Upregulation of CD11b on Eosinophils in Aspirin Induced Asthma

Similar documents
Effect of theophylline on CD11b and L-selectin expression and density of eosinophils and neutrophils in vitro

The relationship between historical aspirininduced asthma and severity of asthma induced during oral aspirin challenges

Prevention and management of ASA/NSAID hypersensitivity

Prostaglandin E 2 systemic production in patients with asthma with and without aspirin hypersensitivity

Effect of acyclovir on bronchoconstriction and urinary leukotriene E 4 excretion in aspirininduced

Understanding How Allergic Responses End: The Allergy Resolvome. Lipid mediators

CYSTEINYL LEUKOTRIENE RECEPTOR IN ASPIRIN SENSITIVITY

Phenotypes of asthma; implications for treatment. Medical Grand Rounds Feb 2018 Jim Martin MD DSc

The Acute & Maintenance Treatment of Asthma via Aerosolized Medications

C. Berends*, B. Dijkhuizen*, J.G.R. de Monchy*, A.E.J. Dubois*, J. Gerritsen**, H.F. Kauffman*

LINEE GUIDA DELL ASMA: UP TO DATE

Clinical Implications of Asthma Phenotypes. Michael Schatz, MD, MS Department of Allergy

Effect of inhaled leukotriene B4 alone and in

Impact of Asthma in the U.S. per Year. Asthma Epidemiology and Pathophysiology. Risk Factors for Asthma. Childhood Asthma Costs of Asthma

Oral and bronchial provocation tests with aspirin for diagnosis of aspirin-induced asthma

Immunology of Asthma. Kenneth J. Goodrum,Ph. Ph.D. Ohio University College of Osteopathic Medicine

Management of Bronchial Asthma in Adults..emerging role of anti-leukotriene

Additive effect of cysteinyl leukotriene or thromboxane modifiers to inhaled corticosteroids in asthmatic patients

O ver the last two decades the incidence of asthma in

In 2002, it was reported that 72 of 1000

GINA. At-A-Glance Asthma Management Reference. for adults, adolescents and children 6 11 years. Updated 2017

Asthma Update A/Prof. John Abisheganaden. Senior Consultant, Dept Of Respiratory & Crit Care Medicine Tan Tock Seng Hospital

Robert Kruklitis, MD, PhD Chief, Pulmonary Medicine Lehigh Valley Health Network

NG80. Asthma: diagnosis, monitoring and chronic asthma management (NG80)

Amanda Hess, MMS, PA-C President-Elect, AAPA-AAI Arizona Asthma and Allergy Institute Scottsdale, AZ

Clinical Evaluation of Leukotriene Receptor Antagonists in Preventing Common Cold-like Symptoms in Bronchial Asthma Patients

Diagnosis and Management of Fungal Allergy Monday, 9-139

12/22/13. Conflict of Interest. Acknowledgements. AERD as a Disease of Excessive Cysteinyl Leukotriene Production and Responsiveness

Abstract Background Acute exposure of healthy subjects to swine house dust causes increased

Increased levels of cysteinyl-leukotrienes in saliva, induced sputum, urine and blood from patients with aspirin-intolerant asthma

Using Patient Characteristics to Individualize and Improve Asthma Care

Meeting the Challenges of Asthma

The role of cysteinyl leukotrienes in asthma: From the molecule to the bedside

Exhaled Nitric Oxide: An Adjunctive Tool in the Diagnosis and Management of Asthma

KEY WORDS airflow limitation, airway hyperresponsiveness, airway inflammation, airway lability, peak expiratory flow rate

Do We Need Biologics in Pediatric Asthma Management?

Defining Asthma: Clinical Criteria. Defining Asthma: Bronchial Hyperresponsiveness

E-1 Role of IgE and IgE receptors in allergic airway inflammation and remodeling

Soluble ADAM33 initiates airway remodeling to promote susceptibility for. Elizabeth R. Davies, Joanne F.C. Kelly, Peter H. Howarth, David I Wilson,

Xolair (Omalizumab) Drug Prior Authorization Protocol (Medical Benefit & Part B Benefit)

EICOSANOID METABOLISM

Aspirin-exacerbated respiratory disease (AERD) is a

Searching for Targets to Control Asthma

Property of Presenter

Common and differential patterns in the inflammatory mediator release

Treatment Responses. Ronald Dahl, Aarhus University Hospital, Denmark

감초 (Glycyrrhiza uralensis Fisch, GLU) 가천식모델생쥐의 BALF 내면역세포및 Cytokine 에미치는효과

asthma, order-made medicine, phenotypes 2.1 Cluster analysis by Haldar et al.

Complements asthma therapy NOT a CURE for Severe. Non pharmacologic treatment of asthma. limits the ability of the airways to constrict.

What is Severe Persistent Asthma? What is Bronchial Thermoplasty Non pharmacologic treatment of asthma

Asthma in Day to Day Practice

IgE-mediated allergy in elderly patients with asthma

WEBINAR. Difficult-to-treat and severe asthma: changing the paradigm

Defining Asthma: Clinical Criteria. Defining Asthma: Bronchial Hyperresponsiveness

Defining Asthma: Bronchial Hyperresponsiveness. Defining Asthma: Clinical Criteria. Impaired Ventilation in Asthma. Dynamic Imaging of Asthma

10.00 PBS OVA OVA+isotype antibody 8.00 OVA+anti-HMGB1. PBS Methatroline (mg/ml)

Monocast Description Indications

Policy Effective 4/1/2018

CME/CE POSTTEST CME/CE QUESTIONS

Sponsor. Generic drug name. Trial indication(s) Protocol number. Protocol title. Clinical trial phase. Study Start/End Dates.

Respiratory Subcommittee of PTAC meeting held 5 February (minutes for web publishing)

Prostaglandin (PG) endoperoxidase. Glucocorticoid therapy increases COX-2 gene expression in nasal polyps in vivo

On completion of this chapter you should be able to: discuss the stepwise approach to the pharmacological management of asthma in children

IL-5 production by bronchoalveolar lavage and peripheral blood mononuclear cells in asthma and atopy

December 7, 2010 Future Use of Biologics in Allergy and Asthma

1) Mononuclear phagocytes : 2) Regarding acute inflammation : 3) The epithelioid cells of follicular granulomas are :

Cigna Drug and Biologic Coverage Policy

Asthma, rhinitis, other respiratory diseases

M.O. Hoekstra*, H. Hovenga**, J. Gerritsen*, H.F. Kauffman**

Alternative agents for anti-inflammatory treatment of asthma

Comparison of the Effect of Short Course of Oral Prednisone in Patients with Acute Asthma

Biologic Agents in the treatment of Severe Asthma

Difference in the onset mechansisms of attacks between atopic and nonatopic asthma. A role of leukotriene C 4

BUDESONIDE AND FORMOTEROL (SYMBICORT ): Α A REVIEW

THE NEW ZEALAND MEDICAL JOURNAL

Exercise-Induced Bronchospasm. Michael A Lucia, MD, FCCP Asst Clinical Professor, UNR School of Medicine Sierra Pulmonary & Sleep Institute

Spontaneous production of interleukin-5 and its heterogeneous effect on eosinophils in an adult T-cell leukemia patient

Traiter l asthme sévère par le phénotype. Dr. Alain Michils CUB-Hôpital Erasme

DR REBECCA THOMAS CONSULTANT RESPIRATORY PHYSICIAN YORK DISTRICT HOSPITAL

Clinical efficacy of montelukast in anti-inflammatory treatment of asthma and allergic rhinitis

Role of Leukotriene Receptor Antagonists in the Treatment of Exercise-Induced Bronchoconstriction: A Review

Age-related changes of IgE-mediated allergic reaction in patients with late onset asthma.

C ough variant asthma, gastro-oesophageal reflux associated

Asthma Description. Asthma is a disease that affects the lungs defined as a chronic inflammatory disorder of the airways.

THE PROMISE OF NEW AND NOVEL DRUGS. Pyng Lee Respiratory & Critical Care Medicine National University Hospital

New TLD Indication: Asthma RELIEF-1 Study. Nick ten Hacken, MD Study Co-Principal Investigator

Optimal Assessment of Asthma Control in Clinical Practice: Is there a role for biomarkers?

