Correspondence should be addressed to Taha Numan Yıkılmaz;

Similar documents
Victor H. W. Yeung, Yi Chiu, Sylvia S. Y. Yu, W. H. Au, and Steve W. H. Chan

Department of Urology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea

Clinical Study Oncologic Outcomes of Surgery in T3 Prostate Cancer: Experience of a Single Tertiary Center

Introduction. Original Article

Best Papers. F. Fusco

Evaluation of prognostic factors after radical prostatectomy in pt3b prostate cancer patients in Japanese population

concordance indices were calculated for the entire model and subsequently for each risk group.

CAPRA-S predicts outcome for adjuvant and salvage external beam radiotherapy after radical prostatectomy

External validation of the Briganti nomogram to estimate the probability of specimen-confined disease in patients with high-risk prostate cancer

Research Article Long-Term Oncological Outcomes for Young Men Undergoing Radical Prostatectomy for Localized Prostate Cancer

Key words: prostatic neoplasms, risk groups, biochemical recurrence, clinical progression, prostate cancer specific mortality

Multiinstitutional Validation of the UCSF Cancer of the Prostate Risk Assessment for Prediction of Recurrence After Radical Prostatectomy

Do all men with pathological Gleason score 8 10 prostate cancer have poor outcomes? Results from the SEARCH database

UC San Francisco UC San Francisco Previously Published Works

estimating risk of BCR and risk of aggressive recurrence after RP was assessed using the concordance index, c.

Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara , Japan 2

UC San Francisco UC San Francisco Previously Published Works

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Predictors of time to biochemical recurrence in a radical prostatectomy cohort within the PSA-era

PROVIDING TREATMENT INFORMATION FOR PROSTATE CANCER PATIENTS

2015 myresearch Science Internship Program: Applied Medicine. Civic Education Office of Government and Community Relations

Predictive factors of late biochemical recurrence after radical prostatectomy

Case Discussions: Prostate Cancer

Clinical Study Evaluation of Serum Calcium as a Predictor of Biochemical Recurrence following Salvage Radiation Therapy for Prostate Cancer

Long-Term Risk of Clinical Progression After Biochemical Recurrence Following Radical Prostatectomy: The Impact of Time from Surgery to Recurrence

NIH Public Access Author Manuscript World J Urol. Author manuscript; available in PMC 2012 February 1.

Understanding the risk of recurrence after primary treatment for prostate cancer. Aditya Bagrodia, MD

Providing Treatment Information for Prostate Cancer Patients

1. INTRODUCTION. ARC Journal of Urology Volume 1, Issue 1, 2016, PP 1-7 Abstract:

Robotic assisted pelvic lymph node dissection for prostate cancer: frequency of nodal metastases and oncological outcomes

When radical prostatectomy is not enough: The evolving role of postoperative

Personalized Therapy for Prostate Cancer due to Genetic Testings

Research Article Predictive Factors for Medical Consultation for Sore Throat in Adults with Recurrent Pharyngotonsillitis

Untreated Gleason Grade Progression on Serial Biopsies during Prostate Cancer Active Surveillance: Clinical Course and Pathological Outcomes

Research Article Prognostic Implication of Predominant Histologic Subtypes of Lymph Node Metastases in Surgically Resected Lung Adenocarcinoma

Oncologic Outcomes of Patients With Gleason Score 7 and Tertiary Gleason Pattern 5 After Radical Prostatectomy

Evaluation of the 7th American Joint Committee on Cancer TNM Staging System for Prostate Cancer in Point of Classification of Bladder Neck Invasion

Journal of American Science 2018;14(1)

Oncologic Outcome of Robot-Assisted Laparoscopic Prostatectomy in the High-Risk Setting

Risk Factors for Clinical Metastasis in Men Undergoing Radical Prostatectomy and Immediate Adjuvant Androgen Deprivation Therapy

Treatment Failure After Primary and Salvage Therapy for Prostate Cancer

Long-term Oncological Outcome and Risk Stratification in Men with High-risk Prostate Cancer Treated with Radical Prostatectomy

The Prognostic Importance of Prostate-Specific Antigen in Monitoring Patients Undergoing Maximum Androgen Blockage for Metastatic Prostate Cancer

A Nomogram Predicting Long-term Biochemical Recurrence After Radical Prostatectomy

Clinical Study Mucosal Melanoma in the Head and Neck Region: Different Clinical Features and Same Outcome to Cutaneous Melanoma

Zonal Origin of Localized Prostate Cancer Does not Affect the Rate of Biochemical Recurrence after Radical Prostatectomy

BIOCHEMICAL RECURRENCE POST RADICAL PROSTATECTOMY

State-of-the-art: vision on the future. Urology

Salvage Radical Prostatectomy for Radiation-recurrent Prostate Cancer: A Multi-institutional Collaboration

Proposed prognostic scoring system evaluating risk factors for biochemical recurrence of prostate cancer after salvage radiation therapy

Chapter 6. Long-Term Outcomes of Radical Prostatectomy for Clinically Localized Prostate Adenocarcinoma. Abstract

Preoperative Gleason score, percent of positive prostate biopsies and PSA in predicting biochemical recurrence after radical prostatectomy

Information Content of Five Nomograms for Outcomes in Prostate Cancer

Since the beginning of the prostate-specific antigen (PSA) era in the. Characteristics of Insignificant Clinical T1c Prostate Tumors

Prognostic Value of Surgical Margin Status for Biochemical Recurrence Following Radical Prostatectomy

When PSA fails. Urology Grand Rounds Alexandra Perks. Rising PSA after Radical Prostatectomy

Post Radical Prostatectomy Radiation in Intermediate and High Risk Group Prostate Cancer Patients - A Historical Series

Research Article Gross Hematuria in Patients with Prostate Cancer: Etiology and Management

Biochemical recurrence-free survival and pathological outcomes after radical prostatectomy for high-risk prostate cancer

Case Report Five-Year Survival after Surgery for Invasive Micropapillary Carcinoma of the Stomach

Corey C Foster 1, William C Jackson 1, Benjamin C Foster 1, Skyler B Johnson 1, Felix Y Feng 1 and Daniel A Hamstra 1,2*

Clinical Study Changing Trends in Use of Laparoscopy: A Clinical Audit

Research Article Predictions of the Length of Lumbar Puncture Needles

Correspondence should be addressed to Alicia McMaster;

RADICAL PROSTATECTOMY IS SElected

Aram Kim 4, Myong Kim 1, Se Un Jeong 2, Cheryn Song 1, Yong Mee Cho 2, Jae Yoon Ro 3 and Hanjong Ahn 1*

ORIGINAL ARTICLE. Ja Hyeon Ku 1, Kyung Chul Moon 2, Sung Yong Cho 1, Cheol Kwak 1 and Hyeon Hoe Kim 1

Gene expression profiling predicts clinical outcome of prostate cancer. Gennadi V. Glinsky, Anna B. Glinskii, Andrew J. Stephenson, Robert M.

Systems Pathology in Prostate Cancer. Description

Research Article Urinary Catheterization May Not Adversely Impact Quality of Life in Multiple Sclerosis Patients

Salvage prostatectomy for post-radiation adenocarcinoma with treatment effect: Pathological and oncological outcomes

Research Article Opioid Use Is Not Associated with Incomplete Wireless Capsule Endoscopy for Inpatient or Outpatient Procedures

Mandana Moosavi 1 and Stuart Kreisman Background

Original Article. Cancer September 15,

The prognostic significance of percentage of tumour involvement according to disease risk group in men treated with radical prostatectomy

Impact of Adjuvant Androgen-Deprivation Therapy on Disease Progression in Patients with Node-Positive Prostate Cancer

BJUI. Effect of delaying surgery on radical prostatectomy outcomes: a contemporary analysis

Research Article Clinical Features and Outcomes Differ between Skeletal and Extraskeletal Osteosarcoma

Sylwia Mizia, 1 Dorota Dera-Joachimiak, 1 Malgorzata Polak, 1 Katarzyna Koscinska, 1 Mariola Sedzimirska, 1 and Andrzej Lange 1, 2. 1.

