Table 1: Colony morphology and cultural characteristics of isolated strains after incubation at 28 o C for 72 h.

Similar documents
Scholars Research Library. Purification and characterization of neutral protease enzyme from Bacillus Subtilis

MOTILE ENTEROCOCCI (STREPTOCOCCUS FAECIUM VAR. MOBILIS VAR. N.) ISOLATED FROM GRASS SILAGE

SCREENING OF METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS (MRSA)

Analysis - Carbohydrate analysis

organisms isolated from fermenting substances no characters PLANTARUM (ORLA-JENSEN) BERGEY

202 S. IsExi and T. IKEDA [Vol. 32,

Bioremediation of C1 Compounds from Methylotrophic Bacteria isolated from Lonar lake

API TEST OF LACTOBACILLI ISOLATED FROM TOP BRANDS COMMERCIAL YOGURT. Satchanska, G. and D. Illin

BACILLUS SUBTILIS: A POTENTIAL SALT TOLERANT PHOSPHATE SOLUBILIZING BACTERIAL AGENT

Int.J.Curr.Microbiol.App.Sci (2018) 7(3):

Strain DSM Genus. alimentaria Status Risk group Type strain 72, JCM 16360, KACC Reference Author

CHAPTER IV RESULTS Occurrence of endophytic microorganisms in the roots and shoots of crop plants

Isolation and Biochemical Characterization of Lactobacillus species Isolated from Dahi

The Characteristics of Lactobacillus plantarum, L. helveticus and L. casei

CLASS 11th. Biomolecules

PRESENTER: DENNIS NYACHAE MOSE KENYATTA UNIVERSITY

Citrobacter koseri. II. Serological and biochemical examination of Citrobacter koseri strains from clinical specimens

CLASS 12th. Biomolecules

staphylococci. They found that of 28 strains of staphylococci from foods STAPHYLOCOCCI AND RELATED VARIETIES

Phases Available Description Applications Additional Notes RCM-Monosaccharide (L19 packing)*

CHAPTER V TAXONOMIC STUDIES OF THE SELECTED ISOLATE C 9

Medical Microbiology

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Ninth Edition. Introduction to General, Organic and Biochemistry Chapter 20 Carbohydrates

6 The chemistry of living organisms

NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi

Carbohydrates. Organic compounds which comprise of only C, H and O. C x (H 2 O) y

Partial characterization and optimization of alkaline Amaylase from Bacillus spp. from Lonar Crater

NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi

Comparison of Minitek and Conventional Methods for the

[VOL. 80. The mating type factor FP (pseudomonad fertility factor) controls mating and recombination

Received: 20 th Feb Revised: 24 th Feb-2012 Accepted: 28 th Feb-2012 Research article

Module-04: Food carbohydrates: Monosaccharides and Oligosaccharides

only authoritative system of classification we have. The Grampositive species will be designated as Bacteroides, though it is

Lab #9. Introduction. Class samples:

J. Environ. Res. Develop. Journal of Environmental Research And Development Vol. 8 No. 2, October-December 2013

All About Carbohydrates and Health CPE Questions

Isolation, biochemical characterization, antibiotic susceptibility study of Aeromonas hydrophila isolated from freshwater fish

BIOCHEMISTRY UNIT 2 Part 4 ACTIVITY #4 (Chapter 5) CARBOHYDRATES

Identification of Unknown Indigenous Bacteria

S.S. Shaukat and I.A. Siddiqui Soil Biology and Ecology Laboratory, Department of Botany, University of Karachi, Karachi, Pakistan

Definition of a Carbohydrate

CHARACTERISTICS OF RUMINAL ANAEROBIC CELLULOLYTIC

Microbiology of Meat Curing

Characteristics of Selenomonas ruminantium var. bryanti var. n. from the Rumen of Sheep

24.1 Introduction to Carbohydrates

Carbohydrates 1. Steven E. Massey, Ph.D. Assistant Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras

Heterobasidion insulare

STUDIES ON THE ASAKUSA GROUP OF ENTEROBACTERIACEAE (EDWARDSIELLA TARDA)

Nitrogen is required by all living organism for the. Selection of effective indigenous Rhizobium strains in district Sagar for chickpea bioinoculant

6. INVESTIGATION OF NUTRITIONAL AND NUTRACEUTICAL ASPECTS

16S rdna-based phylogenetic analysis. The first 443 bp of the 16S rrna gene were

Bioremediation of textile azo dyes by newly isolated Bacillus sp. from dye contaminated soil

Isolation and Characterization of Endemic strains of Lactobacillus sp. and evaluation of their Probiotic Activity

Lecture-1 Introduction, Carbohydrates importance &classification Biochemistry, as the name implies, is the chemistry of living organisms.