Aspirin-Intolerant Asthma (AIA) Assessment Using the Urinary Biomarkers, Leukotriene E4 (LTE4) and Prostaglandin D2 (PGD2) Metabolites

Supplementary Figures

Leukotoxin and its diol induce neutrophil chemotaxis through signal transduction different from that of fmlp

Diagnosis, Treatment and Management of Asthma

Organic dust-induced interleukin-12 production activates T- and natural killer cells

Step up if needed (first, check adherence, environmental control and comorbid conditions) Patients ASSESS CONTROL. Step down if possible

Usefulness of Bronchial Thermoplasty for Patients with a Deteriorating Lung Function

Global Initiative for Asthma (GINA) What s new in GINA 2016?

Allergic rhinitis (Hay fever) Asthma Anaphylaxis Urticaria Atopic dermatitis

Asthma Therapy 2017 JOSHUA S. JACOBS, M.D.

Supplementary Medications during asthma attack. Prof. Dr Finn Rasmussen PhD. DrMedSc. Near East University Hospital North Cyprus

Functional studies of genes involved in pathogenesis of aspirin-induced asthma

Evaluation of directed and random motility in microslides Assessment of leukocyte adhesion in flow chambers

Transcription:

Allergology International. 213;62:367-373 DOI: 1.2332 allergolint.12-oa-499 ORIGINAL ARTICLE Upregulation of CD11b on Eosinophils in Aspirin Induced Asthma Sumito Isogai 1, Masamichi Hayashi 1, Naoki Yamamoto 2, Mariko Morishita 1, Tomoyuki Minezawa 1, Takuya Okamura 1, Tami Hoshino 1, Mitsushi Okazawa 1 and Kazuyoshi Imaizumi 1 ABSTRACT Background: Although a challenge test using non-steroidal anti-inflammatory drugs (NSAIDs) is crucial for diagnosis of aspirin-induced asthma (), it also has drawbacks in terms of possible side effects. Therefore, alternative in-vitro diagnostic methods for are awaited. Methods: Nineteen stable non- patients (9 males and 1 females; mean age, 49.4 ± 4.8 years), and 2 patients (9 males and 11 females; mean age, 51.1 ± 4.8 years) were enrolled in this study. CD11b and CD16 expressions on the peripheral-blood granulocytes after administration of aspirin and different concentrations of PGE2 in vitro were examined using flowcytometry. Results: Aspirin induced a significant increase in CD11b expression on eosinophils (CD16 negative granulocytes) in 19 patients and one non- patient. Increase in CD11b expression on eosinophils by aspirin administration was suppressed by PGE2 in a dose-dependent manner. Conclusions: The measurement of CD11b expression on peripheral-blood eosinophils showed very high sensitivity and specificity of (-95%) in diagnosing. Although this method requires laboratory facilities for flowcytometry, it may be very useful in diagnosis of without side effects. In addition, PGE2 may be involved in regulation of CD11b expression on eosinophils by aspirin administration. KEY WORDS adhesion molecule, aspirin, asthma, CD11b, eosinophils INTRODUCTION In patients with, asthma attacks are induced by almost all NSAIDs having aspirin-like effects. Cyclooxygenase (COX) inhibition, which is a pharmacological action common to these NSAIDs, is considered to trigger this hypersensitivity reaction to aspirin. In other words, is thought to accompany some abnormalities in the biological reaction associated with the pathway of arachidonic acid metabolism or arachidonic acid metabolite, and such abnormalities become obvious after administration of NSAIDs and manifest as hypersensitivity reactions. Although a challenge test using NSAIDs is essential for the definitive diagnosis of, it has problems both in terms of the diagnostic sensitivity and specificity and is associated with risks. Therefore, methods for in vitro diagnosis of have been sought. 1Division of Respiratory Medicine and Clinical Allergy, Department of Internal Medicine, Fujita Health University School of Medicine and 2 Laboratory of Molecular Biology and Histochemistry, Fujita Health University Joint Research Laboratory, Aichi, Japan. Conflict of interest: No potential conflict of interest was disclosed. Correspondence: Sumito Isogai, Division of Respiratory Medicine and Clinical Allergy, Department of Internal Medicine, Fujita Health Several attempts have been made to develop in vitro diagnosis methods for, and approaches based on peptide leukotriene (plt) production, 15-hydroxyeicosatetraenoic (HETE) production, 1,2 and lipoxin production 3 in peripheral blood polymorphonuclear leukocytes (PMNs) as indicators have been examined. However, adequate follow-up and verification have not been conducted, and their usefulness remains questionable. Eosinophils are inflammatory cells that play central roles in the onset and pathology of and are known to be activated by the administration of aspirin in patients. 4 If a reaction specific to could be detected at the level of the peripheral blood eosinophils, it may be useful for the diagnosis and clinical research of. Therefore, the potential usefulness of a method using the adhesion molecule CD11b expressed on the cell surface of eosinophils as a marker University School of Medicine, Dengakugakubo 1 98, Kutsukakecho, Toyoake, Aichi 47 1192, Japan. Email: isogai@fujita hu.ac.jp Received 4 September 212. Accepted for publication 4 April 213. 213 Japanese Society of Allergology Allergology International Vol 62, No3, 213 www.jsaweb.jp 367

Isogai S et al. for the in vitro diagnosis of was examined in this study. METHODS SUBJECTS For the basic examination, 8 non- patients (3 males and 5 females; mean age, 41.3 ± 16. years) and 8 patients (4 males and 4 females; mean age, 42.9 ± 1.1 years) who were being treated at the outpatient unit of our hospital and whose symptoms were stable (mild or moderate by GINA [Global Initiative for Asthma] classification) at the time of enrollment in the study were selected as the subjects. The characteristics and background of and non- patients who participated in this study were shown in Table 1. All patients in this study were diagnosed as asthma because of common asthmatic symptoms and pulmonary function indicating the reversibility of airflow limitation, i.e.; 1) Postbronchodilator improvement of 12% and 2 ml in forced expiratory volume in 1 second (FEV1.) from the baseline, or 2) >2% increase in FEV1. following 2 weeks of treatment with inhaled or systemic corticosteroids. For the diagnosis of, we used inhalation provocation test. Increasing doses of tolmetin and sulpyrine in geometric progression (tolmetin;.5,.5, 5., 5 mg ml and sulpyrine; 1., 1, 1 mg ml) were administered patients by inhalation from a dosimeter-controlled jet nebulizer. The provocation test was considered positive and stopped when FEV1. had fallen >2% from the post-saline baseline value. For examination of the in vitro diagnosis method, 19 non- patients (9 males and 1 females; mean age, 49.4 ± 4.8 years) and 2 patients (9 males and 11 females; mean age, 51.1 ± 4.8 years) who were being treated at the outpatient unit of our hospital and whose symptoms were stable at the time of enrollment in this study were selected as the subjects. The significance of this study was explained to all the subjects, and informed consent was obtained from each of them. Then, basic pulmonary function tests and general hematology tests were conducted, and peripheral venous blood samples were collected. All the subjects were subjected to tolmetin and sulpyrine inhalation challenge tests for diagnosis of hypersensitivity to NSAIDs. Patients who were assessed as showing positive results in these inhalation challenge tests and who also had a history of NSAIDinduced asthma attacks were regarded as having. Patients who showed negative on all these tests were regarded as non-. Isolation of Peripheral Blood Eosinophils Approximately 2 ml of blood was collected from a peripheral vein of the target patients, and PMNs were isolated from the blood by the specific gravity centrifuge method using mono-poly resolving medium Table 1 Patient characteristics of the patients in this study non- n 2 19 Sex (M/F) 9/11 9/1 n.s. Age (mean [SD]) 51.1 (4.8) 49.4 (4.8) n.s. Atopic (YES/NO) 7/13 8/11 n.s. WBC (/mm 3 : mean [SD]) 64 (13) 68 (19) n.s. Eosinophil (%: mean [SD]) 8.3 (5.2) 6.7 (5.) n.s. Severity (mild/moderate) 7/13 8/11 n.s. Therapy ICS (μg: mean [SD]) 35 (171) 31 (112) n.s. LABA (n) 6 5 n.s. Theophylline (n) 7 9 n.s. LTRA (n) 11 7 n.s. n.s., not signifi cant; ICS, inhaled corticosteroid; LABA, long acting beta agonist; LTRA, leukotriene receptor antagonist. (Dainippon Pharmaceutical, Osaka, Japan). The cells were washed with phosphate-buffered saline (PBS), and the cell count was adjusted to 2 1 6 ml with RPMI164 culture solution containing 1% fetal bovine serum (FBS) (Sigma, St Louis, MO, USA) (Fig. 1). Measurement of CD11b Expression The suspension of isolated PMNs was stained for 45 minutes with fluorescein isothiocyanate (FITC)- labeled CD11b monoclonal antibody and phycoerythrine (PE)-labeled CD16 monoclonal antibody while being kept cool with ice. Then, the sample was immobilized with 1% paraformaldehyde. Thereafter, the eosinophil fraction (CD16-negative) and neutrophil fraction (CD16-positive) were separated using flowcytometer (FACScan, Becton Dickinson, NJ, USA) based on the presence absence of CD16 expression, and the CD11b expression level was determined by mean fluorescence intensity (MFI). To investigate the effect of aspirin, aspirin was added to a suspension of the isolated PMNs at a concentration of 1 4 M-1 7 M, followed by double stain for CD11b and CD16. Furthermore, the effect of addition of prostaglandin E2 (PGE2) (1 7 M-1 5 M) on the aspirin-induced change of CD11b expression level was also examined. A sample of the non-stimulated cell suspension to which the vehicle alone was added was used as the control. Ethical Considerations As described above, the subjects were enrolled after the objectives, method, and significance of the study had been clearly explained and informed consent had been obtained and this study was approved by the ethics committee of Fujita Health University. The sulpyrine and tolmetin inhalation challenge tests were conducted to diagnose hypersensitivity to 368 Allergology International Vol 62, No3, 213 www.jsaweb.jp

CD11b for Diagnosis of Centrifugation Ficoll-hypaque liquid Polymorphonuclear cell layer Aspirin (1 4-1 7 M) With or without PGE 2 FITC-labeled anti-cd11b Ab PE-labeled anti CD16 Ab Incubate 3 min 37 C 2 1 6 cell/ml RPMI164 with 1% FBS On ice 45 min Fig. 1 A scheme of experimental procedures. Approximately 2 ml of peripheral blood was collected from each patient, and polymorphonuclear leukocytes (PMNs) were isolated by the specific gravity centrifuge method. Aspirin with or without PGE 2 was added to a suspension of the isolated PMNs. After centrifugation followed by re-suspension with PBS, the sample was stained with FITC-labeled anti-cd11b monoclonal antibody and PE-labeled anti-cd16 monoclonal antibody. NSAIDs. These tests are routinely conducted in patients with bronchial asthma at our department, and therefore, were considered as being within the scope of routine clinical practice. Statistics All but a few figures were expressed as mean ± S.E. Concerning the results of measurements by flowcytometry, the value in the control was regarded as 1%, and the change rates were calculated according to the equation; change rate = (target MFI - control MFI) control MFI. Mann-Whitney s U test was used for the statistical processing, and the level of significance was set at p <.5. RESULTS COMPARISON OF THE BASIC EXPRESSION LEVELS OF EOSINOPHIL CD11b IN THE NON- STIMULATED STATE Flowcytometric analysis of PMNs with CD16 antibody clearly demonstrated two distinct cell populations (neutrophils as CD16-positive and eosinophils as CD16-negative) (Fig. 2a). Thus, we could identify the eosinophils from PMNs by gating for CD16 negative cell population (Fig. 2b) and used them in the following experiments. In this study, we analyzed the surface expression of CD11b quantitatively by fluorescence intensity. MFI representing CD11b expression in the non-stimulated state was 147.3 ± 12.1 in the non- group and 13.4 ± 4.7 in the group; the difference between the two groups was not significant (Fig. 3). EFFECTS OF ASPIRIN ADDITION ON THE CD11b EXPRESSION LEVEL We investigated the effect of aspirin addition on the CD11b surface expression on eosinophils evaluated quantitatively by fluorescence intensity. The change of CD11b expression level from the baseline was -5.7 ± 3.2% in the non- group and 6.1 ± 3.1% in the group after addition of 1 7 M aspirin, -3.5 ± 2.2% in the non- group and 9.9 ± 3.1% in the group after addition of 1 6 M aspirin, -1.2 ± 2.2% in the non- group and 7.3 ± 3.1% in the group after addition of 1 5 M aspirin, and -8. ± 2.6% in the non- group and 7.7 ± 2.8% in the group after addition of 1 4 M aspirin (Fig. 4). These results demonstrated that CD11b expression on eosinophils from patients was significantly increased from the baseline by aspirin stimulation (p <.5). However, intriguingly, aspirin stimulation significantly decreased the CD11b on eosinophils from non- patients. A representative flowcytometric data of aspirininduced enhancement of CD11b on eosinophils from an patient was shown in Figure 2c, d. EFFECTS OF PGE2 ADDITION ON THE ASPIRIN- INDUCED INCREASE OF CD11b EXPRESSION The increase of CD11b expression on the eosinophils induced by 1 4 M aspirin in the group tended to be inhibited by the addition of PGE2, in a concentration-dependent manner (.2 ± 2.9% at 1 7 Allergology International Vol 62, No3, 213 www.jsaweb.jp 369

Isogai S et al. a 1 4 b 1 4 1 3 1 3 CD16PE 1 2 neutrophils CD16PE 1 2 1 1 eosinophils 1 1 c 1 1 4 1 1 1 1 2 1 1 3 1 4 1 1 1 1 2 d 1 1 3 1 4 1 3 8 CD16PE 1 2 % of Max 6 4 1 1 2 1 1 1 1 1 2 1 3 1 4 1 1 1 1 2 1 3 1 4 Fig. 2 Flowcytometric analysis of CD11b expression on eosinophils. PMNs from a non- patient were double stained with anti-cd16 and anti-cd11b (a). The eosinophil fraction (CD16- negative) was separated from neutrophil fraction (CD16-positive) using fl ow cytometry (b). PMNs from an patient under the aspirin stimulation were stained with anti-cd16 and anti-cd11b (c). The eosinophil fraction from an patient increased CD11b expression by the stimulation of aspirin (1 4 M) (d). Data are representative of three independent experiments. MFI 16 12 8 4 non- Fig. 3 Comparison of the CD11b expression on eosinophils in the aspirin non-stimulated condition (control) measured by mean fl uorescence intensity (MFI) when stained with FITC-anti CD11b antibody. CD11b expression in the non-stimulated state was 147.3 ± 12.1 in the non- group and 13.4 ± 4.7 in the group; the difference between the 2 groups was not significant. Columns and vertical bars represent the mean ± SE. M, -.6 ± 2.9% at 1 6 M,and-3.5±4.%at1 5 of PGE2; a tendency toward a significant difference (p =.7) was seen after the addition of 1 5 M as compared with the value seen in the absence of addition of PGE2 [5.2 ± 2.4%]). No obvious differences were observed in the non- group (Fig. 5). POSSIBILITY OF in vitro DIAGNOSIS OF US- ING ASPIRIN-INDUCED CD11b EXPRESSION LEVEL ON THE PERIPHERAL BLOOD EOSINO- PHILS AS AN INDICATOR When cases showing increase of CD11b expression on the peripheral blood eosinophils after the addition of 1 4 M aspirin were regarded as positive, 19 out of 2 patients were assessed as positive in the group (sensitivity 95.%) and only 1 out of 19 patients was assessed as positive in the non- group (specificity 94.7%) (Fig. 6). DISCUSSION is an important condition that should always be borne in mind when treating patients with bronchial asthma. In regard to the mechanism of its onset, inhi- 37 Allergology International Vol 62, No3, 213 www.jsaweb.jp

CD11b for Diagnosis of 2 Non- Rate of change (%) 1-1 1 7 M 1 6 M 1 5 M Aspirin 1 4 M Fig. 4 Effects of aspirin (1 7 M to 1 4 M) on the CD11b expression of eosinophils. Eosinophils from patients or non- patients were stimulated with aspirin at various concentrations (1 4 M-1 7 M), followed by assessment of CD11b expression by flowcytometer. With aspirin stimulation, CD11b expression level on eosinophils from patients signifi cantly increased from the baseline (nonstimulated condition), while it signifi cantly decreased on the eosinophils from non- patients. Columns and vertical bars represent the mean ± SE. p <.5 compared to the non-stimulated baseline. bition of COX in the pathway of arachidonic acid metabolism by NSAIDs is believed to play a major role. With regard to the arachidonic acid metabolites most closely involved in the pathology of, there have been reports of elevated leukotriene E4 (LTE4) levels in the urine 5,6 and elevated topical PGE2 levels in the airways 5,7 in patients in a stable clinical state as compared with those in non- patients. Also, following exposure to NSAIDs, the LTE4 levels in the urine 8-1 and topical plt levels in the airways 9,1 reportedly increase and the topical PGE2 levels in the airways decrease significantly. 9 The NSAID challenge tests for the diagnosis of include systemic challenge tests and local challenge tests. The systemic challenge tests can be conducted by oral or intravenous administration. Being a systemic test, it is more reliable and symptoms outside of the airways can also be identified; however, the induced symptoms may become severe, increasing the risk levels of the tests. The intravenous test can no longer be performed in Japan, because marketing of the reagent for the test, lysine-aspirin, has been discontinued here. Bronchial inhalation is used for local challenge tests; however, this approach is not necessarily ideal because only local symptoms can be identified, and often, pseudonegative results are obtained. The standard approach used at present is the oral aspirin challenge test. However, challenge tests are associated with the risk of developing severe symptoms, and an in vitro method of diagnosis has been awaited. Several attempts have been made to develop methods for in vitro diagnosis of, and approaches based on plt production, 15-HETE production 11 and lipoxin production 12 in the peripheral blood PMNs as indicators have been examined. However, adequate follow-up and verification have not been conducted, and their usefulness remains questionable. Therefore, the potential usefulness of a method using the adhesion molecule CD11b expressed on the cell surface of eosinophils as a marker for the in vitro diagnosis of was examined in this study. CD11b is an adhesion molecule associated with local accumulation of eosinophils in the airways and is regarded as an indicator of activation of granulocytes. The expression level of this molecule increases following stimulation of the cells by various factors such as interleukin (IL)-4 and IL-5 and platelet activating Allergology International Vol 62, No3, 213 www.jsaweb.jp 371

Isogai S et al. 1 p <.5 p =.7 Non- Rate of change (%) 5-5 -1 1 7 M 1 6 M 1 5 M PGE 2 Aspirin 1 4 M Fig. 5 Effects of PGE 2 on the CD11b expression on eosinophils induced by aspirin. The increase of CD11b expression induced by 1 4 M aspirin on the eosinophils from patients was inhibited by the addition of PGE 2, in a concentration-dependent manner. No obvious differences were observed in the non- group. Columns and vertical bars represent the mean ± SE. Rate of change (%) 25 2 15 1 5-5 -1-15 -2 Non- P <.1 Fig. 6 Rate of changes in the CD11b expression induced by aspirin (1 4 M) on eosinophils may be useful for in-vitro diagnosis of. When cases showing increase of CD11b expression of eosinophils by 1 4 M aspirin were regarded as positive, 19 out of 2 patients were assessed as positive in the group (sensitivity 95.%) and only 1 out of 19 patients was assessed as positive in the non- group (specifi city 94.7%). Bars indicate the mean ± SD. factor (PAF). 13-15 There have been no reports on the relationship between NSAID stimulation and CD11b expression on the eosinophils in. Although studies on the gastrointestinal system have shown that aspirin and indomethacin up-regulated CD11b expression and or increased its adhesion to the endothelial cells, 16,17 the cells evaluated were neutrophils, and no examination of eosinophils has been conducted. Measurement of CD11b expression by flowcytometry in this study enabled differentiation between an group and non- group. In other words, the CD11b expression level increased on the eosinophils of patients after the addition of aspirin but decreased on the cells of the non- patients, with a significant difference observed between the 2 groups. Moreover, the aspirin-induced increase of CD11b expression on the peripheral blood eosinophils of patients with was no longer seen after the addition of PGE2. These findings suggest that decrease of PGE2 production may be involved in the aspirininduced increase of CD11b expression on eosinophils. When cases showing increased CD11b following exposure to NSAIDs were regarded as positive, 19 out of the 2 patients with were assessed as positive (sensitivity 95.%), whereas only 1 out of the 19 patients in the non- group were assessed as positive (specificity 94.7%). For the diagnosis of, it is inevitable at present to depend on the history and in vivo NSAIDs challenge tests. Although our method requires flowcytometry, it could become applicable as a method for in vitro diagnosis of in the clinical setting if the procedure can be made simpler. 372 Allergology International Vol 62, No3, 213 www.jsaweb.jp

CD11b for Diagnosis of In conclusion, increase of CD11b expression on the surface of peripheral blood eosinophils of patients was observed following the addition of aspirin. This may become applicable as a simple test in the clinical setting for in vitro diagnosis of. Suppression of PGE2 in patients might be involved in regulation of CD11b expression on eosinophils by aspirin administration. ACKNOWLEDGEMENTS This study was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science. REFERENCES 1. Kowalski ML, Ptasinska A, Bienkiewicz B, Pawliczak R, DuBuske L. Differential effects of aspirin and misoprostol on 15-hydroxyeicosatetraenoic acid generation by leukocytes from aspirin-sensitive asthmatic patients. J Allergy Clin Immunol 23;112:55-12. 2. Kowalski M, Ptasinska A, Jedrzejczak M et al. Aspirintriggered 15-HETE generation in peripheral blood leukocytes is a specific and sensitive Aspirin-Sensitive Patients Identification Test (ASPITest). Allergy 25;6:1139-45. 3. Sanak M, Levy BD, Clish CB et al. Aspirin-tolerant asthmatics generate more lipoxins than aspirin-intolerant asthmatics. Eur Respir J 2;16:44-9. 4. Cowburn AS, Sladek K, Soja J et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 1998; 11:834-46. 5. Christie PE, Tagari P, Ford-Hutchinson AW et al. Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis 1991;143:125-9. 6. Kumlin M, Dahlen B, Bjorck T, Zatterstrom O, Granstrom E, Dahlen SE. Urinary excretion of leukotriene E4 and 11-dehydro-thronboxane B2 in response to bronchial provocation with allergen, aspirin, leukotriene D4, and hodtamine in asthmatics. Am Rev Respir Dis 1992;146:96-13. 7. Holtzman MJ, Turk J, Shornick LP. Identification of a pharmacologically distinct prostaglandin H synthase in cultured epithelial cells. J Biol Chem 1992;267:21438-45. 8. Warren MS, Sloan SI, Wearcott J, Hamilos D, Wenzel SE. LTE4 increases in bronchoalveolar lavage fluid (BALF) of aspirin-intolerant asthmatics () after instillation of indomethacin. J Allergy Clin Immunol 1995;95:17. 9. Szczeklik A, Sladek K, Dworski R et al. Bronchial aspirin challenge causes spesific eicosanoid response in aspirinsensitive asrhmatics. Am J Respir Crit Care Med 1996; 154:168-14. 1. Warren MS, Sloan SI, Wearcott J, Hamilos D, Wenzel SE. LTE4 increases in bronchoalveolar lavage fluid (BALF) of aspirin-intolerant asthmatics () after instillation of indomethacin. J Allergy Clin Immunol 1995;95:17. 11. Kowalski ML, Ptasinska A, Jedrzejczak M et al. Aspirintriggered 15-HETE generation in peripheral blood leukocytes is a specific and sensitive Aspirin-Sensitive Patients Identification Test (ASPITest). Allergy 25;6:1139-45. 12. Sanak M, Levy BD, Clish CB. Aspirin-tolerant asthmatics generate more lipoxins than aspirin-intolerant asthmatics. Eur Respir J 2;16:44-9. 13. Walsh GM, Hartnell A, Wardlaw AJ, Kurihara K, Sanderson CJ, Kay AB. IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11 18)-dependent manner. Immunology 199; 71:258-65. 14. Berends C, Dijkhuizen B, Monchy JGR, Dubois AEJ, Gerritsen J, Kauffman HF. Inhibition of PAF-induced expression of CD11b and shedding of L-selectin on human neutrophils and eosinophils by the type IV selective PDE inhibitor, rolipram. Eur Respir J 1997;1:1-7. 15. Spoelstra FM, Berends C, Dijkhuizen B, de Monchy JGR, Kauffman HF. Effect of theophyline on CD11b and l- selectin expression and density of eosinophils and neutrophils in vitro. Eur Respir J 1998;12:585-91. 16. Yoshida N, Takemura T, Granger DN et al. Molecular determinants of aspirin-induced neutrophil adherence to endothelial cells. Gastroenterology 1993;15:715-24. 17. Krieglstein CF, Anthoni C, Laulotter MG et al. Effect of anti-cd11b (alpham-mac-1) and anti-cd54 (ICAM-1) monoclonal antibodies on indomethacin induced chronic ileitis in rats. Int J Colorectal Dis 1999;14:219-23. Allergology International Vol 62, No3, 213 www.jsaweb.jp 373