International Journal of Medical and Health Sciences

Similar documents
Treatment of Class II, Division 2 Malocclusion with Miniscrew Supported En-Masse Retraction: Is Deepbite Really an Obstacle for Extraction Treatment?

6. Timing for orthodontic force

Crowded Class II Division 2 Malocclusion

Correction of Crowding using Conservative Treatment Approach

Experience with Contemporary Tip-Edge plus Technique A Case Report.

Gentle-Jumper- Non-compliance Class II corrector

Case Report. profile relaxed relaxed smiling. How would you treat this malocclusion?

Sliding Mechanics with Microscrew Implant Anchorage

The Tip-Edge Concept: Eliminating Unnecessary Anchorage Strain

ORTHODONTIC CORRECTION Of OCCLUSAL CANT USING MINI IMPLANTS:A CASE REPORT. Gupta J*, Makhija P.G.**, Jain V***

Class II Correction using Combined Twin Block and Fixed Orthodontic Appliances: A Case Report

A Modified Three-piece Base Arch for en masse Retraction and Intrusion in a Class II Division 1 Subdivision Case

TWO PHASE FOR A BETTER FACE!! TWIN BLOCK AND HEADGEAR FOLLOWED BY FIXED THERAPY FOR CLASS II CORRECTION

MOLAR DISTALIZATION WITH MODIFIED GRAZ IMPLANT SUPPORTED PENDULUM SPRINGS. A CASE REPORT.

Non Extraction philosophy: Distalization using Jone s Jig appliance- a case report

Lever-arm and Mini-implant System for Anterior Torque Control during Retraction in Lingual Orthodontic Treatment

Orthodontic Treatment Using The Dental VTO And MBT System

EUROPEAN SOCIETY OF LINGUAL ORTHODONTISTS

An Innovative Treatment Approach with Atypical Orthodontic Extraction Pattern in Bimaxillary Protrusion Case

Treatment of a severe class II division 1 malocclusion with twin-block appliance

The Tip-Edge appliance and

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

The conservative treatment of Class I malocclusion with maxillary transverse deficiency and anterior teeth crowding

Holy Nexus of Variable Wire Cross-section: New Vistas in Begg s Technique

KJLO. A Sequential Approach for an Asymmetric Extraction Case in. Lingual Orthodontics. Case Report INTRODUCTION DIAGNOSIS

Forsus Class II Correctors as an Effective and Efficient Form of Anchorage in Extraction Cases

Angle Class I malocclusion with anterior open bite treated with extraction of permanent teeth

Nonextraction Treatment of Upper Canine Premolar Transposition in an Adult Patient

Angle Class II, division 2 malocclusion with deep overbite

Correction of a maxillary canine-first premolar transposition using mini-implant anchorage

Non-osseointegrated. What type of mini-implants? 3/27/2008. Require a tight fit to be effective Stability depends on the quality and.

Intraoral molar-distalization appliances that

Skeletal Anchorage for Orthodontic Correction of Severe Maxillary Protrusion after Previous Orthodontic Treatment

EUROPEAN SOCIETY OF LINGUAL ORTHODONTISTS

Maxillary Growth Control with High Pull Headgear- A Case Report

EUROPEAN SOCIETY OF LINGUAL ORTHODONTISTS

The use of mini-implants in en masse retraction for the treatment of bimaxillary dentoalveolar protrusion

Angle Class I malocclusion with bimaxillary dental protrusion and missing mandibular first molars*

EUROPEAN SOCIETY OF LINGUAL ORTHODONTISTS

Ortho-surgical Management of Severe Vertical Dysplasia: A Case Report

International Journal of Therapeutic Applications ISSN X

ISW for the treatment of moderate crowding dentition with unilateral second molar impaction

2008 JCO, Inc. May not be distributed without permission. Correction of Asymmetry with a Mandibular Propulsion Appliance

SURGICAL - ORTHODONTIC TREATMENT OF CLASS II DIVISION 1 MALOCCLUSION IN AN ADULT PATIENT: A CASE REPORT

UNILATERAL UPPER MOLAR DISTALIZATION IN A SEVERE CASE OF CLASS II MALOCCLUSION. CASE PRESENTATION. 1*

ORTHOdontics SLIDING MECHANICS

OF LINGUAL ORTHODONTICS

An estimated 25-30% of all orthodontic patients can benefit from maxillary

Skeletal class III maloeclusion treated using a non-surgieal approach supplemented with mini-implants: a case report

