus Larynx,2012. [12] L. Manzari, A. M. Burgess, H. G. MacDougall, A. P. Bradshaw, and I. S. Curthoys, Rapid fluctuations in dynamic semicircular canal functioninearly Ménière s disease, European Archives of Otorhinolaryngology,vol.268,pp.637 639,2011. [13] H. G. MacDougall, K. P. Weber, L. A. McGarvie, G. M. Halmagyi, and I. S. Curthoys, The video head impulse test: diagnostic accuracy in peripheral vestibulopathy, Neurology, vol. 73, no. 14, pp. 1134 1141, 2009. [14] K. P. Weber, S. T. Aw, M. J. Todd, L. A. McGarvie, I. S. Curthoys, andg.m.halmagyi, Horizontalheadimpulsetestdetects gentamicin vestibulotoxicity, Neurology, vol. 72, no. 16, pp. 1417 1424, 2009. [15] J. P. Carey, T. Hirvonen, G. C. Y. Peng et al., Changes in the angular vestibulo-ocular reflex after a single dose of intratympanic gentamicin for Ménière s disease, Annals of the New York Academy of Sciences, vol. 956, pp. 581 584, 2002. [16] R.L.Taylor,A.A.Wijewardene,W.P.Gibson,D.A.Black,G. M. Halmagyi, and M. S. Welgampola, The vestibular evokedpotentialprofileofménière s disease, Clinical Neurophysiology, vol. 122, pp. 1256 1263, 2011. [17] Y. H. Young, T. W. Huang, and P. W. Cheng, Assessing the stage of Ménière s disease using vestibular evoked myogenic potentials, Archives of Otolaryngology, vol.129,no.8,pp.815 818, 2003. [18] S. M. Winters, T. Campschroer, W. Grolman, and S. F. Klis, Ocular vestibular evoked myogenic potentials in response to air-conducted sound in Ménière s disease, Otology & Neurotology,vol.32,pp.1273 1280,2011. [19] L. Manzari, A. R. Tedesco, A. M. Burgess, and I. S. Curthoys, Ocular and cervical vestibular-evoked myogenic potentials to bone conducted vibration in Ménière s disease during quiescence vs during acute attacks, Clinical Neurophysiology,vol.121, no. 7, pp. 1092 1101, 2010. [20] L. Manzari, H. G. Mac Dougall, A. M. Burgess, and I. S. Curthoys, New, fast, clinical vestibular tests identify whether a vertigo attack is due to early Ménière s disease or vestibular neuritis, Laryngoscope, 2012. [21] L. N. Ozluoglu, G. Akkuzu, N. Ozgirgin, and E. Tarhan, Reliability of the vestibular evoked myogenic potential test in assessing intratympanic gentamicin therapy in Meniere s disease, Acta Oto-Laryngologica, vol. 128, no. 4, pp. 422 426, 2008. [22] K. Helling, U. Schönfeld, and A. H. Clarke, Treatment of Ménière s disease by low-dosage intratympanic gentamicin application: effect on otolith function, Laryngoscope, vol.117, no.12,pp.2244 2250,2007. [23] S.Gode,N.Celebisoy,A.Akyuzetal., Single-shot,low-dose intratympanic gentamicin in Ménière disease: role of vestibularevoked myogenic potentials and caloric test in the prediction of outcome, American Otolaryngology, vol. 32, pp. 412 416, 2011. [24] T. H. Yang, S. H. Liu, and Y. H. Young, Evaluation of guinea pig model for ocular and cervical vestibular-evoked myogenic potentials for vestibular function test, Laryngoscope, vol. 120, no.9,pp.1910 1917,2010. [25] M. Magnusson, S. Padoan, M. Karlberg, and R. Johansson, Delayed onset of ototoxic effects of gentamicin in patients with Meniere s disease, Acta Oto-Laryngologica,no.485,pp.120 122, 1991. [26] H. J. Park, A. A. Migliaccio, C. C. Della Santina, L. B. Minor, and J. P. Carey, Search-coil head-thrust and caloric tests in Ménière s disease, Acta Oto-Laryngologica, vol. 125, pp. 852 857, 2005. [27] F. O. Black, R. J. Peterka, and S. M. Elardo, Vestibular reflex changes following aminoglycoside induced ototoxicity, Laryngoscope,vol.97,no.5,pp.582 586,1987. [28] J. S. Sandhu, R. Low, P. A. Rea, and N. C. Saunders, Altered frequency dynamics of cervical and ocular vestibular evoked myogenic potentialsinpatients withménière s disease, Otology &Neurotology,vol.33,pp.444 449,2012. [29] S. W. Kuo, T. H. Yang, and Y. H. Young, Changes in vestibular evoked myogenic potentials after Ménière s attacks, Annals of Otology, Rhinology, and Laryngology,vol.114,pp.717 721,2005. [30] K.D.Nguyen,L.B.Minor,C.C.DellaSantina,andJ.P.Carey, Vestibular function and vertigo control after intratympanic gentamicin for Ménière s disease, Audiology and Neurotology, vol. 14, no. 6, pp. 361 372, 2009.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity