MANAGEMENT OF CIRCULATORY FAILURE

Similar documents
The Pharmacology of Hypotension: Vasopressor Choices for HIE patients. Keliana O Mara, PharmD August 4, 2018

Hypotension in the Neonate

SHOCK. Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring

Vasoactive Medications. Matthew J. Korobey Pharm.D., BCCCP Critical Care Clinical Specialist Mercy St. Louis

When Fluids are Not Enough: Inopressor Therapy

Case year old female nursing home resident with a hx CAD, PUD, recent hip fracture Transferred to ED with decreased mental status BP in ED 80/50

การอบรมว ทยาศาสตร พ นฐานทางศ ลยศาสตร เร อง นพ.ส ณฐ ต โมราก ล ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร โรงพยาบาลรามาธ บด มหาวทยาลยมหดล

HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT.

INTENSIVE CARE MEDICINE CPD EVENING. Dr Alastair Morgan Wednesday 13 th September 2017

Printed copies of this document may not be up to date, obtain the most recent version from

Physiologic Based Management of Circulatory Shock Kuwait 2018

Neonatal Shock. Imbalance between tissue oxygen delivery and oxygen consumption

SHOCK AETIOLOGY OF SHOCK (1) Inadequate circulating blood volume ) Loss of Autonomic control of the vasculature (3) Impaired cardiac function

Useful diagnostic measures: chest x ray to check pulmonary edema, ECG and ECHO to detect cardiac abnormalities (1).

Swans and Pressors. Vanderbilt Surgery Summer School Ricky Shinall

Advanced Monitoring of Cardiovascular and Respiratory Systems in Infants Kuwait 2018 Dr. Yasser Elsayed, MD, PhD Director of the Targeted Neonatal

Swans and Pressors. Vanderbilt Surgery Summer School Ricky Shinall

I intend to discuss an unapproved/investigative use of a commercial product/device in my presentation

Evidence-Based. Management of Severe Sepsis. What is the BP Target?

Utilizing Vasopressors:

NEONATAL CLINICAL PRACTICE GUIDELINE

Surviving Sepsis Campaign Guidelines 2012 & Update for David E. Tannehill, DO Critical Care Medicine Mercy Hospital St.

Pharmacology of inotropes and vasopressors

When Fluids are Not Enough: Inopressor Therapy

Dilemmas in Septic Shock

Fluid Boluses in Preterm Babies with Poor Perfusion: A Hot Potato. Win Tin The James Cook University Hospital University of Durham

Sepsis: Identification and Management in an Acute Care Setting

Fluids in Sepsis: How much and what type? John Fowler, MD, FACEP Kent Hospital, İzmir Eisenhower Medical Center, USA American Hospital Dubai, UAE

Shock and Vasopressors. Nina E. Glass, MD TACS Fellow SICU Didactic Curriculum 9/24/14

Printed copies of this document may not be up to date, obtain the most recent version from

Nothing to Disclose. Severe Pulmonary Hypertension

State of Florida Systemic Supportive Care Guidelines. Michael D. Weiss, M.D. Associate Professor of Pediatrics Division of Neonatology

Titrating Critical Care Medications

Objectives. Management of Septic Shock. Definitions Progression of sepsis. Epidemiology of severe sepsis. Major goals of therapy

DIAGNOSIS AND MANAGEMENT OF ACUTE HEART FAILURE

Staging Sepsis for the Emergency Department: Physician

Taking the shock factor out of shock

Pediatric Sepsis Treatment:

DESIGNER RESUSCITATION: TITRATING TO TISSUE NEEDS

Presented by: Indah Dwi Pratiwi

How to maintain optimal perfusion during Cardiopulmonary By-pass. Herdono Poernomo, MD

Patient Safety Safe Table Webcast: Sepsis (Part III and IV) December 17, 2014

Pediatric Septic Shock. Geoffrey M. Fleming M.D. Division of Pediatric Critical Care Vanderbilt University School of Medicine Nashville, Tennessee

Date written: April 2014 Review date: April 2016 Related documents: Paediatric Sepsis 6

Hemodynamic Monitoring and Circulatory Assist Devices

Cardiovascular Management of Septic Shock

SHOCK. May 12, 2011 Body and Disease

Initial Resuscitation of Sepsis & Septic Shock

VASOPRESSORS AND INOTROPES CLINICAL PROFESSOR ANDREW BEZZINA FACEM MAY 2017

The Septic Patient. Dr Arunraj Navaratnarajah. Renal SpR Imperial College NHS Healthcare Trust

MANAGEMENT OF NEONATAL HYPOTENSION CLINICAL GUIDELINE

FUNDAMENTALS OF HEMODYNAMICS, VASOACTIVE DRUGS AND IABP IN THE FAILING HEART

Heart Failure (HF) Treatment

What is. InSpectra StO 2?

IV fluid administration in sepsis. Dr David Inwald Consultant in PICU St Mary s Hospital, London CATS, London

UTILITY of ScvO 2 and LACTATE

How and why I give IV fluid Disclosures SCA Fluids and public health 4/1/15. Andrew Shaw MB FRCA FCCM FFICM

UPMC Critical Care

Haemodynamic Support. (getting the blood to go round and round) philippelefevre.com

Weeks 1-3:Cardiovascular

Post Resuscitation Care

Disclosures. Objectives 10/11/17. Short Term Mechanical Circulatory Support for Advanced Cardiogenic Shock. I have no disclosures to report

Anaesthesia. Cardiovascular. Update in. Inotropes and vasopressors in critical care

Shock and hemodynamic monitorization. Nilüfer Yalındağ Öztürk Marmara University Pendik Research and Training Hospital

Department of Intensive Care Medicine UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS

9/16/2012. Progression of Shock. Blood pressure: Pathophysiology & Clinical Management

Dr Richard Pugh Consultant Anaesthetics/ Intensive Care Medicine May 2010

SHOCK in Paediatric Trauma

towards early goal directed therapy

Dr. F Javier Belda Dept. Anesthesiology and Critical Care Hospital Clinico Universitario Valencia (Spain) Pulsion MAB

Perioperative Management of TAPVC

Objectives. Epidemiology of Sepsis. Review Guidelines for Resuscitation. Tx: EGDT, timing/choice of abx, activated

12/1/2009. Chapter 19: Hemorrhage. Hemorrhage and Shock Occurs when there is a disruption or leak in the vascular system Internal hemorrhage

SHOCK. Pathophysiology

Cardiovascular System B L O O D V E S S E L S 2

Cardiovascular Physiology

Index. Note: Page numbers of article titles are in boldface type.

How to resuscitate the patient in early sepsis? A physiological approach. J.G. van der Hoeven, Nijmegen

Sepsis is an important issue. Clinician s decision-making capability. Guideline recommendations

Rounds in the ICU. Eran Segal, MD Director General ICU Sheba Medical Center

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2

The Vigileo monitor by Edwards Lifesciences supports both the FloTrac Sensor for continuous cardiac output and the Edwards PreSep oximetry catheter

Management and treatment of hypotension and hypertension

Physiologic Aspects of the Preterm Circulation

Goal-directed vs Flow-guidedresponsive

1

SHOCK Susanna Hilda Hutajulu, MD, PhD

Utilizing Vasopressors:

The Vigileo monitor by Edwards Lifesciences supports both the FloTrac Sensor for continuous cardiac output and the PreSep oximetry catheter for

Posted: 11/27/2011 on Medscape; Published Br J Anaesth. 2011;107(2): Oxford University Press

Percutaneous Mechanical Circulatory Support for Cardiogenic Shock. 24 th Annual San Diego Heart Failure Symposium Ryan R Reeves, MD FSCAI

Inventory of paediatric therapeutic needs

4/5/2018. Update on Sepsis NIKHIL JAGAN PULMONARY AND CRITICAL CARE CREIGHTON UNIVERSITY. I have no financial disclosures

Vasopressors in septic shock

Resuscitation Before Emergency Surgeries FEIRAN LOU SUNY DOWNSTATE MEDICAL CENTER KINGS COUNTY HOSPITAL

HHS Public Access Author manuscript Crit Care Med. Author manuscript; available in PMC 2015 May 28.

Does Targeted Neonatal Echocardiography(TnECHO) can help prevent Postoperative Cardiorespiratory instability following PDA ligation?

Goal-directed resuscitation in sepsis; a case-based approach

PHYSIOLOGY AND MANAGEMENT OF THE SEPTIC PATIENT

Transcription:

MANAGEMENT OF CIRCULATORY FAILURE BACKGROUND AND DEFINITION There is no consensus on the definition of circulatory failure or shock in newborns; it can be defined as global tissue hypoxia secondary to an imbalance between systemic oxygen delivery (oxygenation and/or perfusion) and systemic oxygen demand. Its pathology is multifactorial and influenced by internal factors such as poor myocardial contractility and external factors like respiratory failure, PDA, anaemia, sepsis, asphyxia. Treatment for this condition lacks empirical evidence ASSESSMENT Bedside Clinical Parameters: Body temperature o A skin shin gap > 2 C can be associated with poor microcirculation as in significant dehydration or sepsis Blood Pressure o Blood Pressure (BP) = Cardiac Output (CO) x Systemic Vascular Resistance (SVR); Cardiac Output (CO) = Stroke Volume (SV) x Heart Rate (HR); Stroke volume depends on preload, contractility and afterload. o The gold standard measurement of blood pressure is performed via an invasive arterial catheter; alternatives include non-invasive oscillometric methods such as cuff blood pressure measurements. They have a good correlation with the invasive arterial methods. However, this is dependent on the accurate selection of an appropriate blood pressure cuff size and precise application. Heart Rate o A heart rate >160 beats per minute in a can be a sign of hypovolaemia. o Low specificity for predicting cardiovascular compromise. Capillary Refill Time o The vasomotor tone of surface capillaries in premature and low birth weight infants is not established. Capillary refill time is also dependent on the ambient temperature making it less reliable in situations such as total body cooling in HIE in term babies. o Evidence as to whether capillary refill time is reliable in assessing end organ perfusion is therefore conflicting. The sensitivity and specificity of a capillary refill time >3 seconds being predictive of low SVC flow (biomarker associated with intracranial haemorrhage) is 78% and 63% respectively when combined with a mean BP of <30mmHg.. 1

Invasive Blood pressure thresholds at 3 th percentile according to gestational age (GA) GA (weeks) Systolic (mmhg) Diastolic (mmhg) Mean (mmhg) 24 32 15 26 25 34 16 26 26 36 17 27 27 38 17 27 28 40 18 28 29 42 19 28 30 43 20 29 31 45 20 30 32 46 21 30 33 47 22 30 34 48 23 31 35 49 24 32 36 50 25 32 2

Urine Output o An association between low output SVC flow and low urine output in preterm infants has been found, but interpretation is difficult as in the first 24 hours in very premature infants urine output is already very low. o Reduction in urine output is often a late sign of poor perfusion. Biochemical Parameters: Lactate o Levels >4mmol/L in the first 48 hours and >3mmol/L thereafter can indicate significant tissue hypoxia in infants at birth, but up to 4.4mmol/L in the first 24-48 hours can be normal. o When capillary refill time is >3 seconds and lactate >4mmol/L there is a 97% probability of finding low SVC flow. Base Excess o A base excess at birth of -7.3mmol/L has a sensitivity and specificity of 100% and 71% respectively for death or cerebral injury. o It correlates well to lactate levels in preterm infants. Technological parameters including functional echocardiography: Base Excess Oxygen Extraction Rate and Central Venous Saturation o Tissue oxygenation can be estimated by looking at the oxygen extraction rate (OER=SaO2 - ScvO2)/SaO2; normal=approx. 0.25). For this we have to know what the oxygen delivery (DO2= CO x (Hb x SaO2 x PaO2)) and demand (VO2= CO x Hb x (SaO2 - SvO2)) is. This can be estimated with the knowledge of cardiac output (CO), arterial saturation (SaO2) and central venous saturation (ScvO2 [surrogate for SvO2); normal=approx.65-75%). o A high OER indicates a disturbed balance between DO2 and VO2, which could be caused by an increased VO2 and/or by a decreased DO2. The tissue oxygenation is poor when there is a combination of low CO, low ScvO2, high OER and lactate. There are four fundamental causes for a drop in ScvO2: a drop in CO, a low Hb, low SaO2, increased oxygen consumption without increase in oxygen delivery. 3

CVP o Can be used in sick patient as a guide for volume status - normal level 0-6mmHg; beware of high values due to right sided cardiac failure Near-Infrared Spectroscopy (NIRS) o There is good correlation between SVC and cardiac output. o For detailed information on what to measure and how to use the information obtained with NIRS please see separate guidance on Near-Infrared Spectroscopy. Functional Echochardiography (fnecho) o Functional echocardiography (fnecho) is a useful objective method for assessing the systemic and pulmonary blood flow and myocardial performance in different clinical circumstances such as PPHN, PDA, arterial hypotension, acute hypovolaemia or sepsis. It can be used to add information about the haemodynamic status and provide guidance in the choice of inotropic support and treatment options in different clinical scenarios. o For detailed information on what to measure and how to use the information obtained with echocardiography please see separate guidance (Functional Echocardiography). aeeg o aeeg (and Cerebral Fractional Oxygen Extraction) becomes abnormal at MBP <23mmHg in very low birthweight infants suggesting that cerebral perfusion might be compromised. 4

MANAGEMENT Prevention: Cord Milking or Delayed Cord Clamping o Lead to less transfusions o Better SVC flow o Less intraventricular haemorrhages o Negligible side-effects Permissive Hypotension (ALL CRITERIA) o Mean BP in mmhg lower than gestational age in weeks o Capillary refill time <4 seconds o Lactate <5 mmol/l o Base excess <-7 mmol/l o Core-shin temperature gap of <2 0 C o Urine output >1ml/kg/hour Treatment: Volume Replacement o There is no simple objective method to assess fluid-responsiveness. However, goal directed therapies indicate that aggressive fluid resuscitation is beneficial in scenarios of acute large volume loss and fluid re-distribution to third spaces. o Current evidence suggests that neither colloids nor crystalloids are superior in terms of successfully treating hypotension, mortality or long-term morbidity except for albumin. o Aliquots of 10-20ml/kg boluses of 0.9% saline are effective and safe for raising blood pressure and cardiac output. o Where circulatory failure is associated with blood loss it is recommended that packed red cell transfusion of 15-20ml/kg be given and fresh frozen plasma is useful in conditions where hypotension is associated with deranged clotting. Inotropic Therapy o Dopamine: Dopamine is an agonist of multiple receptors including α, β, and dopaminergic receptors (in the newborn predominantly affects peripheral and pulmonary vasculature by α adrenergic effect). 25% of infused dopamine is converted into norepinephrine which may contribute to its cardiovascular effects. Dopaminergic effect on kidneys in newborns is not proven. 5

o o o o Dopamine is more successful than dobutamine at raising a neonate s blood pressure. There is no difference with regards to short and long term morbidity or mortality. Caution when using in PPHN due to possible increase PVR Dobutamine: Dobutamine has predominantly β1 and β2 adrenergic activity and (-) enantiomer has α1 adrenergic effects. In the peripheral vasculature α1 and β2 adrenergic activity negate each other. In the heart the activitiy is predominantly β1 adrenergic at low doses. There is minimal impact on the SVR and afterload. It has been shown to moderately increase blood pressure and right ventricular output as well as significantly increase superior vena cava and left ventricular output in response to infusions of 10 20mcg/kg/min. It decreases systemic and pulmonary vascular resistance and increase renal and gut perfusion, so may have a role in neonatal surgical pathology. Adrenaline: Adrenaline is believed to act in a similar manner to dopamine in the preterm population; potent non-selective α agonist and also activates both β1 and β2 receptors; activates both β1 and β2 receptors at low doses 0.02-0.3mcg/kg/min and α1 and β1 receptors at high doses 0.3-1.5mcg/kg/min. It increases SV, CO, SVR One trial found adrenaline to be as good a dopamine in increasing a neonate s blood pressure. Adrenaline is more likely to cause issues with hyperglycaemia, myocardial oxygen use, raised lactate levels and arrhythmias. Noradrenaline: Norepinephrine is a potent non-selective α agonist with some effect at the β1 receptor. It is released from peripheral nerve endings, it is a potent vasoconstrictor that will also increase myocardial contractility. It has not been studied systematically in the neonatal population. However it is a first line therapy in adult and paediatric vasodilatative shock and has shown less adverse events than Dopamine in the management of adult shock (higher risk of arrhythmias). Milrinone: Milrinone is a selective phosphodiesterase-3 (PDE-3) inhibitor that increases intracellular 3 o 5 o cyclic adenosine-mono-phosphate (camp). Augmentation of 6

o o o intracellular camp leads to positive inotropy, lusitropy, reduction in PVR and reduction in systemic afterload. Used predominantly in the maintenance of cardiac output post cardiac surgery and in PPHN; caution when using in PPHN babies with low BP (consider combination with adrenaline or noradrenaline). Vasopressin: Vasopressin is an endogenous neuropeptide which is secreted from the posterior pituitary gland; it increases reabsorption of water (V2 receptors in the collecting duct of the kidney - may cause low Na), vasoconstriction (V1 receptors located in vascular smooth muscle), reduction in heart rate (V1 receptors located in central nervous system), increases adrenal cortisol secretion in presence of ACTH. In severe shock vasopressin has shown to be depleted and the rationale for its use is to increase these depleted levels and promote vasoconstriction (avoid using together with Noradrenaline, if possible). Pentoxifylline: Pentoxifylline, a xanthine derivative, is a phosphodiesterase inhibitor that suppresses TNF-production by adenyl cyclase activation and increased cellular cyclic adenosine 3,5 -monophosphate concentration. Inhibition of TNF-production negates this response and thereby may improve outcome. It also has vasodilative effects and beneficial effects on endothelial cell function, coagulation and immune system. Hydrocortisone: Corticosteroids up-regulate cardiovascular receptors and addresses a preterm neonate s relative adrenocortical insufficiency. It up-regulates and potentiates receptor pathways for both α agonists and angiotensin II, induces the final enzyme in the conversion of stored norepinephrine to epinephrine, increases circulating catecholamine and inhibits local production of vasodilators such as inducible nitric oxide synthase and prostacyclin. Has primarily been used in vasopressor resistant shock and has been shown to increase systemic blood pressure in preterm infants with refractory hypotension within 2 6h without compromising cardiac function, systemic or end-organ blood flow. Helps improve capillary leak syndrome. Concerns about effect on long term development appear to be unfounded, but has been associated with spontaneous intestinal perforation (especially when combined with NSAID). 7

Drug Dose Range (IV) SV and CO SVR PVR Dopamine 1 20 mcg/kg/min + HR * Noradrenaline 0.01 1 mcg/kg/min - no effect Vasopressin 0.00003-0.002 units/kg/min Dobutamine 1 20 mcg/kg/min * - no effect Adrenaline 0.01-0.1 mcg/kg/min. 0.1-1 mcg/kg/min unknown Milrinone 0.35-0.75 mcg/kg/min Pentoxifylline 5mg/kg/h for 6h from 3-6 days no effect Hydrocortisone 2 mg/kg single dose + 1mg/kg TDS no effect SVR=Systemic Vascular Resistance; PVR= Pulmonary Vascular Resistance; SV=Stroke Volume; CO= Cardiac Output; *=with increasing dose 8

9

Specific Treatment Considerations: Systolic Hypotension (ABP <3 rd centile), low Cardiac Output o Rule out non cardiovascular factors contributing to low LV filling (preload) such as pneumothorax, chest effusion, pneumopericard, pericardial effusion, high mean airway pressure. o Check heart rate for arrhythmias and if possible cardiac function with fnecho. o Aim for ScvO2 >70% and SVC flow above 40ml/kg/min. o Consider a fluid bolus 10-20ml/kg. o Start Dobutamine (first line), Adrenaline (second line), Milrinone (third line). o Consider ino, Prostaglandin, Tolazoline, Mg-Sulfate, Prostacyclin for PPHN o Beware that during hypothermia CO reduces by 60-70% 10

Diastolic Hypotension (ABP <3 rd centile), low Systemic Vascular Resistence o Inotropic agents should be avoided in hypovolaemia as these neonates are typically hypercontractile and tachycardia may impair filling and worsen SBF. o Aim for ScvO2 >70% and SVC flow above 40ml/kg/min. o Treat acute hypovolaemia (absolute/relative) with liberal fluid replacement (total max. 60 ml/kg), either Normal Saline and/or Blood Products as indicated. Avoid Albumin. o Give volume (first line), start Dopamine (second line), Noradrenaline or Vasopressin (third line), Adrenaline (fourth line), consider Phenylephrine. o Consider permissive hypercapnia, shorter IT< 0.35s, higher PEEP >4.5cmH2O, fluid restriction, dobutamine and NSAID in PDA. Consider Pentoxyfilline in NEC on day 3-6. Consider adding Hydrocortisone, if catecholamine resistant shock is present (no response despite using two inotropic agents). 11

12