Ch 2 Molecules of life

NOVASTREAK. Microbial Contamination Monitoring Device TYPICAL CULTURAL MORPHOLOGY Baird Parker Agar. S. aureus growth on Baird Parker Agar

PHYSIOLOGICAL STUDIES ON THE GENUS MICROSPORUM*

Ch13. Sugars. What biology does with monosaccharides disaccharides and polysaccharides. version 1.0

THE OHIO JOURNAL OF SCIENCE

Yoghurt isolates-3. Mother milk isolates-5 Stool sample isolates-9. Vaginal swab sample isolates- 12

Two New Species of Pseudomonas: P. oryzihabitans Isolated from Rice Paddy and Clinical Specimens and P. luteola Isolated from Clinical Specimens

Can you explain that monomers are smaller units from which larger molecules are made?

ASSESSMENT OF ENDOPHYTIC BACTERIA FOR GROWTH PROMOTION IN CHICKPEA

All About Carbohydrates and Health

Fundamentals of Organic Chemistry. CHAPTER 6: Carbohydrates

Lab-15 Gram Negative Bacteria Neisseria:

The slime or gum produced by Azotobacter chroococcum has. (1926). Buchanan (1909) in a discussion of gum production

Name a property of. water why is it necessary for life?

HARMONISED PHARMACOPOEIA DEHYDRATED CULTURE MEDIA FOR SUPPORTING REGULATORY COMPLIANCE AVAILABLE NOW P O RTF O LIO.

MONOSACCHARIDES DISACCHARIDES POLYSACCHARIDES

Histopathological and bacteriological studies of monodon slow growth syndrome (MSGS) affected shrimps

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title

BCH 445 Biochemistry of nutrition Dr. Mohamed Saad Daoud

SHIGELLA. Bacillary dysentery is caused by genus Shigella, named after Shiga who isolated them.

P.G. Department of Microbiology & Biogas Research Centre, Gujarat Vidyapith, Sadra , India 3

Introduction to Macromolecules. If you were to look at the nutrition label of whole milk, what main items stick out?

Isolation, Identification and Analysis of Probiotic Properties of Lactobacillus Spp. from Selected Regional Dairy Product

Fermentation of traditional beverages prepared by Bhotiya community of Uttaranchal Himalaya

BCH 4053 Spring 2001 Chapter 7 Lecture Notes

Isolation and Identification of Sulfate Reducing Bacterial Strains Indigenous to Sulphur Rich Barite Mines

A report of 14 unrecorded bacterial species in Korea isolated in 2017

Manal AL khulaifi. Enterobacteriaceae

hydrogen sulfide production which were abnormal. them, however, differs from our strains in at least one important respect. The

Carbohydrates. Chapter 12

APPENDIX-I. The compositions of media used for the growth and differentiation of Pseudomonas aeruginosa are as follows:

Topic 3: The chemistry of life (15 hours)

Student Perspectives on the Use of Biolog GenIII Plates in Undergraduate Research and a General Microbiology Course

Screening of bacteria producing amylase and its immobilization: a selective approach By Debasish Mondal

Carbohydrates - Chemical Structure

Carbohydrates. 1. Using the terms provided below, complete the concept map showing the characteristics of organic compounds.

Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic

Review for Test #1: Biochemistry

International Journal of Health Sciences and Research ISSN:

I. Carbohydrates Overview A. Carbohydrates are a class of biomolecules which have a variety of functions. 1. energy

Student Perspectives on the Use of Biolog GenIII Plates in Undergraduate Research and a General Microbiology Course

Carbohydrates are aldehyde or ketone compounds with multiple hydroxyl groups Have multiple roles in all forms of life

The Structure and Function of Macromolecules

Steps taken to eliminate the spontaneous fermentation of soap

Carbon. p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms

Metabolic response induced by parasitic plant-fungus interactions hinder amino sugar and nucleotide sugar metabolism in the host

Transcription:

Table 1: Colony morphology and cultural characteristics of isolated strains after incubation at 28 o C for 72 h. Bacterial Media used Colony morphology strains VR1 YEMA Small (2 mm), opaque, circular, highly EPS producing gummy colonies. VR2 YEMA 2.1 mm in size, translucent, round, highly gummy, convex type colonies. VR3 YEMA White coloured, circular, small, convex colonies. VR4 YEMA Small, translucent, granular, convex colonies. VR5 CrYEMA Translucent, round, highly LPS producing gummy colonies, small in size. VR6 CrYEMA Pinkish, translucent, medium sized, circular, gummy colonies. VR9 CrYEMA Small, rounded, white in colour, gummy, convex colonies VR10 CrYEMA Small, white, circular, less gummy, flat colonies VR11 BAM Circular, off-white in colour, very small, flat colonies. VR12 BAM Small, round, white coloured, opaque, convex colonies. VR13 BAM White coloured, small, flat, rounded, opaque colonies. VR14 BAM White coloured, opaque, round, convex colonies. VR15 KB medium Small, round, pale yellow colour, smooth convex colonies. VR16 KB medium Round, white coloured, convex colonies. VR19 KB medium Round, medium size, smooth, pale yellow in colour, convex colonies. VR20 KB medium Round, creamy white, opaque, small, flat colonies. YEMA= Yeast extract mannitol agar, CrYEMA= Congo red yeast extract mannitol agar, KB = King s B medium, BAM= Bacillus agar medium.

Table 2. Absorbance (at 610 nm) of isolates VR1 and VR1 after every 12 hours of intervals measured in UV-VIS spectrophotometer. Isolates Absorbance (610 nm) at every 12 h intervals * 0 12 24 36 48 60 72 VR1 0.04 0.01 0.06 0.017 0.1 0.01 0.3 0.02 0.5 0.011 0.61 0.013 0.62 0.011 VR2 0.05 0.02 0.08 0.016 0.13 0.01 0.35 0.017 0.54 0.02 0.64 0.01 0.65 0.015 *, Values are mean of triplicate standard errors.

Table 3: Physiological and biochemical characteristics of different strains on YEMA/CrYEMA/ Bacillus agar/ King s B (KB) medium isolated from V. mungo. Isolates Biochemical characteristics 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 VR1 - Rod - + - + + - + - + + + + + + - - - + + - N N N VR2 - Rod - + - + + - + - + + + + + + - - - - + - N N N VR3 - Rod + + - + + - - - - + + + + + - - - - + + N N N VR4 - Rod + + - + + - + + - + + + + + - - - + - - N N N VR5 - Rod + + - + + - - + - + + + + + + - - - + - N N N VR6 - Rod + + - + + - + - - + + + + + - - - - - + N N N VR9 - Rod + + - + + - + - - + + + + + - - - - + - N N N VR10 - Rod - + - + + + + - - + + + + + + - - + - - N N N VR11 + Rod - + + + + + + - - + + N N - - - - + - + + N N VR12 + Rod - + + + + + + + - - + N N - - - - - - + + N N VR13 + Rod - + + + + + + - - + + N N + - - - + - + + N N VR14 + Rod - + + + + - + + + - + N N - - - - + - + + N N VR15 - Rod - + - + + - + + + + + N N + - + - + - - - + + VR16 - Rod - + - + + + - + - + + N N + - - - + + - + - + VR19 - Rod - + - + + + + + - + + N N + + - - - + - - + + VR20 - Rod - + - + + - + - + + + N N + - + - + + - - + + Bradyrhizobium sp. NAIMCC-B-00262 - Rod - + - + + - + - + + + + + + - - - - + + - - - B. subtilis MTCC 441 + Rod - + + - + + + - - + + - - - - - - + - - + - - Pseudomonas sp. MTCC 129 - Rod - + - + + + + + + + + - - + - - - + + - - + + 1- Gram reaction, 2- shape, 3- capsule, 4-motility, 5- endospore, 6- PHB accumulation, 7- catalase, 8- urease, 9- oxidase, 10- starch hydrolysis, 11- gelatin hydrolysis, 12- indole production, 13- growth on nutrient agar medium, 14- growth on YEMA, 15- growth on CrEMA, 16- esculin hydrolysis, 17- KNO 3 (8%) tolerance, 18- Voges Proskaur test, 19- methyl red, 20- ONPG, 21- citrate utlilization, 22- H 2 S prodyction, 23- nitrate reduction, 24- fluorescence, 25- pigment; N- not tested.

Table 4. Effect of different temperature on growth of bacterial isolates. Bacterial strains Temperature ( C) Cardinal Temperature 10 15 20 25 28 30 35 40 45 50 55 Minimum Optimum Maximum VR1 - - + ++ +++ ++ ++ - - - - 20 28 35 VR2 - - + ++ +++ ++ + - - - - 20 28 35 VR3 - - + ++ +++ +++ ++ + - - - 20 28 40 VR4 - + ++ ++ +++ ++ + + - - - 15 28 40 VR5 - + ++ +++ +++ ++ ++ + - - - 15 28 40 VR6 - - ++ +++ +++ ++ + + - - - 20 28 40 VR9 - + + ++ +++ ++ + - - - - 15 28 35 VR10 - - + + +++ ++ + ++ - - - 20 28 40 VR11 + + ++ ++ +++ +++ ++ ++ ++ + - 10 28 50 VR12 - + + ++ +++ +++ ++ ++ + + - 15 28 50 VR13 + + ++ ++ +++ +++ ++ ++ + + - 10 28 50 VR14 + + ++ ++ +++ +++ +++ ++ + - - 10 28 45 VR15 - + + ++ +++ +++ +++ ++ + - - 15 28 45 VR16 + + ++ ++ +++ +++ ++ ++ + - - 10 28 45 VR19 - + + ++ +++ +++ +++ ++ + - - 15 28 45 VR20 - + + ++ +++ ++ ++ + + - - 15 28 45 Bradyrhizo - - ++ ++ +++ ++ + - - - - 20 28 35 NAIMCC-B- 00262 Bacillus - + + ++ +++ +++ +++ ++ ++ + - 15 28 55 MTCC441 Pseudomonas MTCC129 - + ++ ++ +++ +++ ++ ++ + - - 15 28 45

Table 5. Growth of bacterial isolates on different ph values. Bacterial strains ph range Cardinal ph 4 5 6 7 8 9 10 11 Minimum Optimum Maximum VR1 - + ++ +++ ++ + - - 5 7 9 VR2 - + ++ +++ ++ + - - 5 7 9 VR3 - + ++ +++ +++ + + - 5 7-8 10 VR4 - + ++ +++ +++ + - - 5 7-8 9 VR5 - + ++ +++ ++ + + - 4 7 10 VR6 - + ++ +++ +++ + - - 5 7-8 9 VR9 - + ++ +++ ++ + - - 5 7 9 VR10 - - ++ +++ ++ + + - 6 7 10 VR11 - + ++ +++ +++ ++ + - 5 7-8 10 VR12 - + ++ +++ +++ ++ - - 5 7-8 9 VR13 - + +++ +++ +++ + + - 5 7-8 10 VR14 - + ++ +++ +++ ++ + - 5 7 10 VR15 - + +++ +++ +++ + - - 5 7-8 10 VR16 - + +++ +++ ++ ++ + - 4 7 10 VR19 + ++ +++ +++ +++ + + - 5 7-8 10 VR20 - + +++ +++ +++ + - - 4 7 10 NAIMCC-B- - + ++ +++ ++ + - - 5 7 9 00262 Bacillus - + ++ +++ +++ ++ - - 5 7-8 9 MTCC 441 Pseudomonas MTCC 129 + ++ +++ +++ +++ + - - 4 7-8 9

Table 6. Effect of different salt concentrations (NaCl) (%) on growth of bacterial isolates. Bacterial strains Salt concentration (%) Cardinal salt concentration (%) 1 2 3 4 5 6 Minimum Optimum Maximum VR1 +++ +++ +++ + - - 1 1-3 4 VR2 +++ +++ +++ ++ - - 1 1-3 4 VR3 +++ +++ +++ ++ - - 1 1-3 4 VR4 +++ +++ +++ ++ - - 1 1-3 4 VR5 +++ +++ +++ +++ + - 1 1-4 5 VR6 +++ +++ +++ ++ - - 1 1-3 4 VR9 +++ +++ +++ + - - 1 1-3 4 VR10 +++ +++ +++ ++ + - 1 1-3 5 VR11 +++ +++ +++ ++ + + 1 1-3 6 VR12 +++ +++ +++ ++ + - 1 1-3 5 VR13 +++ +++ +++ ++ + - 1 1-3 5 VR14 +++ +++ +++ + - - 1 1-3 4 VR15 +++ +++ +++ + + - 1 1-3 5 VR16 +++ +++ +++ + - - 1 1-3 4 VR19 +++ +++ +++ ++ + + 1 1-3 6 VR20 +++ +++ +++ ++ + - 1 1-3 5 NAIMCC-B- +++ +++ +++ + - - 1 1-3 4 00262 Bacillus MTCC +++ +++ +++ ++ ++ - 1 1-3 5 441 Pseudomonas MTCC 129 +++ +++ +++ ++ + - 1 1-3 5

Table 7. Utilization of various carbon sources by bacterial strain isolated from Vigna mungo. Carbon sources VR1 VR2 VR3 VR4 VR5 VR6 VR9 VR10 VR11 VR12 VR13 VR14 VR15 VR16 VR19 VR20 NAIMCC -B-00262 MTCC 441 MTCC 129 Monosaccharides pentoses Xylose + + + + + - - - + + + + + + + + + + + L-Arabinose - - - - - - - - - - - - - + + - - - + Ribose + + - - - - - - + + + + + + + + + + + Rhamnose + + + + + + + + + + + + + + + + + + + D-Arabinose - - - - - - - - - - - - - - - - - - - Monosaccharides Hexoses Fructose + + - - - - - - + + + + + + + + + + + Dextrose - - - + - - - - + + + + + + + - - + + Galactose + + + - + - - - + + + + - - - - + + - Mannose + + + + + + + + + + + + - - - - + + - Sorbose - - - - - - - - - - - - - - - - - - - Disaccharides Lactose - - + + + + + + + + + - + + + + - + + Maltose + + - + + - + - + + + + + + + + + + + Trehalose - - - - + - - - + + + - + + + + - + + Melibiose - - + - - - - - + - + + - - - - - + - Sucrose - - + + + + + - + + + + + + + + - + + Cellobiose - - - - - - - + + - + - + - + + - + + Trisaccharide Raffinose - - - - + - + - - - - - - + - - + - - Melezitose - - - - - - - - - - - - - - - - - - - Polysaccharides Inulin - - - - - - - - + + + + - - - - - + - Organic compounds Sodium - - - - - - - - - - - - - - - - - - - gluconate Glycerol + + + + - + + + + + + + + + + - + + + Salicin - - - - - - - - - - - - - - - - - - - Organic compounds Glucosamine - - - - - - - - - - - - - - - - - - - α-methyl-dglucoside - - - - - - - - - - - - - - - - - - - α-methyl-dmannoside - - - - - - - - - - - - - - - - - - - ONPG + + + + - + + - - - - - - - - - + - - Esculin + + + + - + + + - - - - - - + - + - - Citrate + + + + + + - + + - + - - - - + + - - Sugar alcohol Dulcitol - - - - - - - - - - - - - - - - - - - Inositol - - + - - - + - + + + + - + + + - + + Sorbitol + + - - + - - - + + + + + + + + + + + Mannitol + + + + + - + - + + + + + + + + + + + Adonitol + - + + - + + + - + + + - + - + + - +

Table 8: Plant growth promoting (PGP) activities found in different bacterial isolates from V. mungo. Bacterial strains IAA production HCN production Phosphate solubilization Siderophore production Chitinase activity ACC deaminase Antagonism against M. phaseolina VR1 +++ - +++ ++ ++ + ++ VR2 +++ - +++ +++ ++ ++ +++ VR3 + - + - - - + VR4 + - + - - - + VR5 + - + - + - + VR6 + - + - - - - VR9 ++ - + - - - - VR10 + - - - - - - VR11 +++ - +++ ++ ++ - ++ VR12 + - ++ + + - + VR13 +++ - ++ ++ ++ + ++ VR14 ++ - + + - + + VR15 ++ - + ++ + - + VR16 +++ - ++ - - - - VR19 + - + + - - - VR20 + - ++ - - - - Bradyrhizobium sp. NAIMCC-B-00262 Bacillus subtilis MTCC 441 Pseudomonas MTCC129 ++ - +++ + + + ++ + + - - - - ++ + + - ++ - - +

Table 9. Quantitative estimation of siderophore by isolates VR1, VR2, VR11 and VR13. Incubation time (h) Siderophore ( g/ml) produced by different Bradyrhizobium isolates * VR1 VR2 VR11 VR13 0 0 0 0 0 24 8 0.1 10 0.1 9 0.3 7 0.1 48 16 0.2 19 0.3 17 0.1 15 0.1 72 23 0.1 26 0.2 24 0.1 21 0.2 96 29 0.2 32 0.1 31 0.2 29 0.1 120 33 0.3 37 0.2 35v2 34 0.1 144 32 0.1 36 0.1 34 0.1 35 0.2 * Values are mean of three replicates standard error.

Table 10: Antagonistic effect of Bradyrhizobiun isolates VR1 VR6 against M. phaseolina in vitro. Isolates Growth inhibition of M. phaseolina colony (%) * Dual culture Cell-free culture VR1 50.5 0.2 37.6 0.3 VR2 71.5 0.7 49.2 0.1 VR3 42.6 0.3 29.5 0.2 VR4 37.1 0.2 32.4 0.3 VR5 10.9 0.2 9.2 0.2 VR6 15.2 0.1 12.7 0.4 Bradyrhizobium NAIMCC-B-00262 42.2 0.2 32.3 0.2 * = Values are mean of three replicates standard error.

Table 11: Antagonistic effect of Bacillus isolates VR11 VR14 against M. phaseolina in vitro. Isolates Growth inhibition of M. phaseolina colony (%) * Dual culture Cell-free culture VR11 78.6 0.2 54.5 0.3 VR12 51.5 0.7 42.2 0.1 VR13 60.2 0.3 53.4 0.2 VR14 47.1 0.2 32.4 0.3 Bacillus subtilis MTCC 441 59.2 0.2 48.3 0.2 * Values are mean of three replicates standard error;

Table 12: Effect of cell-free culture filtrates (CFCF) of Bradyrhizobium isolates on mycelial yield of M. phaseolina. Bacterial strains Mycelial dry weight (mg)# Concentration of CFCF (%, v/v) 15% 30% 45% Control 56.1 0.3 41.3 0.2 26.6 0.2 VR1 27.5 04 VR2 VR3 VR4 VR5 VR6 NAIMCC-B- 00262 (50.9) 23.3 0.2 (58.4) 32.6 0.3 (41.9) 35.4 0.2 (36.9) 37.1 0.1 (33.9) 33.9 0.3 (39.6) 29.1 0.2 (48.1) 12.3 0.3 (96.8) 3.1 0.2 (92.5) 18.2 0.3 (55.9) 25.3 0.1 (38.7) 30.3 0.2 (26.3) 27.8 -.3 (32.7) 13.2 0.4 (68.0) 0 100 0 (100) 12.3 0.2 (53.8) 10.3 0.1 (61.3) 12.1 0.2 (54.5) 11.6 0.2 (56.7) 2.3 0.2 (91.4) SEM 0.1334 0.138 0.378 CD at 1% 0.5631 0.5800 1.5905 CD at 5% 0.4058 0.4180 1.1462 # Values are mean of three replicates, = standard errors; values in parentheses represent inhibition in mycelia yield (%); LSD at P > 0.1 in comparison with control values.

Table 13: Effect of cell-free culture filtrates (CFCF) of Bacillus isolates on mycelial yield of M. phaseolina. Bacterial strains Mycelial dry weight (mg)# Concentration of CFCF (%, v/v) 15 30 45 Control 56.1 0.2 44.2 0.3 26.4 2 VR11 VR12 VR13 VR14 Bacillus MTCC 441 31.6 0.3 (43.6) 40.2 0.4 (28.3) 32.5 0.3 (42.6) 38.4 0.2 (31.6) 34.2 0.3 (39.0) 12.2 0.6 (72.4) 27.8 0.1 (37.1) 18.2 0.4 ((58.8)) 21.3 0.3 (51.8) 25.7 0.2 (41.9) 0 (100) 5.1 0.2 (80.7) 0 (100) 4.2 0.3 (84.1) 1.9 20.4 (92.8) SEM 0.275 0.113 0.305 CD at 1% 0.1233 0.5059 1.3663 CD at 5% 0.8674 0.3559 0.9612 #, Values are mean of three replicates, = standard errors; values in parentheses represent inhibition in mycelia yield (%); LSD at P > 0.1 in comparison with control values.

Table 14: Effect of cell-free culture filtrates of Bradyrhizobium isolates VR1-VR6 on germination of M. phaseolina sclerotia. Bacterial isolates Concentration (%, v/v) *Values are mean of five replicates, = standard errors Sclerotia germination (%)* Incubation (hours) 48 72 96 Control - 80 2 86 3 93 3 VR1 15 32 3 42 2 54 1 30 23 1 26 1 31 2 45 0 8 3 12 1 VR2 15 28 2 37 2 47 2 30 8 1 12 1 17 1 45 0 0 0 VR3 15 42 2 53 3 62 3 30 35 1 45 1 56 2 45 22 2 31 2 38 2 VR4 15 40 3 51 1 59 3 30 32 1 40 2 52 1 45 20 3 27 3 32 3 VR5 15 38 2 48 1 60 1 30 25 2 34 2 45 3 45 17 4 24 3 29 2 VR6 15 41 2 57 1 65 1 30 25 1 34 1 45 1 45 23 2 29 2 36 3 Brady. NAIMCC- B-00262 15 36 2 47 1 58 1 30 20 1 25 2 31 3 45 0 11 1 15 2

Table 15: Effect of culture filtrates of Bradyrhizobium isolates on hyphal development during sclerotia germination of M. phaseolina after 48 h incubation. Bacterial isolates Concentration (%, v/v) Sclerotia germination (%)* No. of hypha produced /sclerotium 1-3 4-6 >7 Total Control - 4 1 26 3 50 1 80 2 VR1 VR2 VR3 15 4 2 10 1 18 2 32 1 30 21 1 3 2 0 23 3 45 0 0 0 0 15 4 2 17 3 7 2 28 2 30 6 3 2 2 0 8 2 45 0 0 0 0 15 10 2 16 2 26 2 42 3 30 11 1 15 3 9 3 35 2 45 8 2 10 2 4 2 22 1 VR4 15 3 1 14 2 27 3 40 4 30 9 3 19 4 12 2 32 1 45 10 2 8 1 2 1 20 3 15 6 1 12 2 20 2 38 1 VR5 30 10 2 15 4 6 1 25 3 45 11 1 6 2 1 1 17 4 15 8 2 11 1 22 2 41 1 VR6 30 6 1 16 2 3 1 25 3 45 21 3 2 1 0 23 4 Bradyrhizobium sp. NAIMCC-B-00262 15 11 1 18 3 7 2 36 2 30 3 2 16 4 1 1 20 3 45 0 0 0 0 *Values are mean of five replicates, 1 standard error; 0 = No germination

Table 16: Effect of cell-free culture filtrates of isolates of Bacillus on germination of M. phaseolina sclerotia. Bacterial isolates Concentration (%, v/v) Sclerotia germination (%)* Incubation time (hours) 48 72 96 Control - 81 1 87 2 93 2 VR11 15 15 2 24 2 32 4 30 2 2 5 4 7 3 45 0 0 0 VR12 15 41 3 53 3 60 2 30 23 4 31 2 42 2 45 9 2 12 2 21 3 VR13 15 20 2 27 3 35 1 30 3 4 6 1 9 2 45 0 0 0 VR14 15 45 1 60 2 69 3 30 32 2 37 3 51 1 45 17 3 26 2 32 2 Bacilus MTCC 441 15 28 2 43 3 55 2 30 18 3 29 1 38 1 45 0 7 10 2 *Values are mean of five replicates, standard errors

Table 17: Effect of culture filtrates of isolates of Bacillus on hyphal development during sclerotia germination of M. phaseolina after 48 h incubation. Bacterial Concentration Sclerotia germination (%)* isolates (%), v/v No. of hypha produced /sclerotium 1-3 4-6 > 7 Total Control - 8 4 20 2 52 81 4 VR11 VR12 VR13 VR14 Bacillus MTCC 441 15% 3 2 7 3 4 1 14 2 30% 2 1 0 0 2 1 45% 0 0 0 0 15% 11 2 22 1 7 2 40 2 30% 13 1 8 2 3 1 24 1 45% 8 2 2 2 0 10 1 15% 6 3 11 3 4 1 21 2 30% 3 1 0 0 3 1 45% 0 0 0 0 15% 10 4 25 2 9 2 44 2 30% 15 3 11 3 5 1 31 3 45% 11 2 5 2 0 16 1 15% 8 4 13 1 7 1 28 2 30% 10 1 7 1 1 1 18 2 45% 0 0 0 0 *Values are mean of five replicates; standard error.

Table 18. In vitro interaction between bacterial isolates. Isolated VR1 VR2 VR3 VR4 VR5 VR6 VR9 VR10 VR11 VR12 VR13 VR14 VR15 VR16 VR19 VR20 strains VR20 - - - - - - - - - - - - - - + + VR19 - - - - - - - - - - - - - - + VR16 - - - - - - - - - - - - + VR15 - - - - - - - - - - - - + VR14 - - - - - - - - - - - + VR13 ++ ++ - - - - - - ++ - + VR12 - - - - - - - - - + VR11 ++ ++ - - - - - - + VR10 - - - - - - + VR9 - - - - - - + VR6 - - - - - + VR5 - - - - + VR4 - - - + VR3 - - + VR2 ++ + VR1 + +, Synersism, -, Antagonism.

Table 19. Effect of cell-free filtrates of Bradyrhizobium sp. VR2 on growth of Bacillus sp. VR11. Bacillus sp. VR11 Optical density at 660 nm # Incubation time (hours) 0 24 48 72 96 Control 0.18 0.01 0.41 0.03 0.63 0.02 0.78 0.01 0.81 0.02 VR11 0.18 0.01 0.61 0.02 ns 0.92 0.01 ** 1.16 0.02 ** 1.23 0.01 * SEM 0.408 0.408 0.236 0.942 0.239 CD at 1% 0.5247 0.5247 0.3038 0.1212 0.3074 CD at 5% 0.2415 0.2415 0.1399 0.5578 0.1415 #, Values are mean of three replicates, standard error; * and **, LSD at P > 0.1 and P > 0.5, respectively in comparison with control.

Table 20: Intrinsic antibiotic activity shown by bacterial isolates. Antibiotics Antibiotic disk (mcg) Zone of resistance (mm) Zone of sensitivity (mm) VR1 VR2 VR11 Chloramphenicol C 30 17 21 24 (S) 26 (S) 22 (S) Nalidixic acid Na 30 12 21 23 (S) 09 (R) 10 (R) Furazolidone Fr 50 14 18 12 (R) 20 (R) 23 (S) Norfloxacine Nx 10 13 17 18 (S) 21 (S) 11 (R) Oxytetracycline O 30 11 17 19 (S) 24 (S) 21 (S) Cephotaxime Ce 30 15 19 12 (R) 06 (R) 13 (R) Cephalexin Cp 30 14 18 11 (R) 06 (R) 09 (R) Co-trimoxazol Co 25 13 19 21 (S) 06 (R) 24 (S) Ceftazidime Ca 30 16 21 26 (S) 24 (S) 31 (S) Ciprofloxacin Cf 10 12 16 19 (S) 23 (S) 28 (S) Nitrofurantoin Nf 300 12 16 04 (R) 08 (R) 21 (S) Norfloxacin Nx 10 14 18 22 (S) 28 (S) 23 (S) Netillin Nt 30 11 17 24 (S) 19 (S) 21 (S) Ofloxacin Of 5 15 19 26 (S) 24 (S) 21 (S)

Table 21. Effect of seed bacterisation with bacterial isolates on seed germination and seedling growth of V. mungo 30 days after sowing. Treatments Seed germination (%) Root Shoot Nodule No. length (cm) Weight (g) length (cm) Weight (g) Control 71 6.0 0.395 18.5 1.578 6 T1 62 ** 4.4 ** 0.315 ns 17.1 ** 1.126 ns 4 * T2 86 ** 8.3 0.528 ** 25.0 ** 3.116 ns 11 ** T3 80 * 7.8 ** 0.497 * 23.4 ** 2.734 ns 10 ** T4 82 ** 8.0 ** 0.510 * 24.2 ** 3.064 ns 11 ** T5 88 * 8.9 ** 0.661 ** 26.7 ** 3.523 * 12 ** T6 77 ** 7.4 * 0.471 ns 21.2 ** 2.132 * 8 ** T7 76 ** 7.2 ** 0.433 ns 20.0 ** 1.926 * 8 * T8 78 ** 7.8 ** 0.594 ** 23.9 ** 2.469 ** 9 ** SEM 1.329 0.502 0.299 0.171 0.115 0.540 CD at 1% 5.4896 0.2077 0.1237 0.2089 0.4763 2.2421 CD at 5% 3.9849 0.1507 0.8980 0.1516 0.3458 1.1275 Abbreviations: * and **, LSD at P > 0.1 and > 0.5, respectively in comparison with control; T1 M. phaseolina, T2- B. japonicum VR2 nal+, T3- VR1 fur+, T4- VR11 nor+, T5- VR1 fur+ +VR2 nal+ + VR11 nor+, T-6- M. phaseolina + VR1 fur+ +VR2 nal+, T7- M. phaseolina + VR1 fur+ + VR11 nor+, T8- M. phaseolina + VR2 nal+ + VR11 nor+.

Table 22: Effect of seed bacterization with B. japonicum VR1, Bradyrhizobium sp. (Vigna) VR2 and VR11 on plant height and vigour index of V. mungo after 30 DAS in pots. Treatments Plant length Vigour index (cm) Control 24.5 1739.5 T1 21.5 ** 1333.0 T2 33.3 ** 2863.4 T3 31.2 ** 2496.0 T4 32.2 ** 2640.4 T5 35.6 ** 3132.8 T6 28.6 ** 2202.2 T7 27.2 ** 2067.2 T8 31.7 ** 2472.6 SEM 0.729 CD at 5% 0.3012 CD at 1% 0..2186 Abbreviations: * and **, LSD at P > 0.1 and P > 0.5, respectively in comparison with control; T1 M. phaseolina, T2- B. japonicum VR2 nal+, T3- VR1 fur+, T4- VR11 nor+, T5- VR1 fur+ +VR2 nal+ + VR11 nor+, T-6- M. phaseolina + VR1 fur+ +VR2 nal+, T7- M. phaseolina + VR1 fur+ + VR11 nor+, T8- M. phaseolina + VR2 nal+ + VR11 nor+.

Table 23. Effect of seed bacterisation with bacterial isolates on growth of V. mungo 60 days after sowing. Treatment Root Shoot Length (cm) Weight (g) length (cm) Weight (g) Nodule No. Control 10.1 0.723 32.57 2.661 7 T1 9.3 * 0.583 ns 27.83 ** 2.258 * 5 * T2 13.9 ** 1.232 ** 40.33 ** 4.783 ** 13 ** T3 12.9 ** 1.132 ** 38.3 ** 4.486 ** 10 ** T4 13.7 ** 1.173 ** 39.7 ** 4.749 ** 12 ** T5 14.9 ** 1.391 ** 41.37 ** 4.943 ** 14 ** T6 11.4 ** 0.890 * 35.47 ** 3.499 ** 10 ** T7 10.9 * 0.864 ** 33.73 ** 3.462 ** 10 ** T8 11.4 ** 0.964 ** 35.53 ** 3.669 ** 11 ** SEM 0.242 0.472 0.130 0.114 0.419 CD at 1% 1.0014 0.1950 0.5685 0.4729 1.7321 CD at 5% 0.7269 0.1416 0.3909 0.3433 1.2573 Abbreviations: * and **, LSD at P > 0.1 and P > 0.5, respectively in comparison with control; T1 M. phaseolina, T2- B. japonicum VR2 nal+, T3- VR1 fur+, T4- VR11 nor+, T5- VR1 fur+ +VR2 nal+ + VR11 nor+, T- 6- M. phaseolina + VR1 fur+ +VR2 nal+, T7- M. phaseolina + VR1 fur+ + VR11 nor+, T8- M. phaseolina + VR2 nal+ + VR11 nor+.

Table 24. Effect of seed bacterization with twin/tree consortia of Bradyrhizobium sp. (Vigna) isolate VR1 fur+ and VR2 nal+, and Bacillus sp. isolate VR11 nor+ on disease reduction (%). Treatment Number of plants showing disease symptoms # 30 days 60 days T1 6.0 8.0 T5 2.0 (66.7%)* 2.5 (68.7%) T6 4.0 (33.4%) 5.3 (33.7%) T7 4.8 (20.0%) 6.2 (22.5%) T8 3.2 (46.7%) 3.9 (51.2%) #, Values are mean of three replicates of 10 plants of V. mungo. *, Values in parentheses are disease reduction (%). T1 M. phaseolina, T5- VR1 fur+ +VR2 nal+ + VR11 nor+, T-6- M. phaseolina + VR1 fur+ +VR2 nal+, T7- M. phaseolina + VR1 fur+ + VR11 nor+, T8- M. phaseolina + VR2 nal+ + VR11 nor+

Table 25. Root colonization by B. japonicum VR1 fur+, Bradyrhizobium sp. (Vigna) VR2 nal+ and Bacillus sp. VR11 nor+ in the presence of M. phaseolina after 30 and 60 days of sowing (2011). Treatments Log CFU g -1 root segments # Marker strain 30 days 60 days T2 VR2 nal+ 6.51 7.19 T3 VR1 fur+ 6.19 6.72 T4 VR11 nor+ 6.28 7.1 T5 (Consortium A) T6 (Consortium B) T7 (Consortium C) T8 (Consortium D) VR1 fur+ 6.32 6.86 VR2 nal+ 6.87 7.4 VR11 nor+ 6.57 7.14 VR1 fur+ 6.25 6.8 VR2 nal+ 6.69 7.13 VR1 fur+ 6.24 6.88 VR11 nor+ 6.33 6.99 VR2 nal+ 6.76 7.22 VR11 nor+ 6.43 7.15 ##, Values are mean Log cfu of 10 plants; = standard error. T2- Bradyrhizobium sp. VR2 nal+, T3- B. japonicum VR1 fur+, T4- VR11 nor+, T5- VR1 fur+ +VR2 nal+ + VR11 nor+, T6- M. phaseolina + VR1 fur+ +VR2 nal+, T7- M. phaseolina + VR1 fur+ + VR11 nor+, T8- M. phaseolina + VR2 nal+ + VR11 nor+