Effective and efficient orthodontic management of

Research & Reviews: Journal of Dental Sciences

Introduction Subjects and methods

HYCON DEVICE: A PRECISE AND CONTROLLED METHOD OF SPACE CLOSURE A CASE REPORT

An Effectiv Rapid Molar Derotation: Keles K

eral Maxillary y Molar Distalization with Sliding Mechanics: Keles Slider

The treatment options for nongrowing skeletal Class

Use of a Tip-Edge Stage-1 Wire to Enhance Vertical Control During Straight Wire Treatment: Two Case Reports

Case Report: Long-Term Outcome of Class II Division 1 Malocclusion Treated with Rapid Palatal Expansion and Cervical Traction

Correction of Class II Division 2 Malocclusion by Fixed Functional Class II Corrector Appliance: Case Report

OF LINGUAL ORTHODONTICS

Unilateral Horizontally Impacted Maxillary Canine and First Premolar Treated with a Double Archwire Technique

Molar distalisation with skeletal anchorage

orthodontic waves xxx (2006) xxx xxx available at journal homepage:

MBT System as the 3rd Generation Programmed and Preadjusted Appliance System (PPAS) by Masatada Koga, D.D.S., Ph.D

Case Report Unilateral Molar Distalization: A Nonextraction Therapy

Interdisciplinary management of Impacted teeth in an adult with Orthodontics & Free Gingival graft : A Case Report

THE USE OF TEMPORARY ANCHORAGE DEVICES FOR MOLAR INTRUSION & TREATMENT OF ANTERIOR OPEN BITE By Eduardo Nicolaievsky D.D.S.

Angle Class II, division 2 malocclusion with severe overbite and pronounced discrepancy*

Bone density assessment for mini-implants position

The Modified Twin Block Appliance in the Treatment of Class II Division 2 Malocclusions

Case Report: Early Correction of Class III Malocclusion with alternate Rapid Maxillary Expansion And Constriction (Alt-RAMEC) and Face Mask Therapy

A finite element analysis of the effects of archwire size on orthodontic tooth movement in extraction space closure with miniscrew sliding mechanics

Case Report Diagnosis and Treatment of Pseudo-Class III Malocclusion

Orthodontic Microimplants and Its

Different Non Surgical Treatment Modalities for Class III Malocclusion

System Orthodontic Treatment Program By Dr. Richard McLaughlin, Dr. John Bennett and Dr. Hugo Trevisi

Nonextraction treatment plans for Angle Class II

Mx1 to NA = 34 & 10 mm. Md1 to NB = 21 & 3 mm.

Congenitally missing mandibular premolars treatment options for space closure. Educational aims and objectives. Expected outcomes

Case Report n 2. Patient. Age: ANB 8 OJ 4.5 OB 5.5

Use of Palatal Miniscrew Anchorage and Lingual Multi-Bracket Appliances to Enhance Efficiency of Molar Scissors-Bite Correction

From Plan B to Plan A : Using Forsus Class II Correctors as a Regular Mode of Treatment

Case Report Orthodontic Replacement of Lost Permanent Molar with Neighbor Molar: A Six-Year Follow-Up

ISW for the treatment of adult anterior crossbite with severe crowding combined facial asymmetry case

EUROPEAN SOCIETY OF LINGUAL ORTHODONTICS

INCLUDES: OVERVIEW ON CLINICAL SITUATIONS FREQUENTLY ENCOUNTERED IN ORTHODONTIC TREATMENTS MECHANOTHERAPY USED TO RESOLVE THESE SITUATIONS

IJPCDR ORIGINAL RESEARCH ABSTRACT INTRODUCTION

Low-Force Mechanics Nonextraction. Estimated treatment time months (Actual 15 mos 1 week). Low-force mechanics.

