Department of Pharmacy, University of Asia Pacific, Road # 5 A, House # 73, Dhanmondi, Dhaka-1209, Bangladesh

Similar documents
Formulation and Evaluation of Furosemide Solid Self-emulsifying Drug Delivery System

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

Paridhi et al., ARPB, 2012; Vol 2 (IV) ISSN

Research Article [Gupta et al., 2(3): March, 2011] ISSN:

Cinnarizine loaded lipid based system: preparation, optimization and in-vitro evaluation

DEVELOPMENT AND CHARACTERIZATION OF SELF EMULSIFYING DRUG DELIVERY SYSTEM OF A POORLY WATER SOLUBLE DRUG USING NATURAL OIL

Volume 13, Issue 2, March April 2012; Article-020 FORMULATION AND EVALUATION OF SOLID SELF EMULSIFYING DRUG DELIVERY SYSTEM FOR LIPOPHILLIC DRUG

Journal of Chemical and Pharmaceutical Research, 2012, 4(8): Research Article

Response Surface Methodology for the Optimization of Celecoxib Self-microemulsifying Drug delivery System

Corresponding Author: Onyirioha N. N

Formulation and Assessment of Lipid Based Formulation of Olmesartan Medoxomil

SELF-EMULSIFYING DRUG DELIVERY SYSTEMS: A REVIEW

SELF-EMULSIFYING DRUG DELIVERY SYSTEM: A NOVEL APPROACH FOR ENHANCEMENT OF BIOAVAIBILITY

Biopharmaceutics Dosage form factors influencing bioavailability Lec:5

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE SELF EMULSIFYING DRUG DELIVERY SYSTEM (SEDDS): A REVIEW

Effect of Quail Egg Yolk on the Formulation and Characterisation of Self Emulsifying Drug Delivery Systems of Simvastatin

FORMULATION DEVELOPMENT AND IN-VITRO EVALUATION OF SOLID AND LIQUID SELF EMULSIFYING DRUG DELIVERY SYSTEM OF POORLY WATER SOLUBLE DRUG KETOPROFEN

Self-microemulsifying Formulation-based Oral Solution of Coenzyme Q10

FORMULATION AND CHARACTERIZATION OF TELMISATAN SOLID DISPERSIONS

5. Formulation and Development of Microemulsion and SMEDDS

Evaluation of combination drugs before the development of self-emulsifying drug delivery system

with other antihypertensive drugs), or used in greater doses in acute and chronic renal

Full Length Original Review Article

ENHANCEMENT OF SOLUBILITY OF BICALUTAMIDE DRUG USING SOLID DISPERSION TECHNIQUE

>>> Oral Formulation Optimization. Introduction. A Tiered Approach for Identifying Enabling Formulations

Vol - 4, Issue - 4, Supl 1, Sept 2013 ISSN: Chauhan et al PHARMA SCIENCE MONITOR

Formulation and characterization of pioglitazone HCl self emulsifying drug delivery system

Design and Evaluation of Self-Micro Emulsifying Drug Delivery Systems (SMEDDS) of Cefuroxime Axetil

Self Emulsifying Therapeutic System - A Review

THE INFLUENCE OF OILS AND SURFACTANTS ON THE FORMATION OF SELF-NANOEMULSIFYING DRUG DELIVERY SYSTEMS (SNEDDS) CONTAINING THERAPEUTIC PROTEIN

Development of Self Emulsifying Drug Delivery System: Application to Fenofibrate Delivery

Chemate and Chowdary, IJPSR, 2012; Vol. 3(7): ISSN:

A FACTORIAL STUDY ON ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF IBUPROFEN BY β CYCLODEXTRIN AND SOLUTOL HS15

IBUPROFEN SELF-EMULSIFYING DRUG DELIVERY SYSTEM.

Solid self-emulsifying drug delivery system of Furosemide

Formulation and Evaluation of Self microemulsifying drug delivery system of low solubility drug for enhanced solubility and dissolution

A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF KETOPROFEN BY SOLID DISPERSION IN COMBINED CARRIERS

EFFECT OF PVP ON CYCLODEXTRIN COMPLEXATION OF EFAVIRENZ FOR ENHANCING ITS SOLUBILITY AND DISSOLUTION RATE

Self-microemulsifying drug delivery system for enhancement of oral bioavailability of losartan

FACTORIAL STUDIES ON THE EFFECTS OF HYDROXY PROPYL β- CYCLODEXTRIN AND POLOXAMER 407 ON THE SOLUBILITY AND DISSOLUTION RATE OF BCS CLASS II DRUGS

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

A REVIEW: SELF EMULSIFYING DRUG DELIVERY SYSTEM

Pelagia Research Library

SOLUBILITY ENHANCEMENT OF AZILSARTAN BY SELF- EMULSIFYING LIPID FORMULATIONS

Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability

Design and evaluation of solid self-emulsifying drug delivery system of rosuvastatin calcium

Copyright CSC Publishing

Preparation and Characterization of Candesartan Cilexetil Solid Lipid Nanoparticulate Capsules

Self-microemulsifying drug delivery system (SMEDDS) is a promising system for the Biopharmaceutics Classification

Recent Advances in Self-Emulsifying Drug Delivery Systems

FORMULATION AND EVALUATION OF VALSARTAN TABLETS EMPLOYING CYCLODEXTRIN-POLOXAMER 407-PVP K30 INCLUSION COMPLEXES

skim milk as carrier by kneading method. They were evaluated for percentage yield, drug content, FT-IR

ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF NIMESULIDE BY CYCLODEXTRINS, POLOXAMER AND PVP

SELF-EMULSIFYING DRUG DELIVERY SYSTEM: A NOVEL DRUG DELIVERY SYSTEM

Available online at Downloaded from pbr.mazums.ac.ir at 21: on Saturday October 6th 2018 [ DOI: /pbr.3.2.

Patel B et al. IRJP 1 (1)

Accelerating Lipid-Based Drug Formulation Through Application of an Expert System

Design and Optimization of Rivaroxaban Lipid Solid Dispersion for Dissolution Enhancement using Statistical Experimental Design. ), and Labrasol (X 3

Study of Solubility of Atorvastatin using Ternary Phase Diagram for the Development of Self-Emulsifying Drug Delivery Systems (SEDDS)

7. SUMMARY, CONCLUSION AND RECOMMENDATIONS

Formulation and evaluation of sublingual tablets of lisinopril

ENHANCEMENT OF SOLUBILITY, DISSOLUTION RATE AND BIOAVAILABILITY OF RITONAVIR BY CYCLODEXTRINS AND SOLUTOL HS15 - A FACTORIAL STUDY

STUDIES ON EFFECT OF BINDERS ON ETORICOXIB TABLET FORMULATIONS

Comparative Dissolution Study of Glipizide by Solid Dispersion Technique

Int. Res J Pharm. App Sci., 2013; 3(6):42-46 ISSN:

formulation John K. Tillotson Abitec (SENDS)

Self-Emulsifying Delivery Systems for Poorly Absorbed Drugs

Enabling Lipid Formulations That Harness Supersaturation and Drug Absorption in the GI Tract

SELF-EMULSIFYING DRUG DELIVERY SYSTEM: A NOVEL APPROACH

1. Gastric Emptying Time Anatomically, a swallowed drug rapidly reaches the stomach. Eventually, the stomach empties its content in the small

Formulation Development of Aceclofenac Tablets Employing Starch Phosphate -A New Modified Starch

K. Ravi Shankar et al. /BioMedRx 2013,1(3), Available online through

Development of Solid SEDDS, V: Compaction and Drug Release Properties of Tablets Prepared by Adsorbing Lipid-Based Formulations onto Neusilin US2

SELF EMULSIFYING DRUG DELIVERY SYSTEM (SEDDS): FUTURE ASPECTS

SPS Pharma: Who we are?

A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF ACECLOFENAC BY SOLID DISPERSION IN STARCH PHOSPHATE AND GELUCIRE

FORMULATION AND EVALUATION OF PIROXICAM AND CELECOXIB TABLETS EMPLOYING PROSOLVE BY DIRECT COMPRESSION METHOD

Available online at

FORMULATION AND EVALUATION OF ETORICOXIB TABLETS EMPLOYING CYCLODEXTRIN- POLOXAMER PVPK30 INCLUSION COMPLEXES

IMPAIRMENT OF THE IN VITRO RELEASE OF CARBAMAZEPINE FROM TABLETS

REVIEW LITRETURE 1. Paradkar Anant, et, al, (2005), Patil Pradeep, et, al, (2004), 3. Kommuru, T.R., et, al., (2001),

A Novel Lipid-based Oral Drug Delivery System of Nevirapine

Mixed Hydrotropy: Novel Science of Solubility Enhancement

The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts.

