Pharmacodynamic and Pharmacokinetic Interactions of Piperine on Gliclazide in Animal Models

Similar documents
Pharmacologyonline 2: (2009) Pharmacodynamic Drug Interaction of Gliclazide and Mexiletine in Rats

Pharmacologyonline 3: (2009)

Online at JPBR, 2014, Vol.2(1): 63-68

INFLUENCE OF FLUCONAZOLE PRE-TREATMENT ON ANTIDIABETIC ACTIVITY OF THIAZOLIDINEDIONES IN DIABETIC RATS

Pharmacokinetic Interaction of Gliclazide with Ornidazole in Healthy Albino Wistar Rats

Received: 10 March 2014, Accepted: 30 May 2014, Published Online: 19 June 2014 Abstract

PHARMACODYNAMIC EFFECTS OF CIMETIDINE AND METRONIDAZOLE ON THE BLOOD GLUCOSE LOWERING EFFECT OF GLYBURIDE IN RATS.

Chapter 5 Herb-Drug Interactions: Glibenclamide

Hypoglycemic Activity of Seerankottai Thiravam (Semicarpus Anacardium. Linn) in Alloxan Induced Diabetic Rats

ANTI-DIABETIC ACTIVITY OF HELICTERES ISORA ROOT

Safety of Gliclazide With the Aqueous Extract of Gymnema Sylvestre on Pharmacodynamic Activity in Normal and Alloxan Induced Diabetic Rats

Abstract. Introduction

International Journal of Pharmaceutical Sciences and Drug Research 2018; 10(1): 46-50

Pharmacologyonline 3: (2011) ewsletter Verma et al.

Effect of Candesartan on Pharmacokinetics and Pharmacodynamics of Sitagliptin in Diabetic Rats

Effect of Septilin A Herbal Preparation on Pharmacokinetics of Carbamazepine in Rabbits

In vivo and In vitro Drug Interactions Study of Glimepride with Atorvastatin and Rosuvastatin

Antidiabetic Activity of Alcoholic Extract of Neem (Azadirachta Indica) Root Bark

Influence of Lansoprozole on the pharmacokinetics and pharmacodynamics of Glimepiride in normal and diabetic rats

ANTIHYPERGLYCEMIC ACTIVITY OF METHANOLIC EXTRACT OF MADHUCA LONGIFOLIA BARK

FABRICATION AND EVALUATION OF GLIMEPIRIDE CORDIA DICHOTOMA G.FORST FRUIT MUCILAGE SUSTAINED RELEASE MATRIX TABLETS

Antihyperglycemic Activity of Trianthema Portulacastrum Plant in Streptozotocin Induced Diabetic Rats

ANTIDIABETIC ACTIVITY OF KOVAI KIZHANGU CHOORANAM IN ALLOXAN INDUCED DIABETIC RATS ABSTRACT

IN VITRO AND IN VIVO CHARACTERIZATION OF GLIMEPIRIDE MICROPARTICLES

Saliva Versus Plasma Bioequivalence of Rusovastatin in Humans: Validation of Class III Drugs of the Salivary Excretion Classification System

Pharmacologyonline 1: (2009) HYPOGLYCEMIC EFFECT OF PHOEBE LA CEOLATA O ALLOXA -I DUCED DIABETIC MICE

Journal of Chemical and Pharmaceutical Research

The clinical trial information provided in this public disclosure synopsis is supplied for informational purposes only.

Bioequivalence Studies of Two Formulations of Famciclovir Tablets by HPLC Method

Journal of Chemical and Pharmaceutical Research

Toxicity, Acute and Longterm Anti-Diabetic Profile of Methanolic Extract of Leaves of Pterocarpus Marsupium on Alloxan Induced Diabetic Albino Rats

These results are supplied for informational purposes only.

V. Chitra etal Der Pharmacia Lettre; 2009, 1 (1): Effect of fluoxetine and escitalopram on hypoglycemic response of repaglinide

Journal of Chemical and Pharmaceutical Research

In vitro-in vivo Drug Interaction Study of Paracetamol and Propranolol Hydrochloride

SCIFED. Publishers. SciFed Journal of Public Health. Comparing Modified and Relationship Study of Gymnema Sylvestre Against Diabetes

An experimental study to evaluate the potentiating effect of Selenium and Vitamin-E as supplement to Sulfonylureas on Alloxan induced diabetic rats

PHAR 7633 Chapter 20 Non Compartmental Analysis

Evaluation of hypoglycemic and antihyperglycemic effects of Luffa cylindrica fruit extract in rats

HYPOGLYCAEMIC ACTION OF THE FLAVONOID FRACTION OF ARTOCARPUS HETEROPHYLLUS LEAF

ANTI-DIABETIC ACTIVITY OF RIBES NIGRUM FRUIT EXTRACT IN ALLOXAN INDUCED DIABETIC RATS

IMPACT OF NATUAL ANTIOXIDANT ON REDUCTION OF OXIDATIVE STRESS IN HYPERGLYCEMIC RAT FED GERMINATED PIGEON PEA DIET

EVALUATION OF ANTIDIABETIC ACTIVITY OF TRIUMFETTA PILOSA ROTH IN STREPTOZOTOCIN- INDUCED DIABETIC RATS

Current evidence on the effect of DPP-4 inhibitor drugs on mortality in type 2 diabetic (T2D) patients: A meta-analysis

Flecainide pharmacokinetics in healthy volunteers: the influence of urinary ph

Sponsor: Sanofi Drug substance(s): SAR342434

Interaction of Momordica charantia with Metformin in Diabetic Rats

S K Mastan etal Der Pharmacia Lettre; 2009, 1 (1):

INTERNATIONAL JOURNAL OF PHARMACEUTICAL AND CHEMICAL SCIENCES

Scope. History. History. Incretins. Incretin-based Therapy and DPP-4 Inhibitors

Synthesis of Substituted 2H-Benzo[e]indazole-9-carboxylate as Potent Antihyperglycemic Agent that May Act through IRS-1, Akt and GSK-3β Pathways

Pelagia Research Library

ISOLATION CHEMICAL CHARACTERIZATION AND HYPOGLYCEMIC ACTIVITY OF ALANGIUM SALVIIFOLIUM WANG BARK IN ALLOXAN INDUCED HYPERGLYCEMIC RATS

. Research Article ISSN: X Antidiabetic profile of CINNAMON powder extract in experimental Diabetic animals

S. KUMAR 1 * and A. YADAV 2. Department of Pharmacology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India. 2

cationic molecule, paracellular diffusion would be thought of as its primary mode of transport across epithelial cells.

NIH Public Access Author Manuscript Transplant Proc. Author manuscript; available in PMC 2010 September 22.

Murugan M. et al / Journal of Pharmaceutical Science and Technology Vol. 1 (2), 2009, 69-73

A study of pharmacokinetic interaction of Carbamazepine with Atorvastatin in dyslipidemic rats

Diabetologia 9 by Springer-Verlag 1976

Abstract. G. D. Patil 1, P. G. Yeole 1, Manisha Puranik 1 and S. J. Wadher 1 *

International Journal of Research in Pharmacology & Pharmacotherapeutics

EFFECT OF CARVEDILOL ON THE PHARMACOKINETICS AND PHARMACODYNAMICS OF GLIPIZIDE

Effect of D-400, a Herbal Formulation, on Blood Sugar of Normal and Alloxan-induced Diabetic Rats

RESEARCH ARTICLE. Received on: 08/02/2017 Published on:27/03/2017

Spectrophotometric Method for Estimation of Sitagliptin Phosphate in Bulk...

EFFECT OF CULINARY MEDICINAL MUSHROOMS, PLEUROTUS OSTREATUS AND P. CYSTIDIOSUS ON FASTING AND POSTPRANDIAL GLYCAEMIA IN HEALTHY VOLUNTEERS

Glipizide Pharmacokinetics in Healthy and Diabetic Volunteers

Establishment of blending control for Hand operated Double Cone Blender

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Antidiabetic and Hypoglycaemic Activity of the Crude Extracts of the Plant Leucas Aspera

Obesity and Insulin Resistance According to Age in Newly Diagnosed Type 2 Diabetes Patients in Korea

A Bioequivalence Study of an Albendazole Oral Suspension Produced in Iran and a Reference Product in Sheep

Evaluation of Diuretic Activity of Jussiaea Suffruticosa Linn.

International Journal of Medicine and Pharmaceutical Research. International Journal of Medicine and Pharmaceutical Research

Development and Validation of RP-HPLC Method for the Estimation of Gemigliptin

Pharmacologyonline 3: (2006)

uric acid in prediabetic obese individuals

Tracer studies in GSK for Discovery and Development

Antiobesity effect of Lipovedic formulation in rats fed on atherogenic diet

NORLAND AVENUE PHARMACY PRESCRIPTION COMPOUNDING FOR GENERAL PRACTICE

Method Development and Validation for the Estimation of Saroglitazar in Bulk and Pharmaceutical Dosage Form by RP-HPLC

Simultaneous estimation of Rabeprazole and Mosapride by RP-HPLC method in tablet dosage form

HYPOGLYCAEMIC ACTIVITY OF ETHANOLIC EXTRACT OF ACTINIOPTERIS DICHOTOMA BEDD IN NORMAL AND STREPTOZOTOCIN INDUCED DIABETIC RATS

Cognitive Dysfunction in Diabetic Rats. Effect of Minocycline

Accelerated Stability Studies on Valacyclovir Hydrochloride by RP-HPLC

SHRIRAM INSTITUTE FOR INDUSTRIAL RESEARCH

A study on the effects of Moringa oleifera lam. pod extract on alloxan induced diabetic rats

Influence of fluvoxamine on carvedilol metabolism and plasma disposition in vitro and in vivo experiments

Antidiabetic and Antihyperlipedemic Activity of ATH-2K13 in Normal and Alloxan Induced Diabetic Rats

Detection of Hypoglycemic and Antidiabetic Fraction in Ethanol Extract of Jatropha curcas Aerial Parts

N. Lal Mahammed et al. Int. Res. J. Pharm. 2013, 4 (12) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

Research Article Derivative Spectrophotometric Method for Estimation of Metformin Hydrochloride in Bulk Drug and Dosage Form

A COMPARATIVE STUDY OF ANTIDIABETIC EFFECT OF BROMOCRIPTINE AND METFORMIN IN ALLOXAN-INDUCED DIABETIC RATS

ACUTE EFFECT OF FLUCONAZOLE, ITRACONAZOLE AND VORICONAZOLE ON BLOOD GLUCOSE IN NORMOGLYCEAMIC & DIABETIC RATS: AN EXPERIMENTAL STUDY

Antihyperglycemic and hypoglycemic effect of Ficus racemosa leaves

Sponsor / Company: Sanofi Drug substance(s): Insulin Glargine. Study Identifiers: NCT

MLR-1023: A First-in-Class, Clinical Stage Candidate for Type II diabetes

Sheikh R J et al. IRJP 1 (1)

Estimation of Emtricitabine in Tablet Dosage Form by RP-HPLC

Transcription:

Pharmacogn J. 2018; 10(2): 221-225 A Multifaceted Journal in the field of Natural Products and Pharmacognosy www.phcogj.com www.journalonweb.com/pj www.phcog.net Original Article Pharmacodynamic and Pharmacokinetic Interactions of Piperine on Gliclazide in Animal Models Umachandar Lagisetty 1*, Habibuddin Mohammed 2, Sivakumar Ramaiah 3 Umachandar Lagisetty 1*, Habibuddin Mohammed 2, Sivakumar Ramaiah 3 1 Department of Pharmaceutical Sciences, Jawaharlal Nehru Technological University, Hyderabad, Telangana, INDIA. 2 Drug Discovery and Development, Shadan College of Pharmacy. 3 Department of Pharmaceutical Sciences, Geethanjali College of Pharmacy. Correspondence Umachandar Lagisetty Research Scholar Department of Pharmaceutical Sciences, Jawaharlal Nehru Technological University, Hyderabad, Telangana, INDIA. Phone No: 8790835810 E mail Id: umachandar.lagisetty@gmail. com History Submission Date: 02-11-2017; Review completed: 27-11-17 ; Accepted Date: 18-12-2017 DOI : 10.5530/pj.2018.2.38 Article Available online http://www.phcogj.com/v10/i2 Copyright 2018 Phcog.Net. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license. ABSTRACT Back Ground: The objective of the present study was to find out the pharmacodynamic and pharmacokinetic interactions of piperine on gliclazide in rats and rabbits. Methods: Influence of piperine on the activity of gliclazide was determined by conducting single- and multipledose interaction studies in rats (normal and diabetic) and diabetic rabbits. Blood samples collected at predetermined time intervals from experimental animals were used for the estimation of glucose and insulin levels by using automated clinical chemistry analyzer and radioimmunoassay method, respectively. β-cell function was determined by homeostasis model assessment. Additionally, serum gliclazide levels in rabbits were analyzed by highperformance liquid chromatography. Results: Gliclazide showed significant reduction in blood glucose levels in diabetic rats and rabbits. Similarly, piperine also showed significant reduction in blood glucose levels in animals. Additionally,, samples analyzed from all time points in combination with piperine showed peak reduction in blood glucose in diabetic rats and rabbits. The pharmacokinetics of gliclazide was also altered by single- or multiple-dose piperine treatments in rabbits. Conclusion: The interaction of piperine with gliclazide upon single and multiple-dose treatment was pharmacodynamic and pharmacokinetic in nature, indicating the need for periodic monitoring of glucose levels and dose adjustment as necessary when this combination is prescribed to diabetic patients. Key words: Diabetes, Drug interaction, Gliclazide, Piperine. INTRODUCTION Diabetes mellitus is the most severe metabolic disorder characterized by absolute or relative insufficiency in insulin secretion and/or its action. 1 Gliclazide (second generation sulfonylurea derivative) is the preferred choice of drug. 2 Piperine is an alkaloidal compound and is an active constituent of black and long peppers. It has been found to have anti-diabetic activity per se. Piperine can improve the bioavailability of many drugs and decrease the elimination of the drugs and finally improves the biological effectiveness. Piperine is known to inhibit human CYP2C9, CYP3A4 and P-glycoprotein. 3,4 But the influence of piperine on diabetic patients who are under the treatment with Gliclazide is not proved yet. Hence, the present study was designed to find out the pharmacodynamic and pharmacokinetic interactions of piperine on gliclazide in rats and rabbits. MATERIALS AND METHODS Drugs and chemicals Gliclazide was obtained as a gift sample from Dr Reddy s Laboratories (Bachupally, Hyderabad, Telangana, India). Piperine was purchased from HiMedia Laboratories private limited, Mumbai. Alloxan monohydrate was purchased from Loba Chemie (Mumbai, Maharashtra, India). All reagents and chemicals used in the study were of analytical grade. Gliclazide solution Gliclazide solution was prepared by dissolving in few drops of 0.1 N sodium hydroxide and the final volume was made with water. 5 Preparation of Piperine solution Piperine solution was prepared in 2% Gum acacia solution. Preparation of alloxan solution Alloxan monohydrate 110 mg/kg was dissolved in sterile saline and injected by subcutaneous route immediately within five min to avoid degradation. 6 Animals Eight to 9-week-old male albino rats weighing between 170 and 250 g and 3-month-old male albino rabbits weighing between 1 and 1.5 kg were procured from M/s Mahavir Enterprises, Hyderabad. They were maintained under controlled room temperature (24±2 0 C; relative humidity 60-70%) in a 12h light dark cycle. The animals were given a standard laboratory diet and water ad libitum. The animals were acclimatized before the study. Cite this article: Lagisetty U, Mohammed H, Ramaiah S. Pharmacodynamic and Pharmacokinetic Interactions of Piperine on Gliclazide in Animal Models. Pharmacog J. 2018;10(2):221-5. Pharmacognosy Journal, ol 10, Issue 2, Mar-Apr, 2018 221