The International Journal of Periodontics & Restorative Dentistry

Mesial Step Class I or Class III Dependent upon extent of step seen clinically and patient s growth pattern Refer for early evaluation (by 8 years)

2007 JCO, Inc. May not be distributed without permission.

Nonsurgical Treatment of Adult Open Bite Using Edgewise Appliance Combined with High-Pull Headgear and Class III Elastics

Anchorage conservation has always been a challenge

ortho case report Sagittal First international magazine of orthodontics By Dr. Luis Carrière Special Reprint

Class II Malocclusion with Crowding, Missing LR2 and Ectopic Eruption of UR3 is Treated Conservatively with Maxillary Retraction

Effective Tooth Movement Using Lingual Segmented Arch Mechanics Combined With Miniscrews

Orthodontic mini-implants have revolutionized

INDICATIONS. Fixed Appliances are indicated when precise tooth movements are required

The ASE Example Case Report 2010

The Science Behind The System Clinical Abstracts, Volume 2

Transcription:

International Journal of Medical and Health Sciences Journal Home Page: http://www.ijmhs.net ISSN:2277-4505 Case Report Mini Screw Implant Taking Orthodontics to New Dimensions A Case Report Deepak Victor 1*, N. Raj Vikram 2, Ramchandra Prabhakar 3 1 Senior Lecturer, Department of Orthodontics, Meenakshi Ammal Dental College, Chennai, 2 Reader, 3 Dean - Prof & HOD, Department of Orthodontics, Thai Mookambikai Dental College & Hospital, Chennai. ABSTRACT Attainment and control of anchorage is fundamental and critical in orthodontics. Anchorage control throughout the orthodontic treatment is essential for uncompromised results. Conventional means of supporting anchorage have been using either tooth borne anchorage or extra oral anchorage. Tooth borne anchorage is one of the greatest limitations of modern orthodontic treatment because tooth moves in response to forces. Extra oral anchorage can be used to supplement tooth borne anchorage, but requires excellent patient co-operation. Skeletal anchorage would offer tooth movement in any direction without detrimental reciprocal forces and simultaneously solving the problem of patient compliance. They expand the range of biochemical possibilities and orthodontic forces might be applied directly to the jaws through skeletal anchorage. In this case report, we are explaining an approach for skeletal Class I bialveolar protrusion, with microimplant anchorage used for retracting the maxillary anterior teeth. KEYWORDS: Mini Screw Implant, Anchorage Control, Tooth bourn Anchorage. INTRODUCTION Advantages of using mini screw implants during orthodontic treatment are that, they are small enough to place in any area of the alveolar bone, easy to implant and remove, and inexpensive and reduces total treatment duration. In addition, orthodontic force application can begin almost immediately after implantation[1]. In this article, we are explaining an approach for skeletal Class I bialveolar protrusion, with microimplant anchorage used for retracting the maxillary anterior teeth. CASE REPORT The patient, an 16-year-old male, had a convex profile and a Class I skeletal pattern with bialveolar protrusion (Fig. 1). Cephalometric analysis showed an ANB (relative difference in the anteroposterior relationship of the maxilla / Point A and mandible / Point B in relation to Nasion is measured as ANB) angle of 7 o, a mandibular plane angle (FMA) of 24 o (Table 1). The overjet and overbite were 5 mm and 2 mm each. The canine and molar relationships were Class I, but the maxillary incisors and mandibular incisors were proclined (U1 to N-A 32, IMPA 100 ). The treatment plan called for extraction of both the maxillary and mandibular first premolars, followed by fixed appliance treatment using maxillary micro-implants for anchorage control. After the extractions of all first premolars, molars were banded and the remaining teeth were bonded with 0.022 slot MBT appliance system (3M Unitek Gemini Metal Brackets) and.016 NiTi (OrthoForm III) wires were placed. After the initial alignment was achieved the archwires were upgraded to a 0.019 X 0.025 HANT (OrthoForm III) and left in place till the slots were leveled. Once aligning and leveling was achieved, subject was placed with 0.019 X 0.025 posted SS wire (Posted OrthoForm III) incorporated with a standardized torquing curve and left for 4 weeks before the commencement of space closure to allow the residual tip and torque to be expressed (Fig. 2). Int J Med Health Sci. Jan 2014,Vol-3;Issue-1 79

Figure1: Pre Treatment Photographs & Radiographs Figure 2: During Treatment Photographs Figure 3: Post Treatment Photographs & Radiographs Int J Med Health Sci. Jan 2014,Vol-3;Issue-1 80

The implant used in this study was a mini screw (Absoanchor - SH 1312-08) having a diameter of 1.3mm and a length of 8mm. Periapical X-rays were taken with guide bar (jig) to standardize the exact position and to determine whether adequate space was available for implant placement[2]. To obtain 8 mm biting depth without injuring the adjacent structures, the screw insertion was angulated at 40 0 and 8mm gingival to the archwire. Retraction was planned after 4 weeks of implant placement and done using NiTi closed coil spring (3M Unitek Medium, 9mm), stretched between the implant and the post of the 0.019 X 0.025 SS wire in maxillary arch. For mandibular arch, NiTi closed coil spring was stretched between the molar hook and the post of the 0.019 X 0.025 SS wire. The methods controlling the mode of anterior teeth retraction were the vertical position of the anterior hooks on 0.019 X 0.025 posted SS wire and the amount of torquing curve (reverse curve) given on the archwire. The torquing curve incorporated into the archwire produces an intrusive force and generates a labial crown torque on anterior teeth which helps to enhances the vertical and torque control of the anterior teeth[3]. Dontrix gauge was used to check 150gms of force which was applied using Niti closed coil spring for both the arches. Patient was recalled at regular interval of 4 weeks. At each visit the springs were checked such that a force around 150gms was maintained, while the arch wire was checked for any damage to prevent any interference with sliding. Most of the profile improvement occurred during the first 11 months of treatment (Fig. 3). The patient showed good Class I skeletal and dental relationships after 18 months of total treatment time (Fig. 3). The facial profile was improved with the retraction of the upper and lower lips. The ANB angle was reduced from 7 to 4, (Table 1). The proclined maxillary and mandibular incisors were uprighted by 8. Cephalometric superimposition demonstrated a bodily retraction of the maxillary and mandibular anterior teeth. The maxilary molars moved slightly distally and showed a small amount of intrusion. Table 1: Cephalometric Values VARIABLE NORMAL PRE R x POST R x Sagittal Skeletal Relationship: SNA 82 92 o 87 SNB 80 85 o 84 ANB 2 7 o 4 Wits appraisal AO ahead of BO by 4 mm Dental Base Relationship: U1 to NA ( mm/deg) 22/4mm 32 o /9mm 24/4mm L1 to NB (mm/deg) 25/4mm 33 o /12mm 25/5mm U1to SN Plane 102 111 o 102 L1 to Mand Plane (IMPA) 90 100 o 92 o Dental Relationship: Inter- incisal angle 131 104 o 126 L1 to APo line 1-2 mm 7mm 2mm Over bite 2-4 mm 2mm 2mm Overjet 2-4 mm 5mm 2mm Vertical Skeletal Relationships: Max Mand planes angle 25 24 o 28 o SN Plane Mand Plane 32 30 o 30 Upper anterior face height 51.5-57.9 49mm 49mm Lower anterior face height 66.25.1 70mm 70mm Jarabak Ratio 70% 68% Maxillary Length 89.25.2 103mm 103mm Mandibular Length (McNamara) 114.97.1 122mm 122mm Soft Tissues Relationship: Lower lip to Ricketts E Plane 3mm 6mm 1mm Nasolabial Angle 90 0 110 0 96 0 92 0 Int J Med Health Sci. Jan 2014,Vol-3;Issue-1 81

DISCUSSION Orthodontic treatment with fixed appliances commonly involves moving teeth along an archwire to close residual extraction spaces. When clinicians select a force delivery system for this purpose, they hope that it would apply a force which will be of sufficient duration to achieve tooth movement in an efficient and effective manner, without causing damage to the tooth or periodontal structures. How much force is required for tooth movement is debatable, particularly since factors such as friction and the effects of the oral environment need to be taken into consideration. Bone remodelling is not initiated by momentary heavy forces, but by repeated forces, provided that these are above a minimum load. For this reason, it is important that any space closing system used in orthodontics is capable of applying a force of sufficient magnitude and duration to achieve tooth movement without causing irreversible damage to the root and periodontal ligament. While applying NiTi closed coil springs for retraction there is increased consistency because of its identical length and it is stretched directly between two fixed points. NiTi closed coil springs are designed to deliver a low constant force. Unlike the elastomeric systems, the force applied is primarily material dependent rather than primarily clinician dependent. It has long been established that elastomeric products exhibit force decay with time, whereas NiTi coil springs retain the majority of their initial force. The ideal magnitude of force for space closure in orthodontics was found to be between 150 and 200 g. The NiTi closed coil springs delivered an initial force magnitude closer to the ideal, and were more resistant to force degradation than the elastomeric chains. The NiTi closed coil springs, however, presented gentle and progressive force decay over 28 days[4]. Superelasticity allowed the NiTi closed coil springs to deliver a constant low force over a wide range of clinical activation. Thus it can be stated that NiTi coil spring appears to be a superior choice to consistently deliver light, continuous forces during space closure[5]. The resistance of micro screw implant to force that occurs during retraction depends on the mechanical retention and osseointegration of the implants to the bone[6]. It has been suggested that a waiting period is not necessary for miniscrews, because their primary stability (mechanical retention) is sufficient to sustain normal orthodontic loading[7], and this would not compromise the clinical stability of the miniscrews. The waiting period was 4 weeks in this study and it was long enough for soft tissue healing but not long enough for osseointegration. The number of days from implantation to force application was not associated with stability. It is suggested that immediate loading of a screw-type implant anchor is possible if the applied force is less than 2 N. Such immediate loading is probably possible because of successful mechanical interdigitation between the implant anchor and the alveolar bone in the posterior region[8]. loading. The microscrew implants placed in this study showed no mobility throughout treatment. They were loaded with 150g of force 4 weeks after placement. The length of the titanium screws, used as means of anchorage did not have any relation with stability if the screw was longer than 5 mm. On the other hand, the diameter of the screw was significantly associated with its stability. As the maxilla is composed more of cancellous bone, the length of the implant should be longer and thinner in contrast that of mandible. The implant used in this study was a mini screw (Absoanchor - SH 1312-08) that had a diameter of 1.3mm and a length of 8mm which could withstand as much as 450g of force. Most orthodontic applications need forces of less than 300g. Therefore sufficient mechanical interdigitation between the screw and the cortical bone is an important factor that affects the stability of the screw type implant anchor[9]. CONCLUSION Micro-implant treatment has the following advantages in the management of Class I bialveolar protrusion cases - It was suggested that miniscrews, a waiting period for bone healing and osseointegration before loading is unnecessary because the primary stability (mechanical retention) of the miniscrews is sufficient to sustain a regular orthodontic 5. Umemori M, Sugawara J, Mitani H, Nagasaka H, Int J Med Health Sci. Jan 2014,Vol-3;Issue-1 82 REFERENCES Does not depend on patient compliance with extraoral appliances. Produces an early profile improvement, giving the patient even more incentive to cooperate. Shortens treatment by retracting the six anterior teeth simultaneously. Provides absolute anchorage for orthodontic tooth movement 1. Ä Gray, J.B.; Steen, M.E.; King, G.J.; and Clark, A.E.: Studies on the efficacy of implants as orthodontic anchorage, Am. J. Orthod. 1983, 83:311-317. 2. Poggio PM, Incorvati C, Velo S, Carano A. Safe zones : A guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod 2006; 76: 191-197. 3. Park HS, Kwon OW, JH Sung. Microscrew implants anchorage sliding mechanics. World J Orthod 2005; 6: 265-274. 4. Santos Ana Cristina Soares, André Tortamano, Sandra Regina Frazatto Naccarato, Gladys Cristina Dominguez-Rodriguez, Julio Wilson Vigorito: An in vitro comparison of the force decay generated by different commercially available elastomeric chains and NiTi closed coil springs: Comparision of Force Decay niti. Braz Oral Res 2007; 21; 1, 51-57:

Kawamura H. Skeletal anchorage system for open bite correction. Am J Orthod Dentofacial Orthop 1999; 115: 166-174. 6. Southard TE, Buckley MJ, Spivey JD, Krizan KE, Casko JS. Intrusion anchorage potential of teeth versus rigid endosseous implants: A clinical and radiographic evaluation. Am J Orthod Dentofacial Orthop 1995; 107: 115-20. 7. Mazzocchi AR, Bernini S. Osseointegrated implants for maximum orthodontic anchorage. J Clin Orthod 1998; 35: 412-415. 8. Smalley WM, Shapiro PA, Hohl TH, Kokich VG, Brånemark PI. Osseointegrated titanium implants for maxillofacial protraction in monkeys. Am J Orthod Dentofacial Orthop 1988; 94: 285-295. 9. Liou; PH Chen; YC Wang; JCY Lin. A CT image study on the thickness of the infrazygomatic crest of the maxilla and its clinical implications for mini screw insertion. Am J Orthod Dentofacial Orthop 2007; 131: 352-356. *Corresponding author: Dr. Deepak Victor E-Mail: deepakvictor@hotmail.com Int J Med Health Sci. Jan 2014,Vol-3;Issue-1 83