Chapter 1. Introduction. Page no. 1 to 42

Enhanced delivery methods for greater efficacy

International Journal of Pharma Sciences and Scientific Research

Madadi Sunitha Reddy & Mallika Banu. Int. Res. J. Pharm. 2017, 8 (12) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

AN UPDATED REVIEW ON SELF-EMULSIFYING DRUG DELIVERY SYSTEMS (SEDDS)

STABILITY STUDIES OF FORMULATED CONTROLLED RELEASE ACECLOFENAC TABLETS

Self emulsifying drug delivery system-a promising tool to enhance dissolution of poorly soluble drugs

Asian Journal of Pharmacy and Life Science ISSN Vol. 2 (2), July-Sept,2012

Global College of Pharmacy, Kahnpur Khui, Tehsil Anandpur Sahib, Distt.- Ropar, Punjab, India

Preparation of 200 mg fenofibrate hard capsule with high dissolution profile with microparticle entrapped micelles technology

CHAPTER VI FACTORIAL STUDIES ON THE EFFECTS OF CYCLODEXTRINS AND SOLUTOL HS15 ON THE SOLUBILITY AND DISSOLUTION RATE OF EFAVIRENZ AND RITONAVIR

Development and Evaluation of Solid Self Nano- Emulsifying Formulation of Rosuvastatin Calcium for Improved Bioavailability

Combining HME & Solubilization: Soluplus - The Solid Solution By: Hendrik Hardung, PhD; Dejan Djuric, PhD; and Shaukat Ali, PhD

Soluplus The Solid Solution Opening New Doors in Solubilization.

Scholars Research Library. Formulation Development of Pioglitazone Tablets Employing β Cyclodextrin- Poloxamer 407- PVP K30: A Factorial Study

Journal of Chemical and Pharmaceutical Research

Transcription:

IJPSR (2012), Vol. 3, Issue 03 (Research Article) Received on 19 November, 2011; received in revised form 24 December, 2011; accepted 23 February, 2012 IN VITRO STUDY OF SELF EMULSIFYING DRUG DELIVERY SYSTEM OF POORLY WATER SOLUBLE DRUG SPIRONOLACTONE Irin Dewan*, Mahjabeen Gaji, Mohammad Shahriar and S.M. Ashraful Islam Department of Pharmacy, University of Asia Pacific, Road # 5 A, House # 73, Dhanmondi, Dhaka-1209, Bangladesh Keywords: Self Emulsifying Drug Delivery System (SEDDS), Spironolactone, Dissolution, solubility, Bioavailability Correspondence to Author: Irin Dewan Assistant Professor, Department of Pharmacy, University of Asia Pacific, Road # 5 A, House # 73, Dhanmondi, Dhaka- 1209, Bangladesh ABSTRACT The main objective of study was to formulate SEDDS of Spironolactone in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. SEDDS are isotropic mixtures of oils and surfactants, sometimes containing cosolvents. The present research work describes a Self Emulsifying Drug Delivery System (SEDDS) of Spironolactone using oils (Arachise oil, Oleic Acid, Castor oil, Soyabean Oil, Neobee M5, Migloyol, Capmul), surfactants (Tween-80, Cremophor RH40,Cremophor EL) and adsorbents (Aerosil-200,Avicel PH101,Lactose, Dextrose, Mannitol and Talc). In case of SEEDS of Spironolactone, the release rates of all oils were very rapid in Avicel PH101(above 82%) because it has the best flow property among the other absorbents. It Self Emulsifying Drug Delivery System observed that the release pattern from Arachis oil (92.95%), Oleic acid (90.21%) and Castor oil (97.54%) were better in comparison to other oils. Besides, it can be comprehend that the release rate of the three oils were very rapid in Tween-80(above 85%) because it has the best emulsifying property than Cremophor RH40 and Cremophor EL. Besides the solubility of Spironolactone in various oils was determined to identify the oil phase of SEDDS. Various surfactants and co-surfactants were screened for their ability to emulsify the selected oil. The formulation was found to show a significant improvement in terms of the drug release with complete release of drug within 60 minutes. Thus, Self microemulsifying formulation of Spironolactone was successfully developed. INTRODUCTION: Self-emulsifying drug delivery can be orally administered in soft or hard gelatin systems (SEDDSs) have gained exposure for their ability capsules and form fine, relatively stable oil-in-water to increase solubility and bioavailability of poorly emulsions upon aqueous dilution. 2 In recent years, the soluble drugs. SEDDSs are isotropic mixtures of oils and formulation of poorly soluble compounds presented surfactants, sometimes containing co-solvents, and can interesting challenges for formulation scientists in the be used for the design of formulations in order to pharmaceutical industry. Up to 40% of new chemical improve the oral absorption of highly lipophilic entities discovered by the pharmaceutical industry are compounds 1. SEDDSs emulsify spontaneously to poorly soluble or lipophilic compounds, which leads to produce fine oil-in-water emulsions when introduced poor oral bioavailability, high intra and inter subject into an aqueous phase under gentle agitation SEDDS variability, and lack of dose proportionality. Available online on www.ijpsr.com 890

In the oral formulation of such compounds, a number of attempts- such as decreasing particle size, use of wetting agents, co-precipitation, and preparation of solid dispersions have been made to modify the dissolution profile and thereby improve the absorption rate. Recently, much attention has focused on lipidbased formulations to improve the bioavailability of poorly water soluble drugs. Among many such delivery options, like incorporation of drugs in oils, surfactant dispersion, emulsions and liposomes, one of the most popular approaches are the self-emulsifying drug delivery systems (SEDDSs). Self-emulsifying formulations spread readily in the gastrointestinal (GI) tract, and the digestive motility of the stomach and the intestine provide the agitation necessary for self emulsification. These systems advantageously present the drug in dissolved form and the small droplet size provides a large interfacial area for the drug absorption. When compared with emulsions, which are sensitive and metastable dispersed forms, SEDDSs are physically stable formulations that are easy to manufacture. Thus, for lipophilic drug compounds that exhibit dissolution rate limited absorption, these systems may offer an improvement in the rate and extent of absorption and result in more reproducible blood time profiles 3-4. Spironolactone is a potassium-sparing diuretic (water pill) that prevents your body from absorbing too much salt and keeps your potassium levels from getting too low. Spironolactone also treats fluid retention (edema) in people with congestive heart failure, cirrhosis of the liver, or a kidney disorder called nephrotic syndrome. Spironolactone is also used to treat or prevent hypokalemia (low potassium levels in the blood). Recently, due to good and reliable result, there is a great emphasis on self-emulsifying drug delivery systems (SEDDS) to improve the oral bioavailability of lipophilic drugs 5-6. Self-emulsifications is a phenomenon which has been exploited commercially for many years in formulations of emulsifiable concentrates of herbicides and pesticides 7. The most popular approach is the incorporation of the active lipophilic component into inert lipid vehicles 8, surfactant dispersions, selfemulsifying formulations 9, emulsions 10 and liposome 11 with every formulation approach having its special advantages and limitations. There has been growing interest in the use of lipidic excipients in formulations and, in self-emulsifying lipid formulations (SELFs) because of their ability to solubilize poorly water soluble 'lipophilic' drugs and overcome the problem of poor drug absorption and bioavailability 12. The lipophillic (poorly water soluble) drugs such as Nifedipine, Griseofulvin, Cyclosporin, Digoxin, Itraconazole Carbamazepine, Piroxicam, Fluconazole, Indomethacin, Steroids, Ibuprofen, Diazepam, Finasteroids, Difunisal, etc. are formulated in SEDDS to improve efficacy and safety 13. MATERIALS AND METHODS: Materials: Spironolactone (Zhejiang Shenzhou Pharmaceutical Comp. Ltd., China), Castor Oil, Arachis Oil (BDH Chemicals Ltd, Poole, England) Oleic Acid (Merk, Germany), Migloyol (Sasol, Germany), Capmul PG8 (ABITEC CORP., USA), Neobee M5 (STEPAN, USA), Soyabean Oil (Kuok oils & Grains Pte Ltd. Singapore), Talc, Mannitol, Tween- 8, Cremophor RH40 and EL (BASF, Germany), Dextrose, Lactose, Aerosil-200, Avicel PH101 (Gatefosse, France), Tween-20, Tween- 40, Tween-80, Span-60, Span-80, PEG-400 and PEG-600 (Merk, Germany) and liquid Paraffin (MERCK, India). METHOD: Preparation of Spirinolactone SEDDS: Spironolactone SEDDS were prepared by using drug (Spironolactone), oils (Arachise Oil, Oleic Acid, Castor Oil, Soyabean Oil, Neobee M-5, Migloyol, Capmul), surfactants (Tween- 80, Cremophor RH40, Cremophor EL) and adsorbent (Aerosil-200, Avicel PH101, Lactose, Dextrose, Mannitol and Talc) according to table 1, 2 and 3 with proper stirring to make sure a homogenous mixing of the drug in the preparation. Then of the formulation from each was placed into a clean 50 ml beaker with proper labeling and adsorbent was added with continuous stirring until free flowing powder formed. Formulations were kept in desiccators until the dissolution started. Flow chart for the process of preparation of SEDDS: Available online on www.ijpsr.com 891

TABLE 1: FORMULATION FOR THE PREPARATION OF SPIRONOLACTONE SEDDS WITH SURFACTANT AND ADSORBENT USING DIFFERENT OILS Ingredients SPL-Arachise SPL- Oleic SPL-Castor SPL-Soyabean SPL-Neobee SPL-Migloyol SPL-Capmul SPL 300 mg 300 mg 300 mg 300 mg 300 mg 300 mg 300 mg Tween-80 2 gm 2 gm 2 gm 2 gm 2 gm 2 gm 2 gm Avicel PH101 400 mg 400 mg 400 mg 400 mg 400 mg 400 mg 400 mg Arachis Oil Oleic Acid Castor Oil Soyabean Oil Neobee M-5 Migloyol Capmul TABLE 2: FORMULATION FOR THE PREPARATION OF SPIRONOLACTONE SEDDS WITH DIFFERENT ADSORBENTS USING DIFFERENT OILS Ingredients SPL-Arachise SPL- Oleic acid SPL-Castor oil SPL-Soyabean oil SPL-Neobee oil SPL-Migloyol SPL-Capmul SPL 300 mg 300 mg 300 mg 300 mg 300 mg 300 mg 300 mg Tween-80 2 gm 2 gm 2 gm 2 gm 2 gm 2 gm 2 gm Avicel PH101 400 mg Lactose 5 gm Dextrose 10 gm Mannitol 4 gm Talc 7 gm Avicel PH101 400 mg Arachis Oil Oleic Acid Castor Oil Soyabean Oil Neobee M-5 Migloyol Capmul TABLE 3: FORMULATION FOR THE PREPARATION OF SPIRONOLACTONE SEDDS WITH AVICEL PH101 USING DIFFERENT OILS WITH DIFFERENT SURFACTANTS Ingredients SPL-Arachise oil SPL- Oleic acid SPL-Castor oil SPL 300 mg 300 mg 300 mg Tween-80 2 gm Cremophor EL 2 gm Cremophor RH40 2 gm Avicel PH101 2 gm 2 gm 2 gm Arachis Oil Oleic Acid Castor Oil Available online on www.ijpsr.com 892

In vitro dissolution study of SEDDS: In-vitro dissolution was carried out in a USP XXX apparatus 2 (Paddle Apparatus) in 900 ml of distilled water for 1 hour at 37±0.5ºC and at a rotational speed of 50 rpm. Dissolution samples were withdrawn at predetermined intervals and were filtered through 0.45 μm filters. The drug content was determined spectrophotometrically at λ max = 238 nm in the filtrate either directly or after appropriate dilution with the dissolution media. Solubility Studies: The solubility of poorly soluble drug was study in different oils, surfactants and cosurfactants. The solubility of Spironolactone was determined by adding an excess amount of drug in 2 ml of different oils (Castor oil, Soya bean oil, Arachise oil, Capmul oil, Micloyol oil, Oleic acid and Neobee M 5) and surfactants (Tween-20, Tween-40, Tween-80, Span-60, Span-80, PEG-400 and PEG-600) in 5 ml stopper vials and mixed using a vortex mixer (Remi, India).Vials were stirred in a water bath at 40 C for 24 h and allowed to reach equilibrium at 30 C for 72 h. The equilibrated samples were removed from shaker and centrifuged at 3000 rpm for 10 minutes. The supernatant was taken and filtered through a 0.45 μm membrane filter. The concentration of Spironolactone was determined in oils using UV Spectrophotometer (Shimadzu, Tokyo, Japan) at 238 nm 14-15. The experiment was repeated in twice and the results represent the mean value (mg/ml±sd) in table 4 and 5. TABLE 4: SOLUBILITY OF SPIRONOLACTONE IN DIFFERENT OILS (CASTOR OIL, SOYA BEAN OIL, ARACHISE OIL, CAPMUL OIL, MICLOYOL OIL, OLEIC ACID AND NEOBEE M 5) Oils Solubility (mg/ml) Castor oil 120.61±1.13 Soyabean oil 77.61±1.23 Oleic Acid 60.48 ± 2.89 Capmul 55.24 ± 3.11 Arachis oil 48.24 ± 3.11 Migloyol oil 40.78 ± 3.23 Neobee M 5 35.65 ± 1.78 TABLE 5: SOLUBILITY OF SPIRONOLACTONE IN DIFFERENT SURFACTANTS AND CO-SURFACTANTS (TWEEN-20, TWEEN-40, TWEEN-80, SPAN-60, SPAN-80, PEG-400 AND PEG-600) Surfactants Solubility (mg/ml) Tween 20 50.61±1.13 Tween 40 60.61±1.23 Tween 80 80.48 ± 2.89 Span 60 35.24 ± 3.11 Span 80 70.24 ± 3.11 PEG 400 121.78 ± 3.23 PEG 600 160.65 ± 1.78 RESULT AND DISCUSSION: Percent (%) Release study of Spironolactone SEEDS with different adsorbents using Different Oils: According to table 6, it can be said that the release rate of all oils were very rapid in Avicel PH101 because it has the best flow property among the other adsorbents. Whereas the other adsorbents like Aerosil- 200, Lactose, Dextrose, Mannitol and Talc show slow release rate. TABLE 6: PERCENT (%) RELEASE OF SPIRONOLACTONE SEDDS WITH DIFFERENT ADSORBENTS USING DIFFERENT OILS Oil Aerosil-200 Avicel PH101 Lactose Dextrose Mannitol Talc Neobee M-5 72.76 82.35 79.86 77.57 80.51 68.66 Capmul 75.41 84.98 76.05 77.86 83.78 72.19 Oleic Acid 84.24 90.21 90.57 89.98 88.37 85.8 Migloyol 77 86.53 82.22 76.49 72.78 70.64 Arachis Oil 87.36 92.95 91.10 91.88 91.12 78.71 Castor Oil 90.29 97.54 96.75 93.87 92.95 94.94 Soyabean Oil 82.41 92.95 85.89 87.26 81.95 77.25 Avicel PH101 can be used in the formulation of poorly water-soluble drug as it causes the rapid release of Spironolactone. This test was performed to choose an adsorbent for further use in some other formulations. It was observed from figure 1 and 2 that the release pattern from Castor Oil, Arachise Oil and Oleic Acid were better in comparison to other oils. Percent (%) Release of Spironolactone SEDDS with different oils using different surfactants: From figure 3, it can be figure out that the release rate of the three oils was very rapid in Tween-80 because it has the best emulsifying property among the other surfactants. Whereas the other surfactants like Cremophor RH40 and Cremophor EL showed slow release rate. Tween - 80 can be used in the formulation of poorly watersoluble drug as it has the solubilizing property for a variety of substances, including essential oils and oilsoluble vitamins, and as a wetting agent in the formulation of oral and parenteral suspensions. This test was performed to choose a surfactant for further use in some other formulations. Available online on www.ijpsr.com 893

FIGURE 1: PERCENT RELEASE ( OR DISSOLUTION STUDY) OF SPIRONOLACTONE SEDDS WITH DIFFERENT ADSORBENTS USING DIFFERENT OILS (CASTOR OIL, SOYA BEAN OIL, ARACHISE OIL, CAPMUL OIL, MICLOYOL OIL, OLEIC ACID AND NEOBEE M 5) Solubility studies: Solubility studies were aimed to identify a suitable oily phase for the development of Spironolactone SEDDS. The solubility of the drug was tested in different oils phases and maximum solubility was determined in castor oil 120.61±1.13 mg/ml and was selected as oily phase for SEDDS formulation that has shown in figure 4. Besides the solubility of the drug was tested in different surfactants and co-surfactants and maximum solubility determined 80.48 ± 2.89mg/ml of tween-80 as a surfactant phase and 160.65 ± 1.78 mg/ml of PEG-600 as a co-surfactant phase that has shown in figure 5. It was selected as surfactant for SEDDS formulation. FIGURE 2: EFFECTS OF PERCENT RELEASE OF SPIRONOLACTONE SEDDS FROM DIFFERENT ADSORBENTS (AEROSIL-200, LACTOSE, DEXTROSE, MANNITOL AND TALC) FIGURE 4: SOLUBILITY OF SPIRONOLACTONE IN DIFFERENT OILS (CASTOR OIL, SOYA BEAN OIL, ARACHISE OIL, CAPMUL OIL, MICLOYOL OIL, OLEIC ACID AND NEOBEE M 5) FIGURE 3: PERCENT RELEASE OF SPIRONOLACTONE SEDDS WITH DIFFERENT OILS (CASTOR OIL, SOYA BEAN OIL AND ARACHISE OIL) USING DIFFERENT SURFACTANTS (TWEEN 80, CREMOPHOR RH 40 AND CREMOPHOR EL) FIGURE 3: SOLUBILITY OF SPIRONOLACTONE IN DIFFERENT SURFACTANTS AND CO-SURFACTANTS (TWEEN-20, TWEEN-40, TWEEN- 80, SPAN-60, SPAN-80, PEG-400 AND PEG-600) Available online on www.ijpsr.com 894

CONCLUSION: Spironolactone is a potassium-sparing diuretic, acts as a competitive antagonist to aldosterone. Spironolactone was formulated as a SEDDS in an attempt to increase its solubility. An optimized formulation of SEDDS containing Spironolactone was developed through the construction of in-vitro dissolution study, and solubility study. SEDDS provided significant increase in the solubility compared to pure drug formulation. SEDDS appeared to be an interesting approach to improve problems associated with oral delivery of Spironolactone. Spironolactone SEDDS formulation was superior to pure drug formulation with respect to in-vitro dissolution profiles activity. Thus, SEDDS can be regarded as novel and commercially feasible alternative in future. ACKNOWLEDGEMENT: The authors are thankful to Incepta Pharmaceutical Ltd., for providing active drug Spironolactone as gift sample for the research work. The authors would also like to acknowledge the support received from the Pharmaceutics Research Laboratory of the Department of Pharmacy, University of Asia Pacific. REFERENCES: 1. Charman SA, Charman WN, Rogge MC, Wilson TD, Dutko FJ, Pouton CW. 1992. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm Res 9: 87-93. 2. Craig DQM, Lievens HSR, Pitt K G, Storey DE, (1993), An investigation into physico-chemical properties of selfemulsifying systems using low frequency dielectric spectroscopy, surface tension measurements and particle size analysis. Int J Pharm 96: 147-55. 3. Kommuru TR, Gurley B, Khan MA, Reddy IK, (2001), Selfemulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm 212: 233-6. 4. Aungst BJ, (1993), Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism. J Pharm Sci 82: 979-87. 5. Humberstone AJ, Charman WN (1997), Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Del Rev 25: 103-28. 6. Pouton CW (1997), Formulation of self-emulsifying drug delivery systems. Adv Drug Del Rev 25: 47-58. 7. Gursoy RN, Benita S, (2004), Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 58: 173-82. 8. Gershanik T, Benita S, (2000), Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm 50: 179-88. 9. Constantinides PP, (1995), Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res 12: 1561-72. 10. MacGregor KJ, Embleton JK, Perry EA, et al.1997. Lipolysis of oily formulations in the gastro-intestinal tract. Adv Drug Delivery Rev 25: 33-46. 11. Devani M, Ashford M, Craig DQ, (2004). The emulsification and solubilisation properties of polyglycolysed oils in selfemulsifying formulations. J Pharm Pharmacol 56: 307-16. 12. Patel PA, Chaulang GM, (2008), Self Emulsifying Drug Delivery System: A Review. Research J Pharm and Tech 1(4): 313-323. 13. Jannin V. (2008), Approaches for the development of solid and semisolid lipid-based formulations. Adv Drug Delivery Rev 60; 734 746. 14. Date AA, Nagarsenker MS, (2007), Design and evaluation of self nanoemulsified drug delivery systems (SNEDDS) for Cefpodoxime Proxetil. Int J Pharm. 329:166-72. 15. Hirlekar R, Kadam V, (2009), Preformulation Study of the Inclusion Complex Irbesartan-â-Cyclodextrin. AAPS Pharm Sci Tech, 10: 276-81. *********************** Available online on www.ijpsr.com 895