Ultra-early versus early salvage androgen deprivation therapy for post-prostatectomy biochemical recurrence in pt2-4n0m0 prostate cancer

CONTEMPORARY UPDATE OF PROSTATE CANCER STAGING NOMOGRAMS (PARTIN TABLES) FOR THE NEW MILLENNIUM

Research Article Higher Prostate Weight Is Inversely Associated with Gleason Score Upgrading in Radical Prostatectomy Specimens

european urology 52 (2007)

Department of Urology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan

Research Article The Cost of Prolonged Hospitalization due to Postthyroidectomy Hypocalcemia: A Case-Control Study

Clinical Study The Incidence and Management of Pleural Injuries Occurring during Open Nephrectomy

Case Report PET/CT Imaging in Oncology: Exceptions That Prove the Rule

BJUI. Long-term overall survival and metastasis-free survival for men with prostate-specific antigenrecurrent

Impact of Early Salvage Androgen Deprivation Therapy in Localized Prostate Cancer after Radical Prostatectomy: A Propensity Score Matched Analysis

Radical prostatectomy as radical cure of prostate cancer in a high risk group: A single-institution experience

Results From the SEARCH Database

Prostate-specific antigen density as a parameter for the prediction of positive lymph nodes at radical prostatectomy

Validation of the 2015 Prostate Cancer Grade Groups for Predicting Long-Term Oncologic Outcomes in a Shared Equal-Access Health System

Detection & Risk Stratification for Early Stage Prostate Cancer

Optimizing the Management of High-Risk, Localized Prostate Cancer

Biochemical Recurrence Prediction in High-Risk Prostate Cancer Patients, Following Robot-Assisted Radical Prostatectomy

Accepted for publication 3 January 2005

Heterogeneity in high-risk prostate cancer treated with high-dose radiation therapy and androgen deprivation therapy

J Clin Oncol by American Society of Clinical Oncology INTRODUCTION

Nomograms for prostate cancer

Transcription:

Advances in Medicine Volume 2016, Article ID 8639041, 5 pages http://dx.doi.org/10.1155/2016/8639041 Research Article External Validation of the Cancer of the Prostate Risk Assessment Postsurgical Score for Prediction of Disease Recurrence after Radical Prostatectomy Taha Numan YJkJlmaz, Erdem Öztürk, EGref OLuz Güven,andHalilBaGar Department of Urology, Ankara Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, Ankara, Turkey Correspondence should be addressed to Taha Numan Yıkılmaz; numanyikilmaz@gmail.com Received 1 July 2016; Revised 2 September 2016; Accepted 27 September 2016 Academic Editor: Paolo Gandellini Copyright 2016 Taha Numan Yıkılmaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. The cancer of the prostate risk assessment (CAPRA-S) postsurgical score predicts recurrence, metastasis, and cancerspecific survival after radical prostatectomy (RP). We evaluated the relation between CAPRA-S score and biochemical recurrence (BCR) in prostate cancer after RP in our clinic. Materials and Methods. This study was performed on 203 patients with prostate carcinoma who underwent open RP and regional lymph node dissection in our clinic between 2008 and 2013. We calculated the CAPRA-S scores including prostate-specific antigen (PSA) at diagnosis, pathology Gleason score, surgical margin, seminal vesicle invasion, extracapsular extension, and lymph node involvement. The patients were divided into 3 risk groups (low, intermediate, and high risk) according to risk scores. Results. Recurrence occurred in 17.8% of the patients (36 patients out of 203 patients) with a median of 11.7-month follow-up. The average recurrence-free survival time is 44.6 months. Surgical margin invasion and seminal vesicle invasion significantly correlated with BCR especially in high risk group (11 and 13 of 15 patients, p < 0.05,resp.).Conclusion. CAPRA-S score can be easily calculated and it is useful in clinical practice in order to timely propose adjuvant therapies after surgery. 1. Introduction Prostate cancer is the most common noncutaneous malignancy. In 2014, 233000 new cases were diagnosed and 29480 cancer-specific deaths were estimated [1]. A radical prostatectomy is the common primary treatment of clinical localized prostate cancer (Pca) [2]. Although radical prostatectomy is an effective treatment of localized prostate cancer, about one-third of patients have biochemical recurrence (BCR) after radical prostatectomy (RP). Biochemical recurrence is detected by prostate-specific antigen (PSA) elevation after operation [3]. Fifty-two percent of patients with BCR have been shown to have extraprostatic extension [4]. Risk classification is important for selecting the proper treatment; thus some nomograms have been developed in different study cohorts. In 2005, UCSF (University California-San Francisco) proposed a nomogram known as Cancer of the Prostate Risk Assessment (CAPRA), a pretreatment score based on patient age, PSA, biopsy Gleason score, clinical stage, and percent of positive biopsy cores [5]. In 2011 the same group revised the score system and named CAPRA-S score. Pathology findings like pathologic Gleason score, surgical margin, extracapsular extension, seminal vesicle invasion, and lymph node involvement were added to the new score system [6]. This new system is validated by various studies and confirmed BCR prediction [4, 7 9]. In this study we examine the validity of the CAPRA-S score in our institution. 2. Patients and Methods This study was performed on 203 patients with Pca who had open RP and regional lymph node dissection in our clinic between 2008 and 2013. Data were collected retrospectively. Among the 241 patients identified, patients who received neoadjuvant treatment and no information about data prevented us from calculating CAPRA-S, thus leaving 203 men

2 Advances in Medicine Table 1: Distribution of data according to CAPRA-S score. Variable Level Points Number (%) 0 6 0 69 (33.9) PSA (ng/ml) 6.01 10 1 88 (43.4) 10.01 20 2 38 (18.7) >20 3 8 (4) Surgical margin Negative 0 165 (81.2) Positive 2 38 (18.8) Seminal vesicle invasion No 0 190 (93.5) Yes 2 13 (6.5) 2 6 0 120 (59.2) Gleason score 3 + 4 1 41 (20.2) 4 + 3 2 15 (7.3) 8 10 3 27 (13.3) Extracapsular extension Absent 0 162 (79.8) Present 1 41 (20.2) Lymph node invasion Negative 0 197 (97) Positive 1 6 (3) Table 2: Determination of risk groups according to CAPRA-S score. Risk groups Low risk Intermediate risk High risk CAPRA-S each score group 0 39 (19.2) 1 51 (25.1) 2 41 (20.1) 3 18 (8.8) 4 19 (9.3) 5 15 (7.3) 6 9 (4.4) 7 2 (0.9) 8 2 (0.9) 9 7 (3.5) Number (%) Total n (%) 131 (64.5) 52 (25.6) 20 (9.9) available for final analysis. We calculated the CAPRA-S scores as described by Cooperberg et al. (Table 1) [6]. This score has 6 variables including PSA at diagnosis, pathology Gleason score, surgical margin (SM), seminal vesicle invasion (SVI), extracapsular extension (ECE), and lymph node involvement (LNI).TheCAPRA-Sscoreiscalculatedusingthepoints reported in Table 1. The patients were divided into 3 risk groups (low, intermediate, and high risk) according to risk scores. Low risk groups were between 0 and 2 points, intermediate groups were between 3 and 5 points, and high risk groups were above 6 points of score sum (Table 2). Biochemical recurrence was defined as increasing of PSA 0.2 ng/ml following RP. CAPRA-S score as predicting BCR was analyzed by Cox proportional hazards regression and Kaplan-Meier analysis by use of SPSS ver. 23.0 (IBM Co., Armonk, NY, USA). Harrell s concordance index (c-index) was calculated to evaluate the 3-year prediction probabilities of CAPRA-S score and Cum survival 1.0 0.8 0.6 0.4 0.2 0.0 0 CAPRA-S score 0 1 2 3 4 5 6 7 8 9 Survival functions 20 40 60 80 100 Time (months) 0-censored 1-censored 2-censored 3-censored 4-censored 5-censored 6-censored 7-censored 8-censored 9-censored Figure 1: Biochemical recurrence after radical prostatectomy, stratified by grouped CAPRA-S scores using Kaplan-Meier curves. three-risk level model. Informed consent was not obtained duetoretrospectivedesignofstudy. 3. Results The mean age of patients were 64.5 years (ranging from 51 to 84 years) and mean PSA values were 9.6 ng/ml (range 2.9 42 ng/ml). Pathological features in CAPRA-S scoring system were shown in Table 1. Patients were divided into 3 groups according to CAPRA-S. There were 131 (64.5%), 52 (25.6%), and 20 (9.9%) patients in low, intermediate, and high risk groups, respectively. Each score group (beginning from 0 to >9) is as follows (patients, %): 39 (19.2%); 51 (25.1%); 41 (20.1%); 18 (8.8%); 19 (9.3%); 15 (7.3%); 9 (4.4%); 2 (0.9%); 2(0.9%);and7(3.5%).Recurrenceoccurredin17.8%ofthe patients (i.e., 36 patients out of 203 patients) with a median of 11.7-months follow-up. The average recurrence-free survival time is 44.6 months in all patients. We showed the relationship between BCR and CAPRA-S scores in Figures 1 and 2. When we investigated each group, low, intermediate, and high risk groups, BCR was determined as 8 of 131 (6.1%), 13 of 52 (25%), and 15 of 20 patients (75%), respectively (p < 0.05, Figure 2). Surgical margin invasion was significantly correlated with BCR, especially in the high risk group (13 of 15 patients, p < 0.05). Biochemical recurrence was observed in 18 of 38 patients (47.3%) with positive SMI which was statistically significant (p < 0.05). Extracapsular extension did not show any statistically significant correlation with BCR

Advances in Medicine 3 Table 3: C-indexes of CAPRA-S groups and three-risk level model for 3 years BCR-free survival. Time Variables c-index (95% CI) p value CAPRA-S score group 0.82 (0.68 0.90) <0.05 3years Three-risk level model 0.78 (0.65 0.88) <0.05 1.0 0.8 Survival functions Table 4: Cox proportional hazard model of biochemical recurrence usingvariablesofcapra-sscore. Data n (%) BCR+/total Hazard ratio 95% confidence p value interval SMI+ 18/38 (47.3) 1.60 1.04 2.02 0.035 SVI+ 8/13 (62) 1.49 0.95 1.91 0.041 ECE+ 13/41 (31.7) 1.12 0.42 1.51 0.102 LNI+ 2/6 (33) 0.98 0.44 1.12 0.61 SMI+: surgical margin invasion, SVI+: seminal vesicle invasion, ECE+: extracapsular extension, LNI+: lymph node invasion, and BCR+: biochemical recurrence. Cum survival 0.6 0.4 0.2 0.0 0 CAPRA-S score 0 2 3 5 6 20 40 60 80 100 Time (months) 0 2-censored 3 5-censored 6-censored Figure 2: Biochemical recurrence by CAPRA-S risk groups (each p < 0.001). (13 of 41 patients, p > 0.05). However in the high risk group 11 of 15 patients (73.3%) was seen with BCR (p < 0.05). Biochemical recurrence was observed in 8 of 13 patients (62%) with positive SVI which has statistically significant positive correlation (p < 0.05). Surgical margin and seminal vesicle invasion showed statistical significance with a hazard ratio (HR) of 1.60 (p = 0.035) and1.49(p = 0.041), respectively. There was no statistically significant correlation for other variables. These variables were inserted into a Cox proportional hazards regression model (Table 4). As a result, the risk of BCR increased with high scores. The CAPRA-S score has high concordance value and we have just determined three-risk level model in 3-year BCRfree probabilities. The c-index of each CAPRA-S score group for the 3- year BCR-free probabilities rate was 0.82 (p < 0.05). When we investigated in three-risk level model, c-index score was 0.78 (Table 3). 4. Discussion Radical prostatectomy is a standard treatment of localized prostate cancer and one-third of prostate cancer patients in US undergo radical prostatectomy [10]. This operation can be performed open, laparoscopic, and robotic. In all surgical ways BCR was a common problem in postoperative term. Despite primary treatment of localized prostate cancer 20 30% of patients experience a BCR [11, 12]. We found 17.8% BCR in our study and obtained a similar result with the previous studies in the literature [9]. From Shared Equal Access Regional Cancer Hospital (SEARCH) database Punnen et al. calculated a ratio of 34.3% [7]. Postoperative PSA levels can help us to estimate BCR, but PSA is not enough to identify BCR in some cases [13, 14]. Many researchers have tried to develop a nomogram to overcome this challenge [15]. Cooperberg et al. developed a nomogram named CAPRA score in 2005. The parameters in CAPRA score were preoperative PSA, biopsy Gleason score, clinical T stage, percent of positive biopsies, and age at diagnosis [5]. This score was validated in the US and European studies and it is demonstrated that CAPRA score is compared to other nomograms [4, 16, 17]. In 2011 Cooperberg et al. described the CAPRA-S score, including PSA, SMI, SVI, ECE, LNI, and Gleason score, that predicted BCR better than CAPRA score [6]. CAPRA-S score has not been validated in US and Europe until last year. Punnen et al. studied in 2670 patients in 2014 andcapra-sscorewasvalidatedinusbythisstudy[7]. This study showed significant correlation between CAPRA-S andbcr.tilkietal.evaluatedthecapra-sscorein14532 patients who underwent RP in Martini-Clinic and compared with CaPSURE data set [9]. They found the relationship between high risk scores in CAPRA-S with BCR and metastasis. This study reported the first independent validation study of CAPRA-S in Europe. We performed the CAPRA-S score of 203 patients who underwent RP in prostate cancer. We found significant correlation with high risk scores and BCR as stated in the literature [4, 8, 9]. The CAPRA-S scoring system has a high value of c-index in RP [5]. Concordance value was found as 0.77 in CAPRA- S score developed by Cooperberg. Later Seong and Punnen reached similar levels and presented their results [7, 18]. In 2013 Seong et al. reported that the c-index of CAPRA-S score for the BCR-free probabilities was 0.80 in 134 Korean patients with Pca and one year later Seo reviewed c-indexes as high as 0.80 in 130 Korean patients [4, 18]. The c-index was found as 0.73 for predicting BCR from multi institutions in US by Punnen et al. [7].

4 Advances in Medicine Tilki et al. who have the largest series about CAPRA-S after RP in the literature found similar results. As a result of this study, CAPRA-S c-index which predicts BCR was 0.80. Also CAPRA-S c-index predicting metastasis and mortality was 0.85 and 0.88, respectively [9]. In our study c-index for 3 years BCR-free probabilities was 0.82 and 0.78, when considering single patient scores or the three-risk level grouping, respectively. These results were shown to be helpful in predicting postoperative BCR in our patients based on their CAPRA-S score. When we compared the results in our study to the ones presented by Tilki and Punnen who have large patients series about CAPRA-S, there are some similarities and differences. Punnen et al. have used SEARCH database in their study and recurrence occurred in 34.3% of patients at a median of 14 months. They determined association between BCR with increasing risk according to Kaplan-Meier curves as our study. CAPRA-S c-index scores were found to be 0.73 and 0.82, respectively, in Punnen et al. s and our study. However Punnen et al. studied 5-year BCRfree survival and association between CAPRA-S score and metastasis and mortality in different results from our study [7]. When we examined Tilki et al. s study, similar results were obtained with Punnen et al. [9]. Similar results were found in our study with two large studies except some limitations. The limitations in our study were small number of patients, retrospective design, limited follow-up period, and low percentage (9.9%) of high risk patients. The low percentage of high risk patients is due to the fact that we do not routinelysuggestprostatectomytothesekindsofpatients.in addition we did not evaluate 5-year BCR-free survival and progression-free survival due to limited follow-up period. Even so, we demonstrated possible usefulness of the CAPRA- S score in management of patients who underwent RP. 5. Conclusion Although BCR does not correlate with cancer-specific survival, adjuvant therapy should be given to patients with poor pathology results. It is difficult to predict recurrence; therefore nomograms were developed to estimate BCR in prostate cancer. CAPRA-S score can be easily calculated and used in clinical practice without any loss of time. We have no information on use of the score to predict metastasis and mortality after surgery in our population; however it is mentioned that the CAPRA-S score system may be useful in predicting metastasis and mortality in the literature. It is useful for predicting BCR, metastasis, and mortality after surgery withac-indexofgreaterthan0.80.itcanbeusedtodecideon adjuvant treatment after surgery. Competing Interests No conflict of interests was declared by the authors. References [1] R. Siegel, J. Ma, Z. Zou, and A. Jemal, Cancer statistics, 2014, CA: Cancer Journal for Clinicians, vol. 64, no. 1, pp. 9 29, 2014. [2] D. Meltzer, B. Egleston, and I. Abdalla, Patterns of prostate cancer treatment by clinical stage and age, American Journal of Public Health,vol.91,no.1,pp.126 128,2001. [3] A. Heidenreich, P. J. Bastian, J. Bellmunt et al., EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer, European Urology, vol. 65,no.2,pp.467 