Experimental study design Male albino rats/rabbits were divided into five groups each consisting of six animals. From the results of gliclazide dose effect relationship study conducted in normal rats and rabbits, the doses of 2 and 4 mg/kg body weight were selected, respectively, for administration in animals. The design of the study is as follows: I: Normal control II: Diabetic control III: Gliclazide (2 mg/kg for rats/4 mg/kg for rabbits) body weight, p.o. I: Piperine (20 mg/kg) body weight, p.o. : Piperine (20 mg/kg) + Gliclazide (2 mg/kg for rats/4 mg/kg for rabbits) body weight, p.o. Stage 1: Pharmacodynamic interaction in normal rats. Stage 2: Pharmacodynamic interaction in diabetic rats. Stage 3: Pharmacodynamic and pharmacokinetic interaction in diabetic rabbits. Pharmacodynamic interaction in normal rats I animals considered as normal rats and treated with vehicle only. III rats were given gliclazide via the oral route at 2 mg/kg body weight, and their blood samples were collected at predetermined time points. Similar procedure was performed with either orally administered Piperine 20 mg/kg, p.o. ( I) only or combination treatment with both Piperine and gliclazide ( ) at the previously mentioned doses. After these single-dose interaction studies, the same group of animals were considered as multiple dose interaction study. Blood samples were collected at predetermined time intervals after each treatment with gliclazide alone, Piperine alone, or combination treatments (single and multiple). 7 Pharmacodynamic interaction in diabetic rats Male albino rats weighing (170-250 g) were fasted for overnight before challenging with single subcutaneous route (s.c) of alloxan monohydrate, freshly prepared and injected within 5 min of preparation to prevent degradation at a dose of 110 mg/kg. After administration of alloxan monohydrate 5% glucose solution was given for 72 h to prevent hypoglycemic shock. Animals had access to feed and water. The development of hyperglycemia in rats was confirmed by fasting serum glucose estimation 72 h post alloxan monohydrate injection where in the animals were fasted again for 14 h before blood collection from retro orbital plexus. The rats with fasting serum glucose level of above 200 mg/dl at 72 h were considered as diabetic and are included in the study. Similar procedure followed for dosing and blood sample collection as per discussed in pharmacodynamic study in normal rats experiment. II considered as diabetic control. Blood glucose levels were estimated on initial, 1st, 3rd, 7th, 14th, and 21st day of the treatment. 8,9 Pharmacodynamic and pharmacokinetic interaction in diabetic rabbits Six rabbits were selected for each group. Diabetes induced by using alloxan monohydrate treatment III rabbits were given gliclazide via the oral route at 4 mg/kg body weight, and their blood was collected at predetermined time points. Similar procedure was performed with either orally administered Piperine only ( I) or combination treatment with both Piperine and gliclazide ( ) at the previously mentioned doses. After this single-dose interaction study, the same animals were considered for multiple dose interaction study. Blood samples were collected at predetermined time intervals after each treatment of gliclazide, Piperine, or combination treatments (single and multiple). 10 Collection of serum samples The blood was drawn from the retro orbital plexus of the rats (fasted for 14 h) under light ether anaesthesia on different occasions i.e., day 0, day 1, day 3, day 7, day 14 and day 21. On day 0 (SDT) and day 21st (MDT) blood samples collected at different time intervals as 0hr, 1hr, 2hr, 4hr, 8hr, 10hr and 12hr for pharmacokinetic study experiment. Blood samples were withdrawn from the marginal ear vein of each rabbit. Blood samples collected at predetermined time intervals from experimental animals were used for the estimation of glucose and insulin levels by using automated clinical chemistry analyzer and radioimmunoassay method, respectively. β-cell function was determined by homeostasis model assessment. Additionally, serum gliclazide levels in rabbits were analyzed by high-performance liquid chromatography. Determination of β-cell function β-cell function was assessed by the Homeostatic Model Assessment protocol and was calculated as follows. 5,11,12 β-cell function = (20 FSI)/ (FSG 3.5) 100 Where fasting serum insulin (FSI) is expressed in µiu/ml and Fasting serum glucose (FSG) in mg/dl. Pharmacokinetic analysis Pharmacokinetic parameters of gliclazide in rabbit serum such as peak serum concentration, peak time, area under the concentration time curve, area under first moment curve, terminal half-life, elimination rate constant, mean resident time, and clearance were estimated by using Kinetica 5.0 software. Data and statistical analysis The data was analyzed using one-way analysis of variance (ANOA), followed by Dunnett s test and p<0.05 was considered as statistically significant. The data was expressed as mean ± Standard deviation (SD). RESULTS Pharmacodynamic interaction between Piperine and Gliclazide Gliclazide produced significant hypoglycemic activity in normal rats with maximum percent blood glucose reduction of 45.5% (Table 1) and antihyperglycemic activity in diabetic rats and rabbits with peak percent blood glucose reduction of 56.4% and 47.5%, respectively (Table 2 and 5). Piperine also produced significant hypoglycemic activity in normal rats with maximum percent blood glucose reduction of 35.5% (Table 1) and antihyperglycemic activity in diabetic rats and rabbits with peak percent blood glucose reduction of 48.6% and 37.6%, respectively (Table 2 and 5). The combination of Gliclazide with Piperine produced significant hypoglycemic activity in normal rats with maximum percent blood glucose reduction of 49.6% (Table 1) and antihyperglycemic activity in diabetic rats and rabbits with peak percent blood glucose reduction of 68.8% and 62.0%, respectively (Table 2 and 5). Single and multiple dose combination of Piperine with gliclazide induced significant changes in percent blood glucose reduction, insulin levels and β-cell function in animal models. However, multiple-dose combination of Piperine with gliclazide produced significantly greater reduction in percent blood glucose reduction after treatment in diabetic rats and rabbits when compared with diabetic control. Piperine exhibited additive effect by increasing the activity of gliclazide. Significant changes were observed in insulin levels and β-cell function (Tables 3,4,6 and 7) in both the animal models. Pharmacokinetic interaction between piperine and gliclazide The pharmacokinetic parameters of gliclazide alone and in the presence of piperine following single- and multiple-dose administrations were 222 Pharmacognosy Journal, ol 10, Issue 2, Mar-Apr, 2018

Table 1: of gliclazide in presence and absence of Piperine in single and multi-dose study for normal rats (n=6). Gliclazide (2 mg/kg) 40.7** 41.8** 42.1** 43.3** 44.2** 45.5** Piperine (20 mg/kg) 30.1** 31.1** 32.2** 33.3** 34.2** 35.5** Piperine (20 mg/kg) + Gliclazide (2 mg/kg) 42.3** 43.4** 44.6** 45.8** 47.5** 49.6** ** (p<0.01) statistically significant when compared with normal control. Table 2: of gliclazide in presence and absence of Piperine in single and multi-dose study for diabetic rats (n=6). III Gliclazide (2 mg/kg) 43.8** 45.7** 47.4** 50.6** 53.8** 56.4** I Piperine (20 mg/kg) 31.3** 33.2** 36.1** 39.1** 44.6** 48.6** Piperine (20 mg/kg) + Gliclazide (2 mg/kg) 53.1** 55.0** 57.9** 61.9** 64.6** 68.8** ** (p<0.01) statistically significant when compared with diabetic control. Table 3: Effect of Piperine on insulin levels in diabetic rats (n=6). Insulin (µiu/ml) III Gliclazide (2 mg/kg) 15.43±0.15 16.93±0.24 17.62±0.28 19.53±0.21 22.86±0.01 25.11±0.21 I Piperine (20 mg/kg) 11.15±0.12 12.01±0.10 13.25±0.02 15.56±0.25 17.99±0.14 20.25±0.15 Piperine (20 mg/kg)+ Gliclazide (2 mg/kg) 16.19±0.22 17.62±0.11 19.56±0.18 21.81±0.32 24.39±0.12 27.98±0.36 Table 4: Effect of Piperine on β-cell function in diabetic rats (n=6). β-cell function Gliclazide (2 mg/kg) 174.84±1.00 197.43±0.88 212.93±1.22 252.82±0.30 312.08±0.48 367.91±0.71 Piperine (20 mg/kg) 103.00±0.29 113.57±0.71 131.51±0.66 162.51±0.53 203.85±0.79 250.77±1.51 Piperine (20 mg/kg)+ Gliclazide (2 mg/kg) 221.02±0.55 249.05±0.69 297.49±0.50 368.10±0.52 437.49±0.74 579.90±0.73 Calculated by homeostasis model assessment Table 5: of gliclazide in presence and absence of Piperine in single and multi-dose study for diabetic rabbits (n=6). III Gliclazide (4 mg/kg) 37.9** 39.0** 41.9** 44.8** 47.1** 47.5** I Piperine (20 mg/kg) 30.7** 31.9** 32.6** 33.8** 35.5** 37.6** Piperine (20 mg/kg) + Gliclazide (4 mg/kg) 42.4** 46.1** 49.5** 52.1** 57.0** 62.0** ** (p<0.01) statistically significant when compared with diabetic control. Pharmacognosy Journal, ol 10, Issue 2, Mar-Apr, 2018 223

Table 6: Effect of Piperine on insulin levels in diabetic rabbits (n=6). Insulin (µiu/ml) III Gliclazide (4 mg/kg) 20.13±0.21 20.89±0.31 22.23±0.25 23.91±0.19 26.28±0.36 28.35±0.53 I Piperine (20 mg/kg) 15.45±0.22 16.01±0.25 17.15±0.39 18.56±0.25 20.69±0.54 22.25±0.55 Piperine (20 mg/kg)+ Gliclazide (4 mg/kg) 24.09±0.52 25.12±0.41 26.01±0.38 27.18±0.62 29.79±0.72 31.08±0.66 Table 7: Effect of Piperine on β-cell function in diabetic rabbits (n=6). β-cell function Gliclazide (2 mg/kg) 215.87±1.00 236.71±0.68 268.64±0.22 305.56±0.43 346.93±0.48 374.26±0.51 Piperine (20 mg/kg) 156.46±0.59 162.13±0.41 178.18±0.66 196.92±0.35 223.07±0.29 246.54±0.51 Piperine (20 mg/kg)+ Gliclazide (2 mg/kg) 294.68±0.15 323.09±0.49 362.51±0.58 401.18±0.62 486.37±0.67 572.90±0.47 Calculated by homeostasis model assessment Table 8: Mean pharmacokinetic parameters of gliclazide in presence and absence of Piperine in rabbits (n=6). Pharmacokinetic parameter Gliclazide (4mg/kg) Piperine (20 mg/kg)+ Gliclazide (4 mg/kg) (SDT) Piperine (20 mg/kg)+ Gliclazide (4 mg/kg) (MDT) C max (ng/ml) 365.19±8.42 369.57±4.32 405.19±8.42 T max (h) 3±0.00 3±0.00 3±0.00 AUC (h ng/ml) 3968.68±34.29 4067.64±26.14 4893.62±39.23 AUMC (h ng/ml) 38206.86±302.35 39892.15±282.32 48937.48±302.35 T 1/2 10.39±0.54 10.41±0.22 10.59±0.54 K el (l/h) 0.066±0.01 0.066±0.00 0.065±0.01 MRT (h) 9.62±0.01 9.80±0.00 10.01±0.01 CL (L/h) 0.08±0.00 0.07±0.00 0.06±0.00 given in (Table 8). Piperine was found to alter the pharmacokinetics of gliclazide in rabbits. DISCUSSION Diabetes mellitus is the most severe metabolic disorder characterized by absolute or relative insufficiency in insulin secretion and/or its action. 1 Gliclazide (second generation sulfonylurea derivative) is the preferred choice of drug. 2 Gliclazide is primarily metabolized by CYP2C9 and partly by CYP3A4. 7 Piperine is an alkaloidal compound and is an active constituent of black and long peppers. 3,4 It has been found to have anti diabetic activity per se. 13 Piperine can improve the bioavailability of many drugs and decrease the elimination of the drugs and finally improves the biological effectiveness. Piperine is known to inhibit human CYP2C9, CYP3A4 and P-glycoprotein. 3,4 The present study was designed to assess the pharmacodynamic and pharmacokinetic interactions of piperine on gliclazide in animal models. The study revealed that piperine exhibited significant hypoglycemic and antihyperglycemic activity. It also enhanced the activity of Gliclazide significantly and showed additive effect. Piperine increased the insulin levels in diabetic rats and rabbits significantly and enhanced the β-cell function. The possible mechanisms of hypoglycaemic action may be by increasing either the pancreatic secretion of insulin from β-cell of islet of Langerhans or its release from pro-insulin form. 14 Piperine also altered the pharmacokinetic parameters of Gliclazide which might be due to inhibition of human CYP 2C9. CONCLUSION The interaction of piperine with gliclazide up on single and multipledose treatment was pharmacodynamic and pharmacokinetic in nature, indicating the need for periodic monitoring of glucose levels and dose adjustment as necessary when this combination is prescribed to diabetic patients. ACKNOWLEDGEMENT The authors are thankful to Dr Reddy s Labs Ltd, Hyderabad,India, for providing gift sample of gliclazide for the research work. The authors are grateful to the management of GBN Institute of Pharmacy, Ghatkesar, Hyderabad, India, for providing support in supplying and conducting of animal experiments. ABBREIATIONS USED CYP: Cytochrome P450; g: gram; kg: kilo gram; C: degree celsius; % : percentage; h: hours; p.o. : per oral; dl: deciliter; µ: micro; IU: International units; ml: milliliter; C max : maximum concentration; T max : time to maximum; AUC : area under the curve; AUMC : Area under the first moment curve; t1/2 : elimination half-life; kel : elimination rate constant; MRT : mean residence time; Cl : clearance; ng : nano gram; mg : microgram. 224 Pharmacognosy Journal, ol 10, Issue 2, Mar-Apr, 2018

CONFLICT OF INTEREST The authors declare no conflict of interest. REFERENCES 1. Boon NA, Colledge NR, Walker BR. Davidsonís principles and practice of medicine: Diabetes mellitus. 20th end. Elsevier, London. 2006;805-47. 2. Brien RC, Luo M, Balaza N. In vitro and in vivo antioxidant properties of gliclazide. J Diabetes Complications. 2000;14(4):201-6. 3. Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, et al. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;302(2):645-50. 4. Atal CK, Dubey RK, Singh J. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. J Pharmacol Exp Ther. 1985;232(1):258-62. 5. Mastan SK, Kumar KE. Effect of antiretroviral drugs on the pharmacodynamics of gliclazide with respect to glucose-insulin homeostasis in animal models. J Exp Pharmacol. 2010;2:1-11. 6. Haribabu T, Divakar K, Goli D. Evaluation of anti-diabetic activity of Lycopene and its synergistic effect with Metformin hydrochloride and Glipizide in Alloxan induced diabetes in rats. Sch. Acad. J. Pharm. 2013;2(2):119-24. 7. Satyanarayana S, Kilari EK. Influence of nicorandil on the pharmacodynamics and pharmacokinetics of gliclazide in rats and rabbits. Mol Cell Biochem. 2006;291(1):101-5. 8. Joy KL, Kuttan R. Anti-diabetic activity of Picrorrhiza kurroa extract. J Ethnopharmcol. 1999;67(2):143-8. 9. Devi PU, Selvi S, Suja S, Selvam K, Chinnaswamy P. Anti-diabetic and hypolipidaemic effect of Cassia auriculata in alloxan induced diabetic rats. Int J Pharmacol. 2006;2(6):601-7. 10. Kumar KE, Mastan SK. Influence of efavirenz and nevirapine on the pharmacodynamics and pharmacokinetics of gliclazide in rabbits. J Endocrinol Metab. 2011;1(3):113-24. 11. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. 12. Bonora E, Targher G, Alberiche M, et al. Homeostasis model assessment closely mirrors the glucode clamp technique in the assessment of insulin sensitivity: studies in subject with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000; 23(1):57-63. 13. Atal S, Agrawal RP, yas S, Phadnis P, Rai N. Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta Pol Pharm. 2012;69(5):965-9. 14. Kumar GSP, Arulselvan P, Kumar DS, Subramanian SP. J Health Science. 2006;52(3): 283-91. GRAPHICAL ABSTRACT SUMMARY Nevertheless the adequate information on the safety of phytochemical constituents not well established, their use as alternative and/or complementary medicine is globally popular. Piperine, a richest source from pepper is a natural bioenhancer, confirmed for hypoglycemic activity in normal animals and exhibits significant anti hyperglycemic activity in diabetic models. The combination of gliclazide and piperine was confirmed to be a pharmacodynamics and pharmacokinetic drug interaction category and the antidiabetic activity was more significant in combination compared with each individual drug results. ABOUT AUTHORS Mr. Umachandar. Lagisetty is a research scholar at Jawaharlal Nehru Technological University, Hyderabad. He has completed Bachelor and Master of Pharmacy from University college of Pharmaceutical sciences, Kakatiya University, Warangal. Dr Habibuddin Mohammed: Is working as a Professor and Director, in Shadan college of Pharmacy, Hyderabad Since October 2014. He is a doctorate in Jadavpur University (JU) and recipient of young scientist award from Italian pharmacological society. Dr.Habib is an articulate exponent in the area of pharmaceutical sciences having two patent and a total of more than hundred national and international publications to his credit. His research area includes new drug discovery and development. Dr. R. Sivakumar: Is working as a Professor and Head, in Geethanjali college of Pharmacy, Hyderabad since October 2009. He completed his PhD in Central Food Technological Research Institute at Mysore, Karnataka and published more than thirty five research publications both international and national level to his credit. His research area includes enzymatic synthesis in organic media, synthetic chemistry and pharmacological studies. Cite this article: Lagisetty U, Mohammed H, Ramaiah S. Pharmacodynamic and Pharmacokinetic Interactions of Piperine on Gliclazide in Animal Models. Pharmacog J. 2018;10(2):221-5. Pharmacognosy Journal, ol 10, Issue 2, Mar-Apr, 2018 225