Treatment of exceptionally large prostate cancer patients with low-energy intensity-modulated photons

Similar documents
Measurement of Dose to Critical Structures Surrounding the Prostate from. Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional

Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas

Original Article. Teyyiba Kanwal, Muhammad Khalid, Syed Ijaz Hussain Shah, Khawar Nadeem

OPTIMIZATION OF COLLIMATOR PARAMETERS TO REDUCE RECTAL DOSE IN INTENSITY-MODULATED PROSTATE TREATMENT PLANNING

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer

Statistical Analysis and Volumetric Dose for Organ at Risk of Prostate Cancer

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer

New Technologies for the Radiotherapy of Prostate Cancer

A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM *

Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment

CyberKnife Radiotherapy For Localized Prostate Cancer: Rationale And Technical Feasibility

3-Dimensional conformal radiotherapy versus intensity modulated radiotherapy for localized prostate cancer: Dosimetric and radiobiologic analysis

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain

Development of a treatment planning protocol for prostate treatments using intensity modulated radiotherapy

The sigmoid colon and bladder shielding in whole pelvic irradiation at prostate cancer (forward planned IMRT from Institute of Oncology Ljubljana)

IMAT: intensity-modulated arc therapy

Lung Spine Phantom. Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014

A STUDY OF PLANNING DOSE CONSTRAINTS FOR TREATMENT OF NASOPHARYNGEAL CARCINOMA USING A COMMERCIAL INVERSE TREATMENT PLANNING SYSTEM

Intensity Modulated Radiation Therapy (IMRT)

Department of Radiotherapy & Nuclear Medicine, National Cancer Institute, Cairo University, Cairo, Egypt.

Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO

A quantitative study of IMRT delivery effects in commercial planning systems for the case of oesophagus and prostate tumours

Treatment Planning for Lung. Kristi Hendrickson, PhD, DABR University of Washington Dept. of Radiation Oncology

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI)

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005

A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia

Intensity Modulated Radiation Therapy (IMRT)

Quality assurance of volumetric modulated arc therapy using Elekta Synergy

BCCR ORIGINAL ARTICLE

Outline. Chapter 12 Treatment Planning Combination of Beams. Opposing pairs of beams. Combination of beams. Opposing pairs of beams

Defining Target Volumes and Organs at Risk: a common language

A Dosimetric Comparison of Whole-Lung Treatment Techniques. in the Pediatric Population

DOSE AND VOLUME REDUCTION FOR NORMAL LUNG USING INTENSITY-MODULATED RADIOTHERAPY FOR ADVANCED-STAGE NON SMALL-CELL LUNG CANCER

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015

Prostate volumetric-modulated arc therapy: dosimetry and radiobiological model variation between the single-arc and double-arc technique

Comparison of multileaf collimator and customized blocks for 3-D conformal radiotherapy of prostate cancer with six-field technique

VMAT plans for treatment prostate cancer: Dosimetric verifications and comparison with 3D-CRT and IMRT

IMRT Planning Basics AAMD Student Webinar

Measure the Errors of Treatment Set-Ups of Prostate Cancer Patient Using Electronic Portal Imaging Device (EPID)

IROC Prostate Phantom. Guidelines for Planning and Treating the IROC IMRT Prostate Phantom. Revised March 2014

The role of Radiation Oncologist: Hi-tech treatments for liver metastases

Evaluation of the Dynamic Arc-Therapy in Comparison to Conformal Radiation Therapy in Radiotherapy Patients

Dosimetric Comparison of Intensity-Modulated Radiotherapy versus 3D Conformal Radiotherapy in Patients with Head and Neck Cancer

Comparison of high and low energy treatment plans by evaluating the dose on the surrounding normal structures in conventional radiotherapy

Helical Tomotherapy Experience. TomoTherapy Whole Brain Head & Neck Prostate Lung Summary. HI-ART TomoTherapy System. HI-ART TomoTherapy System

Intensity Modulated Radiation Therapy (IMRT)

Rectal dose and toxicity dosimetric evaluation for various beam arrangements using pencil beam scanning protons with and without rectal spacers

Evaluation of Monaco treatment planning system for hypofractionated stereotactic volumetric arc radiotherapy of multiple brain metastases

INTENSITY MODULATED RADIATION THERAPY: Next Generation 3-D CRT or Distinct Form of RT?

Feasibility of 4D IMRT Delivery for Hypofractionated High Dose Partial Prostate Treatments

RESEARCH ARTICLE. Aydin Cakir 1, Zuleyha Akgun 2 *, Merdan Fayda 1, Fulya Agaoglu 1. Abstract. Introduction

IROC Liver Phantom. Guidelines for Planning and Irradiating the IROC Liver Phantom. Revised July 2015

EQUIVALENT DOSE FROM SECONDARY NEUTRONS AND SCATTER PHOTONS IN ADVANCE RADIATION THERAPY TECHNIQUES WITH 15 MV PHOTON BEAMS

La Pianificazione e I Volumi di Trattamento

Use of Bubble Detectors to Characterize Neutron Dose Distribution in a Radiotherapy Treatment Room used for IMRT treatments

Monitor unit optimization in RapidArc plans for prostate cancer

WHOLE-BRAIN RADIOTHERAPY WITH SIMULTANEOUS INTEGRATED BOOST TO MULTIPLE BRAIN METASTASES USING VOLUMETRIC MODULATED ARC THERAPY

IMRT for Prostate Cancer

A new homogeneity index based on statistical analysis of the dose volume histogram

Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study

EVALUATION OF THERAPEUTIC POTENTIAL OF HEAVY ION THERAPY FOR PATIENTS WITH LOCALLY ADVANCED PROSTATE CANCER

The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical

The Physics of Oesophageal Cancer Radiotherapy

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 6, 2016

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS

Tangent field technique of TomoDirect improves dose distribution for whole-breast irradiation

Prostate Phantom. Guidelines for Planning and Treating the IMRT Prostate Phantom. Revised March 2014

From position verification and correction to adaptive RT Adaptive RT and dose accumulation

To Reduce Hot Dose Spots in Craniospinal Irradiation: An IMRT Approach with Matching Beam Divergence

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM *

TomoTherapy. Michelle Roach CNC Radiation Oncology Liverpool Hospital CNSA. May 2016

Specification of Tumor Dose. Prescription dose. Purpose

Relationship of segment area and monitor unit efficiency in aperture-based IMRT optimization

Impact of rectal balloon-filling materials on the dosimetry of prostate and organs at risk in photon beam therapy

NEWER RADIATION (3 D -CRT, IMRT, IGRT) TECHNIQUES FOR CERVICAL CANCERS (COMMON PELVIC TUMORS)

Knowledge-Based IMRT Treatment Planning for Prostate Cancer: Experience with 101. Cases from Duke Clinic. Deon Martina Dick

Evaluation of Normal Tissue Complication Probability and Risk of Second Primary Cancer in Prostate Radiotherapy

Radiation Damage Comparison between Intensity Modulated Radiotherapy (IMRT) and Field-in-field (FIF) Technique In Breast Cancer Treatments

Variable Dose Rate Dynamic Conformal Arc Therapy (DCAT) for SABR Lung: From static fields to dynamic arcs using Monaco 5.10

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria

Clinical Implications of High Definition Multileaf Collimator (HDMLC) Dosimetric Leaf Gap (DLG) Variations

Evaluation of scatter distribution through segmented intensity modulated radiation therapy (IMRT) fields in treatment of head and neck cancer

Additional Questions for Review 2D & 3D

Effects of field parameters on IMRT plan quality for gynecological cancer: A case study

Optimization of RapidArc for Head-and-Neck Radiotherapy. Jessica Emily Salazar. Department of Medical Physics Duke University.

Single Course IMRT Plan to Deliver 45 Gy to Seminal Vesicles and 81 Gy to Prostate in 45 Fractions

NIA MAGELLAN HEALTH RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning

Radiation Treatment Techniques: Where to find rooms for improvement?

Chapters from Clinical Oncology

Clinical Impact of Couch Top and Rails on IMRT and Arc Therapy

3D Conformal Radiation Therapy for Mucinous Carcinoma of the Breast

Optimising Radiotherapy Using NTCP Models: 17 Years in Ann Arbor

Dosimetric advantage of using 6 MV over 15 MV photons in conformal therapy of lung cancer: Monte Carlo studies in patient geometries

Ranking radiotherapy treatment plans: physical or biological objectives?

Advanced Technology Consortium (ATC) Credentialing Procedures for 3D Conformal Therapy Protocols 3D CRT Benchmark*

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT

Sarcoma and Radiation Therapy. Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington

Corporate Medical Policy

Transcription:

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 4, FALL 2006 Treatment of exceptionally large prostate cancer patients with low-energy intensity-modulated photons Mei Sun and Lijun Ma a University of Maryland School of Medicine, Department of Radiation Oncology, Baltimore, Maryland, U.S.A. ma@radonc17.ucsf.edu Received 15 March 2006; accepted 12 September 2006 An inverse planning technique using 6-MV intensity-modulated photon beams was developed for treating large-size patients with prostate cancer. Comparisons of treatment plans using 6-MV and 18-MV intensity-modulated beams were carried out for a cohort of 10 patient cases. For these cases, we analyzed the dependence of plan quality on the beam energies. We found that 6-MV beams resulted in plans equivalent to those for 18-MV beams both for targets and for critical structures such as the rectum and bladder. The differences between the plans in the integral dose and the mean dose to the normal tissue surrounding the target were found to be small, in contrast to those for 3D conformal plans. Our findings showed that the low entrance dose of the high-energy photon beams is mostly compensated by the high exit dose for even exceptionally large patients. In conclusion, 6-MV intensitymodulated beams are a feasible choice for treating large-size patients with prostate cancer, provided that proper inverse planning techniques are adopted. PACS number: 87.50.Gi, 87.53.Tf Key words: IMRT, prostate cancer, treatment planning I. INTRODUCTION Intensity-modulated radiation therapy (IMRT) has been widely used for prostate cancer treatments. (1 15) In practice, high-energy photons such as 18 MV are often used, given the experience of 3D conformal radiation therapy with static beams. However, in IMRT treatments, the effects of the intensity modulation and the use of a relatively large number of beams has been found to reduce the dependence of the treatment planning on the selection of beam energies. (16) As a result, 6-MV photon beams have been found to be an effective energy choice for most IMRT cases. (17,18) In addition, the total monitor units are typically two to three times higher in IMRT than in conventional radiation therapy. Therefore, the use of high-energy photons also raised concerns about increased leakage and secondary neutron dose for the patients. (19 21) However, it is unclear whether low-energy intensity-modulated photons can be used for large-pelvis irradiations because of the low penetration power of the beam. At our institution, we often encounter large-size patients having prostate treatments. About 20% of our patients have vertical or lateral separations of more than 25 cm. In the present study, we aimed to develop an inverse planning technique and to investigate the feasibility of using 6-MV intensity-modulated photons for treating exceptionally large patients (vertical or lateral separations > 30 cm) with prostate cancer. The benefits of using 6-MV instead of 18-MV photons include elimination of secondary neutron production and reduction in room shielding burden. Additionally, 6 MV is widely available for single-modality linear accelerators, potentially making IMRT more accessible to the population of larger-size patients. a Corresponding author: Lijun Ma, Department of Radiation Oncology, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201 U.S.A.; phone: 415-353-8900; fax: 415-353-8769; email: ma@radonc17.ucsf.edu. 43 2006 Am. Coll. Med. Phys. 43

44 Sun and Ma: Treatment of exceptionally large prostate cancer patients... 44 II. MATERIALS AND METHODS A cohort of 10 prostate cases was selected for our study. The mean anterior posterior (AP) separation of these patients was 31 cm (range: 25 34 cm) and the mean lateral separation was 41 cm (range: 35 46 cm). Of these patients, 6 received full-course IMRT treatment, and the other 4 received IMRT boost treatments following whole-pelvis irradiations of 45 Gy. The average planning target volume (PTV) for these patients was 263 cc (range: 155 302 cc). For inverse IMRT treatment planning, we used a 7-coplanar-beam arrangement at 0-, 51-, 102-, 153-, 207-, 258-, and 309-degree gantry angles following published techniques. (3,9,15) Those studies showed that 7 beams are advantageous over numbers such as 5 or 9 for effective and efficient prostate IMRT treatments. The plan was generated on a commercial treatment planning system (Pinnacle 3 v.7.4, Philips Medical, Milpitas, CA). For all plans, we defined the dose volume constraints for a surrounding normal tissue region in addition to the dose volume constraints for the target volume and normal structures such as rectum and bladder. Fig. 1 illustrates the definition of the normaltissue region. Fig. 1. Illustration of the normal-tissue region where the dose volume constraints are imposed. PTV = planning target volume As illustrated in the figure, the normal tissue typically extends from the boundary of the PTV plus 1-cm margin to the skin surface. We imposed the dose volume constraint on this volume such that no more than 25% of the surrounding normal-tissue volume would receive 40% of the prescription dose. This additional dose volume constraint is the key to producing a conformal dose distribution around the PTV and limiting dose streaking effects e.g., high-dose areas near the beam entrances. The streaking effects are typically more pronounced for the 6-MV intensity-modulated photons in these large-size patients. For all of the cases, we developed treatment plans using 6-MV and 18-MV intensitymodulated beams with identical dose volume constraints. The dose volume histograms (DVHs) for the 6-MV and 18-MV plans were compared for the target volumes [gross tumor volume (GTV) and PTV] and for critical structures such as the rectum and the bladder. Because the PTV overlaps with the rectum and the bladder in all cases, the coverage of the PTV is constrained such that 100% of the PTV receives at least 95% of the prescription dose. We also defined the conformal index to compare the treatment plans. The conformal index is defined as the ratio of the 95% isodose volume divided by the PTV volume that is enclosed by the 95% isodose line. From this definition, the closer the conformal index approaches 1, the more conformal is the treatment plan. We also calculated the integral dose for the rectum, the bladder, and the surrounding normal tissue by integrating the dose over all voxels within each volume. The mean dose is defined as

45 Sun and Ma: Treatment of exceptionally large prostate cancer patients... 45 the integral dose divided by the volume of interest. From the definition, the unit of the integral dose is J, and the unit of the mean dose is Gy, assuming unit tissue density. III. RESULTS AND DISCUSSION Fig. 2 illustrates the effects of the dose volume constraints imposed on the surrounding normal tissue. The result shows the reduction of the peripheral dose streaking areas, as well as the dose hot spots inside the target. Fig. 2. Illustration of the effects of the surrounding normal-tissue constraints imposed on intensity-modulated radiotherapy dose distributions: (a) the dose distribution without surrounding normal tissue constraints; (b) the dose distribution with the surrounding normal-tissue constraints. Note the reduction of the dose streaking effect at the 50% isodose line In general, we found that a more uniform dose for the target volume can be achieved when the surrounding normal-tissue constraints are imposed. This finding suggested degeneracy in the inversely planned solutions. Adding normal-tissue constraints therefore helps to avoid the local minimum or suboptimal solutions for the problem. Fig. 3 shows the isodose distribution for a typical patient case, and Fig. 4 gives the dose volume histogram (DVH) comparison of the 6-MV and 18-MV treatment plans. From the results in Figs. 3 4, 6-MV and 18-MV beams yielded nearly identical dose distributions for GTV, PTV, rectum, and bladder. The maximum dose inside the PTV is slightly better (~1%) for the 6-MV treatment plan than for the 18-MV plan. The conformal index is identical between the two treatment plans. The surrounding normal-tissue dose is similar, with the DVH curve for the 6-MV plan being slightly higher near the low-dose region, but lower near the high-dose region. As a result, the mean dose normalized by the prescription dose is 21% for the 6-MV plan and 20% for the 18-MV plan. Such a small difference indicates that the low entrance dose from the high-energy beam is, in effect, compensated by the high exit dose.

46 Sun and Ma: Treatment of exceptionally large prostate cancer patients... 46 Fig. 3. Comparison of the axial dose distributions between the 6-MV and 18-MV intensity-modulated radiotherapy treatment plans for a large patient with prostate cancer: (a) the 6-MV plan; (b) the 18-MV plan Fig. 4. Comparisons of the dose volume histograms for 6-MV (solid line) and 18-MV (dashed lines) intensity-modulated radiotherapy plans for the case shown in Fig. 3 Table 1 gives a summary of the results for all the studied cases, listing the dose delivered to part of the critical structure volume such as 1/3, 2/3 of bladder and rectum. The dose values in the table are all normalized to the prescription dose. For rectum and bladder alike, the difference between 6 MV and 18 MV falls within 1% 2% of the prescription dose. In general, the dose to the 1/3 of the rectum volume (i.e., the high-dose area) is slightly higher for the 18-MV plan, and the dose to the 2/3 of the rectum volume (i.e., the low-dose area) is slightly lower for the 6-MV plan. On average, the 6-MV and 18-MV plans are equivalent with regard to the dose to rectum and bladder, as shown in Table 1.

47 Sun and Ma: Treatment of exceptionally large prostate cancer patients... 47 Table 1. Dosimetric parameters for all the cases, comparing 6-MV (6 ) with 18-MV (18 ) treatment plans for large patients with prostate cancer, where V R denotes the rectum volume; V B denotes the bladder volume; V N denotes the normal tissue volume, CI denotes the conformal index, 6 denotes 6-MV photon beam, and 18 denotes 18-MV photon beam Dose to fractional structure volume (normalized to prescription dose) MU 6 18 1 0.63 0.63 0.53 0.53 0.21 0.20 0.80 0.81 0.48 0.47 0.75 0.75 0.30 0.30 0.32 0.28 0.07 0.10 1.31 1.31 620 498 2 0.51 0.51 0.48 0.48 0.19 0.18 0.64 0.63 0.32 0.31 0.55 0.54 0.30 0.30 0.27 0.24 0.08 0.09 1.41 1.41 556 450 3 0.65 0.66 0.59 0.59 0.13 0.12 0.75 0.75 0.51 0.52 0.76 0.75 0.44 0.43 0.13 0.13 0.02 0.02 1.35 1.35 441 361 4 0.48 0.48 0.62 0.62 0.16 0.15 0.59 0.60 0.39 0.38 0.76 0.77 0.46 0.45 0.22 0.20 0.05 0.06 1.19 1.23 420 352 5 0.65 0.65 0.50 0.50 0.11 0.10 0.83 0.84 0.48 0.47 0.57 0.57 0.33 0.35 0.15 0.15 0.02 0.02 1.32 1.33 552 497 6 0.45 0.45 0.47 0.46 0.17 0.16 0.60 0.60 0.23 0.21 0.60 0.59 0.22 0.21 0.21 0.19 0.04 0.05 1.26 1.28 608 537 7 0.62 0.61 0.91 0.90 0.18 0.17 0.79 0.79 0.42 0.41 0.10 0.10 0.86 0.85 0.26 0.23 0.05 0.07 1.34 1.35 562 512 8 0.82 0.82 0.75 0.75 0.16 0.15 0.94 0.95 0.75 0.74 0.90 0.91 0.66 0.65 0.25 0.22 0.05 0.05 1.35 1.36 433 364 9 0.55 0.55 0.32 0.32 0.18 0.16 0.69 0.68 0.38 0.37 0.04 0.04 0.06 0.05 0.25 0.22 0.06 0.07 1.23 1.27 620 458 10 0.41 0.40 0.19 0.18 0.08 0.07 0.48 0.47 0.28 0.27 0.01 0.01 0.02 0.01 0.05 0.05 0.01 0.01 1.36 1.37 420 365 For the surrounding normal tissue, the dose at the 1/3 of the volume is, on average, higher for the 6-MV plan than for the 18-MV plan, showing the effect of the high entrance dose for the 6-MV beams. However, the dose at the 2/3 of the normal tissue volume is, on average, lower for the 6-MV plan than the 18-MV plan, showing the effect of the high exit dose for the 18-MV beams. As a result, the 6-MV and 18-MV plans yield a nearly identical mean dose to the surrounding normal tissue, as shown in Table 1. Table 1 also gives the conformal index of all the cases. In general, the conformal index values for the 6-MV plans are similar to those for the 18-MV plans and even slightly better

48 Sun and Ma: Treatment of exceptionally large prostate cancer patients... 48 in some cases. For most cases, the better conformal index is translated into slightly better rectum sparing. Table 1 also presents a comparison of the total monitor units between the 6-MV and 18-MV plans. On average, the 6-MV plans deliver 18% more monitor units than do the 18-MV plans. IV. CONCLUSION In this study, we investigated the feasibility of using 6-MV intensity-modulated photons for treating exceptionally large patients with prostate cancer (>30 cm AP or lateral separation). Equivalent dose volume relationships were found for target volume, rectum, and bladder for either the 6-MV or 18-MV intensity-modulated beams when proper planning techniques were applied. The mean dose to the normal tissue surrounding the target volume was also found to be equivalent for the 6-MV and 18-MV beams, which shows that the low entrance dose of the 18-MV beam is, in effect, balanced by its high exit dose. Our study shows that the total monitor units were on average 18% higher for the 6-MV plan as compared with the 18-MV plan. Because there are no secondary neutrons, and radiation leakage is relatively low for 6-MV beams, room shielding requirements are significantly less for 6-MV photons than for 18-MV photons. The increase in total monitor units can therefore in theory be compensated by increasing the pulse repetition rate of the accelerator by 20% without affecting the workload. We conclude that a 6-MV intensity-modulated beam is a viable and effective option for treating even very large patients with prostate cancer. REFERENCES 1. Adams EJ, Convery DJ, Cosgrove VP, et al. Clinical implementation of dynamic and step-and-shoot IMRT to treat prostate cancer with high risk of pelvic lymph node involvement. Radiother Oncol. 2004;70(1):1 10. 2. Bos LJ, Schwarz M, Bar W, et al. Comparison between manual and automatic segment generation in step-andshoot IMRT of prostate cancer. Med Phys. 2004;31(1):122 130. 3. Burman C, Chui CS, Kutcher G, et al. Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys. 1997;39(4):863 873. 4. Cheung P, Sixel K, Morton G, et al. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer. Int J Radiat Oncol Biol Phys. 2005;62(2):418 425. 5. Corletto D, Iori M, Paiusco M, et al. Inverse and forward optimization of one- and two-dimensional intensitymodulated radiation therapy-based treatment of concave-shaped planning target volumes: the case of prostate cancer. Radiother Oncol. 2003;66(2):185 195. 6. De Meerleer G, Vakaet L, Meersschout S, et al. Intensity-modulated radiotherapy as primary treatment for prostate cancer: acute toxicity in 114 patients. Int J Radiat Oncol Biol Phys. 2004;60(3):777 787. 7. Debus J, Zierhut D, Didinger B, Schlegel W, Wannenmacher M. Inverse planning and intensity-modulated radiotherapy in patients with prostate cancer. Front Radiat Ther Oncol. 2002;36:25 34. 8. Fraass BA, Kessler ML, McShan DL, et al. Optimization and clinical use of multisegment intensity-modulated radiation therapy for high-dose conformal therapy. Semin Radiat Oncol. 1999;9(1):60 77. 9. Leibel SA, Fuks Z, Zelefsky MJ, et al. Technological advances in external-beam radiation therapy for the treatment of localized prostate cancer. Semin Oncol. 2003;30(5):596 615. 10. Ma L, Yu CX, Earl M, et al. Optimized intensity-modulated arc therapy for prostate cancer treatment. Int J Cancer. 2001;96(6):379 384. 11. Martinez AA, Yan D, Lockman D, et al. Improvement in dose escalation using the process of adaptive radiotherapy combined with three-dimensional conformal or intensity-modulated beams for prostate cancer. Int J Radiat Oncol Biol Phys. 2001;50(5):1226 1234. 12. Pollack A, Hanlon A, Horwitz EM, Feigenberg S, Uzzo RG, Price RA. Radiation therapy dose escalation for prostate cancer: a rationale for IMRT. World J Urol. 2003;21(4):200 208. 13. Price RA, Murphy S, McNeeley SW, et al. A method for increased dose conformity and segment reduction for SMLC delivered IMRT treatment of the prostate. Int J Radiat Oncol Biol Phys. 2003;57(3):843 852. 14. Teh BS, Woo SY, Mai WY, et al. Clinical experience with intensity-modulated radiation therapy (IMRT) for prostate cancer with the use of rectal balloon for prostate immobilization. Med Dosim. 2002;27(2):105 113.

49 Sun and Ma: Treatment of exceptionally large prostate cancer patients... 49 15. Zelefsky MJ, Fuks Z, Happersett L, et al. Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol. 2000;55(3):241 249. 16. Pirzkall A, Carol MP, Pickett B, Xia P, Roach M 3rd, Verhey LJ. The effect of beam energy and number of fields on photon-based IMRT for deep-seated targets. Int J Radiat Oncol Biol Phys. 2002;53(2):434 442.17. 17. Soderstrom S, Eklof A, Brahme A. Aspects on the optimal photon beam energy for radiation therapy. Acta Oncol. 1999;38(2):179 187. 18. Sternick ES, Bleier AR, Carol MP. Intensity modulated radiation therapy: what photon energy is best? Presentation at The XIIth International Conference on the Use of Computers in Radiation Therapy (ICCR); Salt Lake City, UT; 27 30 May 1997. 19. Howell RM, Ferenci MS, Hertel NE, Fullerton GD. Investigation of secondary neutron dose for 18 MV dynamic MLC IMRT delivery. Med Phys. 2005;32(3):786 793. 20. Kry SF, Salehpour M, Followill DS, et al. Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;62(4):1204 1216. 21. Waller EJ. Neutron production associated with radiotherapy linear accelerators using intensity modulated radiation therapy mode. Health Phys. 2003;85(5 suppl):s75 S77.