479,2014. [4] W.I.Seo,P.M.Kang,D.I.Kang,J.H.Yoon,W.Kim,andJ.I. Chung, Cancer of the Prostate Risk Assessment (CAPRA) preoperative score versus postoperative score (CAPRA-S): ability to predict cancer progression and decision-making regarding adjuvant therapy after radical prostatectomy, Korean Medical Science,vol.29,no.9,pp.1212 1216,2014. [5] M. R. Cooperberg, D. J. Pasta, E. P. Elkin et al., The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy, Urology,vol.173,no.6,pp.1938 1942,2005. [6] M. R. Cooperberg, J. F. Hilton, and P. R. Carroll, The CAPRA- S score: a straightforward tool for improved prediction of outcomes after radical prostatectomy, Cancer, vol. 117, no. 22, pp. 5039 5046, 2011. [7] S. Punnen, S. J. Freedland, J. C. Presti Jr. et al., Multiinstitutional validation of the CAPRA-S score to predict disease recurrence and mortality after radical prostatectomy, European Urology,vol.65,no.6,pp.1171 1177,2014. [8] B.K.Aktas,C.Ozden,S.Bulutetal., Evaluationofbiochemical recurrence-free survival after radical prostatectomy by cancer of the prostate risk assessment post-surgical (CAPRA-S) score, Asian Pacific Cancer Prevention, vol.16,no.6,pp. 2527 2530, 2015. [9] D.Tilki,P.Mandel,T.Schlommetal., Externalvalidationofthe CAPRA-S score to predict biochemical recurrence, metastasis and mortality after radical prostatectomy in a European cohort, Urology, vol. 193, no. 6, pp. 1970 1975, 2015. [10] D. F. Penson, J. M. Chan, and Urologic Diseases in America Project, Prostate cancer, The Urology, vol. 177, no. 6, pp. 2020 2029, 2007. [11] E. Rosenbaum, A. Partin, and M. A. Eisenberger, Biochemical relapse after primary treatment for prostate cancer: studies on natural history and therapeutic considerations, the National Comprehensive Cancer Network,vol.2,no.3,pp.249 256, 2004. [12] M. N. Simmons, A. J. Stephenson, and E. A. Klein, Natural history of biochemical recurrence after radical prostatectomy: risk assessment for secondary therapy, European Urology, vol. 51, no. 5, pp. 1175 1184, 2007. [13]E.M.Messing,J.Manola,J.Yaoetal., Immediateversus deferred androgen deprivation treatment in patients with nodepositive prostate cancer after radical prostatectomy and pelvic lymphadenectomy, Lancet Oncology,vol.7,no.6,pp.472 479, 2006. [14] A. J. Stephenson, P. T. Scardino, M. W. Kattan et al., Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy, Clinical Oncology, vol. 25, no. 15, pp. 2035 2041, 2007. [15]A.C.Justice,K.E.Covinsky,andJ.A.Berlin, Assessingthe generalizability of prognostic information, Annals of Internal Medicine,vol.130,no.6,pp.515 524,1999. [16] G. Lughezzani, L. Budäus, H. Isbarn et al., Head-to-head comparisonofthethreemostcommonlyusedpreoperativemodels

Advances in Medicine 5 for prediction of biochemical recurrence after radical prostatectomy, European Urology,vol.57,no.4,pp.562 568,2010. [17] A. Vickers, Prediction models in urology: are they any good, andhowwouldweknowanyway? European Urology, vol.57, no. 4, pp. 571 573, 2010. [18] K.T.Seong,J.H.Lim,C.M.Park,H.K.Kim,andJ.Y.Park, External validation of the cancer of the prostate risk assessment-s score in koreans undergoing radical prostatectomy, Korean Urology,vol.54,no.7,pp.433 436,2013.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity