Outcome of closed ipsilateral metacarpal fractures treated with mini fragment plates and screws: a prospective study

Similar documents
Functional outcome of Metacarpal Fracture managed with Miniplate and Screws. Bir Hospital & Patan Hospital, Kathmandu

EXTRAARTICULAR ANTEGRADE FIXATION OF PROXIMAL PHALYNX FRACTURES WITH BENT K WIRE

Original Article Mini External Fixator in Metacarpal And Phalangeal Fractures Pak Armed Forces Med J 2016; 66(5):715-19

Management of metacarpal and phalangeal fractures with JESS fixator: A prospective study

INTERNAL FIXATION OF THE METACARPALS AND PHALANGES P. BURGE

Comparison between Intramedullary Nailing and Percutaneous K-Wire Fixation for Fractures in the Distal Third of the Metacarpal Bone

Management of Unstable Metacarpal Fractures with Traversing Kirschner Wiring

Closed Proximal Phalangeal Fracture Management in Hand: An Outcome Analysis

Research Article How Early Can We Mobilise 4 th And 5 th Metacarpal Shaft Fractures? A Retrospective Study

Fractures of the Hand in Children Which are simple? And Which have pitfalls??

A novel method of treating isolated unicondylar fracture of the head of the proximal phalanx: A case report

Comparison of Miniplate and K-wire in Treatment of Metacarpal and Phalangeal Fractures

Percutaneous Distraction Pinning for Metacarpophalangeal Joint Stabilization After Blast or Crush Injuries of the Hand

The Metacarpal Locked Intramedullary Nail: Comparative Biomechanical Evaluation of New Implant Design for Metacarpal Fractures

Post-Traumatic Malunion of the Proximal Phalanx of the Finger. Medium- Term Results in 24 Cases Treated by In Situ Osteotomy

The Birmingham Hook Plate Treatment Of Irreduceable Displaced Mallet Avulsion Fractures: A Technical Note

The Efficacy of Transverse Fixation and Early Exercise in the Treatment of Fourth Metacarpal Bone Fractures

Fractures of the tibia shaft treated with locked intramedullary nail Retrospective clinical and radiographic assesment

Technique Guide. Rotation Correction Plates 1.5 and 2.0. Reposition plates for fractures and osteotomies at the metacarpals and phalanges.

Percutaneous Cannulated Compression Screw Osteosynthesis in Phalanx Fractures: The Surgical Technique, the Indications, and the Results

The study of distal ¼ diaphyseal extra articular fractures of humerus treated with antegrade intramedullary interlocking nailing

Hand injuries. The metacarpal bones may fracture through the base, shaft or the neck.

Mark VanDer Kaag 1, Ajmal Ikram 2. Hand Unit, Tygerberg Hospital University of Stellenbosch

MINIMALLY INVASIVE PLATE OSTEOSYNTHESIS FOR DISTAL RADIUS FRACTURES: SURGICAL TECHNIQUE M. TOBE 1, K. MIZUTANI 1, Y. TSUBUKU 1, Y.

Orthopedics in Motion Tristan Hartzell, MD January 27, 2016

Visualize, stabilize, mobilize. Wristore * Distal Radius Fracture Fixator Abbreviated Surgical Technique

Percutaneous Multiple Kirschner Wire Fixation in the Treatment of Hand Fractures

MANAGEMENT OF PROXIMAL HUMERUS FRACTURE WITH LOCKING COMPRESSION PLATE Shivananda S 1, Radhakrishna A. M 2, Kumar M 3

Primary internal fixation of fractures of both bones forearm by intramedullary nailing

Finger Mobility Deficits Fracture of metacarpal Fracture of phalanx of phalanges

CASE REPORT. Distal radius nonunion after volar locking plate fixation of a distal radius fracture: a case report

Dynamic treatment for proximal phalangeal fracture of the hand

ORIGINAL ARTICLE TREATMENT DISTAL RADIUS FRACTURE WITH VOLAR BUTTRESS TECHNIQUE- A CLINICAL STUDY

BRIDGE PLATING OF COMMINUTED SHAFT OF FEMUR FRACTURES

Fractures of the Radial and Ulnar Shafts In the Pediatric Patient


Small External Fixator Wrist Spanning Frame. For the treatment of wrist fractures.

Zimmer Small Fragment Universal Locking System. Surgical Technique

Technique Guide. 2.4 mm Variable Angle LCP Distal Radius System. For fragment-specific fracture fixation with variable angle locking technology.

A Clinical Study For Evaluation Of Results Of Closed Interlocking Nailing Of Fractures Of The Shaft Of The Tibia

A comparative study of locking plate by MIPO versus closed interlocking intramedullary nail in extraarticular distal tibia fractures

Proposal for a Radiological Classification System for Carpo-Metacarpal Joint Dislocations with or without Fractures

recovery. Many methods of treatment for fractures of the clavicle had been IJMDS January 2016; 5(1) 991

Clinical Study Rate of Improvement following Volar Plate Open Reduction and Internal Fixation of Distal Radius Fractures

University of Groningen. Fracture of the distal radius Oskam, Jacob

International Journal of Health Sciences and Research ISSN:

Pediatric Phalanx Fractures

Jacqueline C. Vanderzanden, Brian D. Adams & Justin J. Guan

TENS in paediatrics both bone forearm fractures

THE FIRST PERCUTANEOUS LOCKED FLEXIBLE INTRAMEDULARY NAIL SYSTEM FOR HAND FRACTURES

Study of clinical problems: Mallet injuries

Index. Note: Page numbers of article titles are in boldface type. Hand Clin 21 (2005)

7/23/2018 DESCRIBING THE FRACTURE. Pattern Open vs closed Location BASIC PRINCIPLES OF FRACTURE MANAGEMENT. Anjan R. Shah MD July 21, 2018.

The Lateral Trochanteric Wall A Key Element in the Reconstruction of Unstable Pertrochanteric Hip Fractures

Management of Mallet Fracture by Closed Extension-Block Pinning A case based review of a novel technique

HUMERAL SHAFT FRACTURES: ORIF, IMN, NONOP What to do?

Hand Fractures: When is closed treatment OK? Epidemiology in USA: Metacarpal fractures: Page 1

Techique. Results. Discussion. Materials & Methods. Vol. 2 - Year 1 - December 2005

OF SURGICALLY TREATED FRACTURE FOREARM BONES WITH PLATING IN BOTH BONE VERSUS PLATING IN RADIUS AND NAILING IN ULNA

Olecranon fracture. Lonnie Froberg, MD, Ph.D Rigshospitalet, Copenhagen University Hospital

Dr. Parag M Tank, Dr. Vijay J Patel and Dr. Dhaval M Ninama

Closed reduction and internal fixation of fractures of the shaft of the femur by the Titanium Elastic Nailing System in children.

IC 30: Tips and Tricks for Management of Hand Fractures-Simple to Complex

Distal Radius Plate 2.4/2.7 dorsal and volar

Technique Guide. 2.7 mm/3.5 mm LCP Distal Fibula Plates. Part of the Synthes locking compression plate (LCP) system.

Results of tibia nailing with Angular Stable Locking Screws (ASLS); A retrospective study of 107 patients with distal tibia fracture.

Surgical Care at the District Hospital. EMERGENCY & ESSENTIAL SURGICAL CARE

Crossed Steinmann Pin Fixation In Supracondylar Femur Fractures In Adults A Case Series

Hand Fracture System. Surgical Technique

Functional outcome of open reduction and internal fixation of clavicle fracture

Biomechanical and Clinical Evaluation of a New Operative Technique

Surgical Management of Distal end Radius Fractures by Various Methods: A Prospective Study

Technology and Health Care 21 (2013) DOI /THC IOS Press

Emile N. Brown, MD, and Scott D. Lifchez, MD

Small External Fixator Nonspanning Wrist Frame. For the treatment of wrist fractures.

BASIC PRINCIPLES OF HAND TRAUMA: ARE CHILDREN DIFFERENT? SUSAN THOMPSON, MD, FRCSC

Tibial Shaft Fractures

Medial Malleolus Fracture Fixation in the Setting of Concomitant Tibial Shaft Fractures

A Patient s Guide to Adult Finger Fractures

A comparative study of 30 cases of trochanteric fracture femur treated with dynamic hip screw and proximal femoral nailing

Fracture and Dislocation of Metacarpal Bones, Metacarpophalangeal Joints, Phalanges, and Interphalangeal Joints ( 1-Jan-1985 )

Index. B Backslap technique depth assessment, 82, 83 diaphysis distal trocar, 82 83

Study of Evaluation of Lateral Surgical Approach for Diaphyseal Fractures of Distal 2/3rd of Radius at a Tertiary Care Teaching Centre

Segmental tibial fractures treated with unreamed interlocking nail A prospective study

Long Volar Plates for Diaphyseal-Metaphyseal Radius Fractures LCP. Dia-Meta Volar Distal Radius Plates. Surgical Technique

FUNCTIONAL OUTCOME OF PROXIMAL TIBIA EXTR-ARTICULAR FRACTURES TREATED WITH LOCKING COMPRESSION PLATING

Comparison between Distractor Application on Both Radial & Ulnar Side and Radial Side Only for Fracture Distal Radius with Ulnar Styloid Fracture

COMPARATIVE STUDY OF MANAGEMENT OF DIAPHYSEAL FEMUR FRACTURE WITH INTRAMEDULLARY INTERLOCKING NAIL AND K. NAIL

FOOSH It sounded like a fun thing at the time!

Acomparison of percutaneous and pin-and-plaster techniques in distal radius fracture

A Patient s Guide to Adult Metacarpal Fractures of the Hand

COMPARATIVE STUDY OF FUNCTIONAL OUTCOME OF EXTERNAL AND INTERNAL FIXATION IN TREATMENT OF COMMINUTED DISTAL RADIUS FRACTURES

Fifth metacarpal neck fracture fixation: Locking plate versus K-wire?

JMSCR Vol 05 Issue 04 Page April 2017

Plate Fixation Options

Rotation Correction Plates 1.5 and 2.0. Reposition plates for fractures and osteotomies at the metacarpals and phalanges.

Locked Plating: Clinical Indications

Malaysian Orthopaedic Journal 2018 Vol 12 No 2

2/1/2018. Clinical Reasoning for Fracture Management

Transcription:

J Orthopaed Traumatol (2012) 13:29 33 DOI 10.1007/s10195-011-0166-7 ORIGINAL ARTICLE Outcome of closed ipsilateral metacarpal fractures treated with mini fragment plates and screws: a prospective study Ashwani Soni Anmol Gulati J. L. Bassi Daljit Singh Uttam Chand Saini Received: 19 October 2010 / Accepted: 24 October 2011 / Published online: 12 November 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Background Closed multiple metacarpal fractures are considered highly unstable and are more prone to poor functional outcome. The authors assess the functional outcome of mini fragment plate fixation in closed ipsilateral multiple metacarpal fractures. Patients and methods In 21 patients with closed ipsilateral multiple metacarpal fractures treated with open reduction and internal fixation using mini fragment plate, functional outcome was assessed using the American Society for Surgery of the Hand (ASSH) Total Active Flexion (TAF) score and the Disabilities of the Arm, Shoulder, and Hand (DASH) scoring system. Results Union rate of 100% was achieved. Functional outcome was excellent in 85.71% (18 of 21) and good in 9% (2 of 21) of patients. Average DASH score was 8.47 (range 1 26). Five cases of infection (two deep, three superficial) were reported, which subsided with dressings and antibiotics. Conclusions Plate fixation is a good option for treating closed ipsilateral multiple metacarpal fractures, providing rigid fixation for early mobilization and good functional outcome. A. Soni (&) D. Singh U. C. Saini Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India e-mail: asoniortho@gmail.com A. Gulati Department of Orthopedics, Fortis Hospital, Mohali 160055, India J. L. Bassi Department of Orthopedics, Dayanand Medical College and Hospital, Ludhiana 141001, India Keywords Metacarpal fracture Mini fragment plate Internal fixation Introduction Hand is one of the most frequently injured parts of the body [1]. Functional outcome in case of fractures of small bones of hand depends upon injury severity and management [2]. Ultimate functional outcome is more important than just fracture healing in case of hand fracture [3]. Most hand fractures can be treated by nonoperative methods with good outcome [4, 5]. In the small percentage of unstable hand fractures, results of closed treatment remain unsatisfactory. Closed multiple metacarpal fractures are considered highly unstable and are more prone to poor functional outcome compared with open single metacarpal fracture [6 10]. A small number of prospective studies have been published on treatment of unstable metacarpal and phalangeal fractures using miniature plate (mini plate) and screws [11, 13, 14]. After thorough literature review we did not find any prospective studies in which ipsilateral multiple metacarpal fractures were treated with plating system. We carried out a study in which 21 patients with closed ipsilateral multiple metacarpal fractures were treated with mini fragment plates and screws. Patients and methods A prospective study was conducted from January 2005 to December 2008. Thirty-one consecutive patients with closed ipsilateral multiple metacarpal fractures who were admitted to our institution were enrolled in the study. Patients with two or more metacarpal fractures were

30 J Orthopaed Traumatol (2012) 13:29 33 included. Two patients died due to associated head injury. Eight patients were lost to follow-up. Finally, a total of 21 patients with 55 metacarpal fractures were included in the study. The minimum age of the patients in our series was 16 years, and the maximum was 75 years, with mean age of 49.5 years. Of all 21 cases, the majority ([50%) were in either the second or fifth decade of life, with the maximum number of patients in the 21 30-year-old age group, accounting for 28% of total patients. Nineteen patients were male, and two patients were female. Right hand was involved in 11 patients and left in 10 patients. Roadside accidents with high-energy trauma were the mode of injury in most cases (11 cases). The second most common cause of these fractures was assault (seven cases), while few patients suffered these fractures during industrial accidents (two cases) or fall (one case). Eleven patients had two metacarpal fractures. The most common pattern was ring finger with little finger (five patients), and the least common was little finger with index finger (one patient). Seven patients had three metacarpal fractures, and three patients had four metacarpal fractures. There are different sizes of plate available to fix metacarpal fractures (1.5-mm screws and titanium mini plates, 2.0-mm screws and stainless-steel AO mini plates, and 2.7-mm screws and stainless-steel AO mini plates). Ultralow-profile plates are also available. We used 2.0-mm stainless-steel AO mini plates with 2.0-mm screws. Souer et al. describe the use of escape screws, i.e., a 2.4-mm screw through a 2.0-mm plate, in metaphyseal bone if satisfactory purchase is not obtained with a 2.0-mm screw [9]. However, in our cases we were able to get satisfactory purchase with 2.0-mm screws. The DASH score and the American Society for Surgery of the Hand (ASSH) Total Active Flexion (TAF) score (Table 1) were used to grade results. The ASSH TAF score Table 1 American Society for Surgery of the Hand (ASSH) Total Active Flexion (TAF) score system Degree of flexion Rating TAF from MCPJ to DIPJ: digit 2 5 [220 Excellent 120 80 Good \80 Poor TAF from MCPJ to IPJ: thumb [220 Excellent 120 80 Good \80 Poor Clinical Assessment Committee. Total Active Flexion (TAF) scale, American Society for Surgery of the Hand (ASSH) report. New Orleans, 1976. TAF, total active flexion; MCPJ, metacarpophalangeal joint; DIP, distal interphalangeal joint; IPJ, interphalangeal joint grades results as excellent (flexion C220), good (flexion 120 80), or poor (flexion B80). Surgical technique The metacarpal fractures were exposed by dorsal incisions in the space between the involved metacarpals. Extensor tendons were retracted. Fractures were fixed with the plate best suited to the fracture configuration. Reduction and screw sizes were confirmed by image intensifier. Adequate soft tissue closure was achieved over the plate to avoid extensor tendon irritation. Wound was closed without drainage. The hand was rested in elevation for 24 48 h to control pain and swelling, and mobilized actively thereafter. Fracture union was monitored by serial radiographs during fortnightly follow-up visits. Clinical progress in terms of range of movement and complications was recorded at each outpatient visit until healing of fractures, and union was noted. The final range of motion of operated finger was noted in degrees after fracture union. Average follow-up was 1 year. The study was performed in accordance with the ethical standards of the 1964 Declaration of Helsinki and was approved by the local ethical committee. Written informed consent was obtained from all patients. Results Bone union was seen in all patients, with average period of 6.22 weeks (range 4.5 7.5 weeks). Final functional outcome (as assessed by ASSH TAF score) was excellent in 18 patients, good in 2 patients, and poor in 1 patient. Mean DASH score was 8.47 (range 1 26). The results were satisfactory, as shown in Figs. 1 and 2. Deep infection was seen in two patients and was managed with daily dressings and antibiotics. Of these two patients, one had four metacarpal fractures and the other had three metacarpal fractures. Superficial infection was seen in three patients and was managed with daily dressings and antibiotics. There were no cases of angular or rotational displacement. No cases of implant breakage were noted. None of the patients in our study had tendon irritation. This may because we were extra cautious during soft tissue suturing over plate. In none of the patients was implant removal required. Discussion Most hand fractures can be treated by nonoperative methods with good outcome [4, 5]. In the small percentage of

J Orthopaed Traumatol (2012) 13:29 33 31 Fig. 1 Case 1: a preoperative and b postoperative X-rays unstable hand fractures, results of closed treatment are usually unsatisfactory. Indications for accurate open reduction and internal fixation in hand fractures are few, probably accounting for less than 5% of all hand fractures [15 17]. James reported loss of function in 77% of fingers with unstable phalangeal fracture treated by closed methods [18]. Open reduction and internal fixation of metacarpal fractures with K-wires produces a less rigid fixation with little rotational stability. Protruding ends of the K-wires cause other problems. Interosseous wiring along with K-wire provides more rigid stabilization; however, this method is useful in transverse diaphyseal fractures only. Metacarpal fracture fixation with external fixator has been described in literature [19 27]. Return of total range of motion was achieved in up to 100% of metacarpal fractures fixed with external fixator by Shehadi et al. [20]. Tun et al. compared the biomechanical properties, clinical versatility, ease of application, and financial cost of seven mini external fixation systems used to treat unstable metacarpal shaft fractures with segmental bone loss [25]. Fig. 2 Case 1: a full flexion, b full extension, and c pen-holding, showing pinch Those authors discouraged routine use of such fixators because of unacceptable loosening at the pin cement interface during testing and because of difficulties encountered during construction and application.

32 J Orthopaed Traumatol (2012) 13:29 33 Transverse and short oblique metacarpal fractures may be splinted with intramedullary wires [28 37]. Flexible bent intramedullary fascicular wires may be used to support oblique fractures. In a study of 21 metacarpal fractures, a J-shaped nail formed from a curved 2.0-mmdiameter Kirschner wire bent sharply at the proximal end was found to be useful in neck or transverse shaft fractures of the metacarpals without concomitant injuries such as severe soft tissue damage [31]. A recent uncontrolled retrospective consecutive study of 22 metacarpal fractures suggested that transcutaneous intramedullary wire fixation of oblique extra-articular metacarpal shaft fracture wires achieves good results and has few complications [36]. In a study of 52 consecutive closed, displaced, extra-articular metacarpal fractures, results of intramedullary nail (IMN) fixation were compared with those of plate screw (PS) fixation. No significant differences in clinical outcomes were found, but the incidences of loss of reduction, penetration to the metacarpal phalangeal joint, and secondary surgery for hardware removal in the operating room were much higher in the IMN group [37]. In the literature, several studies have reported satisfactory results for unstable metacarpal and phalangeal fractures fixed with AO mini plates and screws [11, 12, 27, 38 47]. In literature, we found only one study, by Souer et al., in which results of plate fixation in closed ipsilateral multiple metacarpal fractures were evaluated [9]. The study was retrospective, unlike our study. They found total active motion (TAM) [230 in 18 of 19 patients. They had two patients with plate-related complications and one delayed union. Their functional results as evaluated by TAM were quite similar to our results. Gupta et al., in their prospective study, divided patients with fractured metacarpals into four groups. They found TAM [230 in all patients in the group where fracture was fixed with plates [27]. Dabezies and Schutte reported no complications in 27 unstable metacarpal fractures fixed with plates [40]. Our low complication rate is similar to their results. Other authors have reported that patients with open fractures and severe soft tissue injury have high rate of complications [45, 48 50]. Nonunion and delayed union are infrequent findings in metacarpal fractures. Souer et al. reported 1 of 19 patients having delayed union [9]; the patient was a smoker. Page and Stern [49] found nonunion in 1 of 66 patients, and Stern et al. [45] found nonunion in 3 of 17 patients. Their low rate of nonunion and delayed union was similar to our results. Infection was seen in 5 of 21 patients. Two patients had deep and three had superficial infection. In all three patients who had superficial infection, there was discharge from the wound from postoperative day 1, which was settled within postoperative day 3 with daily dressings and antibiotics. In two cases with deep infection, the discharge persisted up to postoperative day 7. Though the rate of infection was quite high, all patients were managed with dressings and antibiotics, and the final outcome was not affected. In closed multiple metacarpal fractures, plate fixation is a good option for several reasons. These fractures are highly unstable, and stable fixation is required in these fractures [9]. Metacarpal length is very likely to be shortened in multiple metacarpal fractures, causing instability [6, 7]. This effect is greater in internal metacarpals (third and fourth metacarpals) than in border metacarpals (second and fifth metacarpals), because the latter are anchored on both sides of the metacarpal head [8]. Closed ipsilateral multiple metacarpal fractures are frequently associated with more soft tissue injury as compared with single fracture, making them more susceptible to stiffness and poor functional results. Osteosynthesis using miniature plates and screws in these unstable fractures produces anatomical reduction of fractures with stabilization that is rigid enough to allow early mobilization of adjacent joints without allowing loss of reduction, thereby preventing stiffness and hence good functional results. In our study, we found a 100% union rate, with 85.71% (18 of 21) excellent and 9% (2 of 21) good results according to the American Society for Surgery of the Hand (ASSH) Total Active Flexion (TAF) score. Mean DASH score was 8.47 (range 1 26). Rigid and stable fixation with mini plates allowed early mobilization, which prevented stiffness and achieved good functional result. Though the infection rate was high, it was managed with dressings and antibiotics in all patients. In conclusion, plate fixation is a good option for treating closed multiple metacarpal fractures, providing rigid fixation for early mobilization and good functional outcome. Conflicts of interest None. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References 1. Emmett JE, Breck LW (1958) A review analysis of 11, 000 fractures seen in a private practice of orthopaedic surgery, 1937 1956. J Bone Joint Surg Am 40:1169 1175 2. Drenth DJ, Klasen HJ (1998) External fixation for phalangeal and metacarpal fractures. J Bone Joint Surg Br 80:227 230 3. Brenwald J (1987) Bone healing in the hand. Clin Orthop Relat Res 214:7 10 4. Barton N (1989) Conservative treatment of articular fractures in the hand. J Hand Surg Am 14:386 390 5. Wright TA (1968) Early mobilization in fractures of the metacarpals and phalanges. Can J Surg 11:491 498

J Orthopaed Traumatol (2012) 13:29 33 33 6. Eglseder WA Jr, Juliano PJ, Roure R (1997) Fractures of the fourth metacarpal. J Orthop Trauma 11:441 445 7. Meunier M, Hentzen E, Ryan M et al (2004) Predicted effects of metacarpal shortening on interosseous muscle function. J Hand Surg Am 29:689 693 8. Freeland AE, Orbay JL (2006) Extraarticular hand fractures in adult. Clin Orthop Relat Res 445:133 145 9. Souer JS, Mudgal CS (2008) Plate fixation in closed ipsilateral multiple metacarpal fractures. J Hand Surg Eur 33(6):740 744 10. Smith RJ (1974) Balance and kinetics of the fingers under normal and pathological conditions. Clin Orthop Relat Res 104:92 111 11. Agarwal AK, Pickford MA (2006) Experience with a new ultralow-profile osteosynthesis system for fractures of the metacarpals and phalanges. Ann Plast Surg 57:206 212 12. Bosscha K, Snellen JP (1993) Internal fixation of metacarpal and phalangeal fractures with AO minifragment screws and plates: a prospective study. Injury 24:166 168 13. Pun WK, Chow SP, So YC et al (1991) Unstable phalangeal fractures: treatment by A.O. screw and plate fixation. J Hand Surg Am 16:113 117 14. Omokawa S, Fujitani R, Dohi Y (2008) Prospective outcomes of comminuted periarticular metacarpal and phalangeal fractures treated using a titanium plate system. J Hand Surg Am 33(6):857 863 15. Amadio PC (1991) Fractures of the hand and the wrist. In: Jupiter JB (ed) Flynn s hand surgery. Williams & Wilkins, Baltimore, pp 122 185 16. Stern PJ (1999) Fractures of the metacarpals and phalanges. In: Green DP (ed) Operative hand surgery, vol 1. Churchill Livingstone, New York, pp 711 771 17. Barton NJ (1984) Fractures of the hand. J Bone Joint Surg Br 66:159 167 18. James JIP (1962) Fractures of the proximal and middle phalanges of the fingers. Acta Orthop Scand 32:401 412 19. Parsons SW, Fitzgerald JA, Shearer JR (1992) External fixation of unstable metacarpal and phalangeal fractures. J Hand Surg Br 17(2):151 155 20. Shehadi SI (1991) External fixation of metacarpal and phalangeal fractures. J Hand Surg Am 16(3):544 550 21. Schuind F, Donkerwolcke M, Burny F (1991) External minifixation for treatment of closed fractures of the metacarpal bones. J Orthop Trauma 5(2):146 152 22. Pritsch M, Engel J, Farin I (1981) Manipulation and external fixation of metacarpal fractures. J Bone Joint Surg Am 63(8):1289 1291 23. Büchler U (1994) The small AO external fixator in hand surgery. Injury 25 (Suppl 4):S-D55-63 24. Pennig D, Gausepohl T, Mader K et al (2000) The use of minimally invasive fixation in fractures of the hand the minifixator concept. Injury 31(Suppl 1):102 112 25. Tun S, Sekiya JK, Goldstein SA et al (2004) A comparative study of mini-external fixation systems used to treat unstable metacarpal fractures. Am J Orthop (Belle Mead NJ) 33(9):433 438 26. Margić K (2006) External fixation of closed metacarpal and phalangeal fractures of digits. A prospective study of one hundred consecutive patients. J Hand Surg Br 31(1):30 40 27. Gupta R, Singh R, Siwach R et al (2007) Evaluation of surgical stabilization of metacarpal and phalangeal fractures of hand. Indian J Orthop 41(3):224 229 28. Gonzalez MH, Igram CM, Hall RF (1995) Flexible intramedullary nailing for metacarpal fractures. J Hand Surg 20:382 387 29. Orbay JL, Indriago I, Gonzalez E et al (2002) Percutaneous fixation of metacarpal fractures. Op Tech Plast Reconstruct Surg 9:138 142 30. Gonzalez MH, Hall RF Jr (1996) Intramedullary fixation of metacarpal and proximal phalangeal fractures of the hand. Clin Orthop Relat Res 327:47 54 31. Itadera E, Hiwatari R, Moriya H et al (2008) Closed intramedullary fixation for metacarpal fractures using J-shaped nail. Hand Surg 13(3):139 145 32. Balfour GW (2008) Minimally invasive intramedullary rod fixation of multiple metacarpal shaft fractures. Tech Hand Up Extrem Surg 12(1):43 45 33. Orbay JL, Touhami A (2006) The treatment of unstable metacarpal and phalangeal shaft fractures with flexible nonlocking and locking intramedullary nails. Hand Clin 22(3):279 286 34. Downing ND, Davis TR (2006) Intramedullary fixation of unstable metacarpal fractures. Hand Clin 22(3):269 277 35. Orbay J (2005) Intramedullary nailing of metacarpal shaft fractures. Tech Hand Up Extrem Surg 9(2):69 73 36. Faraj AA, Davis TR (1999) Percutaneous intramedullary fixation of metacarpal shaft fractures. J Hand Surg Br 24:76 79 37. Ozer K, Gillani S, Williams A et al (2008) Comparison of intramedullary nailing versus plate-screw fixation of extra-articular metacarpal fractures. J Hand Surg Am 33(10):1724 1731 38. Chen SH, Wei FC, Chen HC et al (1994) Miniature plates and screws in acute complex hand injury. J Trauma 37:237 242 39. Ford DJ, el-hadidi S, Lunn PG et al (1987) Fractures of the metacarpals: treatment by A. O. screw and plate fixation. J Hand Surg Br 12:34 37 40. Dabezies EJ, Schutte JP (1986) Fixation of metacarpal and phalangeal fractures with miniature plates and screws. J Hand Surg Am 11:283 288 41. Büchler U, Fischer T (1987) Use of a minicondylar plate for metacarpal and phalangeal periarticular injuries. Clin Orthop Relat Res 214:53 58 42. Diwaker HN, Stothard J (1986) The role of internal fixation in closed fractures of the proximal phalanges and metacarpals in adults. J Hand Surg Br 11:103 108 43. Hastings H 2nd, Carroll C 4th (1988) Treatment of closed articular fractures of the metacarpophalangeal and proximal interphalangeal joints. Hand Clin 4:503 527 44. Melone CP Jr (1986) Rigid fixation of phalangeal and metacarpal fractures. Orthop Clin North Am 17:421 435 45. Stern PJ, Wieser MJ, Reilly DG (1987) Complications of plate fixation in the hand skeleton. Clin Orthop Relat Res 214:59 65 46. Thakore HK (1986) Osteosynthesis for the unstable fracture of the hand. J Hand Surg Br 11:417 421 47. Trevisan C, Morganti A, Casiraghi A et al (2004) Low severity metacarpal and phalangeal fractures treated with miniature plates and screws. Arch Orthop Trauma Surg 124:675 680 48. Fusetti C, Meyer H, Borisch N et al (2002) Complications of plate fixation in metacarpal fractures. J Trauma 52:535 539 49. Page SM, Stern PJ (1998) Complications and range of motion following plate fixation of metacarpal and phalangeal fractures. J Hand Surg Am 23:827 832 50. Ouellette EA, Freeland AE (1996) Use of the minicondylar plate in metacarpal and phalangeal fractures. Clin Orthop 327:38 46