The evaluation of nutrient quality of ramie leaves silage and hay in complete mixed ration for Etawah-Crossbreed goat using in vitro technique

Similar documents
DIET DIGESTIBILITY AND RUMEN TRAITS IN RESPONSE TO FEEDING WET CORN GLUTEN FEED AND A PELLET CONSISTING OF RAW SOYBEAN HULLS AND CORN STEEP LIQUOR

NUTRITIONAL PROPERTIES OF COCOA

The Effects of Different Silage Additives on in vitro Gas Production, Digestibility and Energy Values of Sugar Beet Pulp Silage

Established Facts. Impact of Post Harvest Forage on the Rumen Function. Known Facts. Known Facts

Evaluation of Ruma Pro (a calcium-urea product) on microbial yield and efficiency in continuous culture

Abstract. Keywords: Tropical grasses, Degradability, Nutrient, Rumen fermentation. Introduction. Chaowarit Mapato a* and Metha Wanapat a

Understanding Dairy Nutrition Terminology

The Use of Apple Pomace in Rice Straw Based Diets of Korean Native Goats (Capra hircus)

Supplementation of High Corn Silage Diets for Dairy Cows. R. D. Shaver Professor and Extension Dairy Nutritionist

VMIC 2017 The Veterinary Medicine International Conference 2017 Volume 2017

Protein and Carbohydrate Utilization by Lactating Dairy Cows 1

Effective Practices In Sheep Production Series

Effects of increasing the energy density of a lactating ewe diet by replacing grass hay with soybean hulls and dried distillers grains with solubles 1

INTERPRETING FORAGE QUALITY TEST REPORTS

Bogor Agricultural University, *

EFFECTS OF SUPPLEMENT SOURCE ON INTAKE, DIGESTION AND RUMINAL KINETICS OF STEERS FED PRAIRIE HAY. Authors:

Nonstructural and Structural Carbohydrates in Dairy Cattle Rations 1

Effect of Feeding Dried Distiller s Grains Plus Solubles on Milk Yield and its Composition in Dairy Cattle

P. Namanee, S. Kuprasert and W. Ngampongsai. Abstract

COW SUPPLEMENTATION: GETTING THE BEST BANG FOR YOUR BUCK. Low Quality Forage. Ruminant Digestive Anatomy. How do we get the best bang for the buck?

INTAKE AND QUALITATIVE ASPECTS OF GUINEA GRASS GRAZED BY SHEEP OVER THREE DIFFERENT SEASONS. W.A. van Niekerk. Africa

Production Costs. Learning Objectives. Essential Nutrients. The Marvels of Ruminant Digestion

Introduction. Use of undf240 as a benchmarking tool. Relationships between undigested and physically effective fiber in lactating dairy cows

WHAT SOLUBLE SUGARS AND ORGANIC ACIDS CAN DO FOR THE RUMEN

MICROBIAL INOCULANT EFFECTS ON IN SITU RUMINAL DRY MATTER AND NEUTRAL DETERGENT FIBER DISAPPEARANCE OF CORN SILAGE

FACTORS AFFECTING MANURE EXCRETION BY DAIRY COWS 1

Efficient rumen conditioning for optimum productivity

EFFECT OF RYEGRASS SILAGE DRY MATTER CONTENT ON THE PERFORMANCE OF LACTATING HOLSTEIN COWS

COMPLETE LACTATIONAL PERFORMANCE OF COWS FED WET CORN GLUTEN FEED AND PELLET CONSISTING OF RAW SOYBEAN HULLS AND CORN STEEP LIQUOR

RF RF. ;, cm -* cm. Mertens +331 Sudweeks +32+

FEEDING VALUE OF WET DISTILLERS GRAINS FOR LACTATING DAIRY COWS WHEN CO-ENSILED WITH CORN SILAGE OR HAYCROP SILAGE

Some Factors Affecting Fermentation Capacity and

ESTIMATING THE ENERGY VALUE OF CORN SILAGE AND OTHER FORAGES. P.H. Robinson 1 ABSTRACT INTRODUCTION

Silage from Agricultural By-products in Thailand: Processing and Storage

Heidi Rossow, PhD UC Davis School Of Veterinary Medicine, VMTRC Tulare, CA. Interpreting Forage Quality from the Cows Perspective

Effect Of Partial Replacement Of Berseem Hay By Ensiled And Dried Sugar Beet Tops On Performance Of Growing Rabbits

EFFECTS OF FEEDING WHOLE COTTONSEED COATED WITH STARCH, UREA, OR YEAST ON PERFORMANCE OF LACTATING DAIRY COWS

Reproductive efficiency Environment 120 Low P ( ) High P ( ) ays

TRANSITION COW NUTRITION AND MANAGEMENT. J.E. Shirley

Feeding Strategies When Alfalfa Supplies are Short

Mardiati Zain,J. Rahman, Khasrad. Department of Animal Nutrition, Faculty of Animal Science, Andalas University, Padang - Indonesia

DAIRY FOCUS AT ILLINOIS NEWSLETTER. Focus on Forages Volume 2, Number 1

Substitution of Neutral Detergent Fiber from Forage with Neutral Detergent Fiber from By-Products in the Diets of Lactating Cows

The Production and Quality of Pasture which is Introduced with Legume for Dairy Goat

RFV VS. RFQ WHICH IS BETTER

S. Paengkoum et al. Silpakorn U Science & Tech J Vol.4(1), 2010

Forage Testing and Supplementation

MANAGING THE DAIRY COW DURING THE DRY PERIOD

The Rumen Inside & Out

Nitrogen, Ammonia Emissions and the Dairy Cow

FEEDING and MANAGEMENT OF DAMASCUS GOATS CYPRUS EXPERIENCE By Miltiades Hadjipanayiotou

As Sampled Basis nutrient results for the sample in its natural state including the water. Also known as as fed or as received.

Oilseed Meal Processing and Feeding Trials. William Gibbons Michael Brown, Jill Anderson South Dakota State University

Productive And Reproductive Performance Of Friesian Cows Under Different Feeding System

COMPARISON AND EVALUATION OF AWASSI LAMBS FATTENING SYSTEMS IN PALESTINE.

Siti Chuzaemi, Mashudi, Marjuki, Asri Nurul Huda Faculty of Animal Husbandry, University of Brawijaya Malang, East Java, Indonesia

SUBSTITUTING STEAM-FLAKED CORN WITH DISTILLER S GRAINS ALTERS RUMINAL FERMENTATION AND DIET DIGESTIBILITY

Response of Growing Calves Fed graded Levels of Farm Kernel Meal as Nitrogen Source. By: *Gidado, A. S., **Nasiru M. and **Haruna, U.

Using Feed Analysis to Troubleshoot Nutritional Problems in Dairy Herds 1

Gut Fill Revisited. Lawrence R. Jones 1 and Joanne Siciliano-Jones 2 1. American Farm Products, Inc. 2. FARME Institute, Inc. Introduction.

Fiber for Dairy Cows

QUALITY AND NUTRITIVE VALUE OF MOTT DWARF ELEPHANTGRASS SILAGE WITH BIOLOGICAL ADDITIVES. T. Clavero. La Universidad del Zulia, Venezuela.

Studies on the biotin flow at the duodenum of dairy cows fed differently composed rations

URGENT NEWS. Grass Silage Update No 144: Grass Silage Update /2011. Fermentation quality and intake characteristics

Optimizing Starch Concentrations in Dairy Rations

Effects of feeding different levels of sesame oil cake on performance and digestibility of Awassi lambs

Composition and Nutritive Value of Corn Fractions and Ethanol Co-products Resulting from a New Dry-milling Process 1

Nutrient Requirements of Dairy Cattle 1

Effect of Replacement of Soybean meal by Dried Tomato Pomace on Rumen Fermentation and Nitrogen Metabolism in Beef Cattle

HarvestLab John Deere Constituent Sensing

COOPERATIVE EXTENSION UNIVERSITY OF CALIFORNIA, DAVIS

Dietary Protein. Dr. Mark McGuire Dr. Jullie Wittman AVS Department University of Idaho

DDGS FEEDING TRIAL ON DAIRY CATTLE IN INDONESIA

ZOOLOGY/SCIENCE OF ANIMAL NUTRITION AG

BASIC NUTRITION LIQUID VIEWPOINT

Making Forage Analysis Work for You in Balancing Livestock Rations and Marketing Hay

The Nutritionist 2019

PROTEIN SYNTHESIS IN THE RUMEN OF BULLS GIVEN DIFFERENT LEVELS OF MOLASSES AND CASSAVA ROOT. J B Rowe, F Bordas and T R Preston

Differences in Drying Method of King Grass (Pennisetum hybrid) Silage Samples Prepared for in Vitro Digestibility Analysis

High Sulfur Content in Distillers Grains Alters Ruminal Fermentation and Diet Digestibility in Beef Steers

A Comparison of MIN-AD to MgO and Limestone in Peripartum Nutrition

PROTEIN AND ENERGY REQUIREMENT FOR MAINTENANCE AND GROTH OF BALI CATTLE

Use of Indigofera zollingeriana as Forage Protein Source in Dairy Goat Ration

INCLUSION OF FAT IN DIETS FOR EARLY LACTATING HOLSTEIN COWS. J. E. Shirley and M. E. Scheffel

Physical Characteristic and Palatability of Wafer Complete Ration Based on Sugar Cane Sprout and Bagasse on Friesen Holstein s Calves

Feeding the Doe Herd. Lyle W. McNichol PAg. Lyle McNichol Livestock Consulting Services

ALMLM HAY QUALITY: TERMS AND DEFIN"IONS

Fibre is complicated! NDFD, undfom in forage analysis reports NDF. Review. NDF is meant to measure Hemicellulose Celluose Lignin

FEEDING DAIRY COWS 3. FORAGE PARTICLE SIZE AND EFFECTIVE FIBRE

CHAMPION TOC INDEX. Protein Requirements of Feedlot Cattle. E. K. Okine, G. W. Mathison and R. R. Corbett. Take Home Message

Effects of the use of EM-silage in corn silage

Effect of Roughage Sources and Fibrolytic Enzyme Supplementation on Nutrient Digestion and Rumen Fermentation in Buffaloes

Assessing Your J Grennan & Sons Silage Report.

Storage of Wet Distillers Grains

The four stomachs of a dairy cow

By: Dr. Patrick Davis, University of Missouri Extension County Livestock Specialist Jeff Yearington, Lincoln University Farm Outreach Worker West

Sheep Feeding Programs: Forage and Feed Analysis

Journal of Biology, Agriculture and Healthcare ISSN (Paper) ISSN X (Online) Vol.4, No.7, 2014

EFFECTS OF SUPPLEMENTING PRAIRIE HAY WITH TWO LEVELS OF CORN AND FOUR LEVELS OF DEGRADABLE INTAKE PROTEIN. II. RUMINAL PARAMETERS OF STEERS.

Journal of Biological and Chemical Research An International Journal of Life Sciences and Chemistry

Transcription:

The evaluation of nutrient quality of ramie leaves silage and hay in complete mixed ration for Etawah-Crossbreed goat using in vitro technique Despal *, Hutabarat, I.M.L., Mutia, R. and Permana, I.G. Faculty of Animal Science, Bogor Agricultural University despal@ipb.ac.id Abstract A research have been conducted to evaluate the effect of ramie leaves silage and hay in Etawah Crossbreed (PE) goat complete mixed ration (CMR) on nutrient content, fermentability, and digestibility by in vitro. There were seven CMR dietary treatments i.e. P0 (control ration) = 50% napier grass + 50% concentrate, P1 = 30% napier grass + 20% ramie leaves silage + 50% concentrate, P2 = 20% napier grass + 30% ramie leaves silage + 50% concentrate, P3 = 10% napier grass + 40% ramie leaves silage + 50% concentrate, P4 = 30% napier grass + 20% ramie leaves hay + 50% concentrate, P5 = 20% napier grass + 30% ramie leaves hay + 50% concentrate, and P6 = 10% napier grass + 40% hay + 50% concentrate. Both ramie leaves silage and hay increased the CMR digestibility and nutrient content, except the crude fiber. Control ration had a higher crude fiber than silage and hay. The CMR which contain ramie leaves silage (40%) had higher nutrient digestibilities compared to the other rations. Rations which were added with ramie leaves silage (P1 P3) had a higher VFA concentration compared to the other rations. Ammonia concentration of rations added with preserved ramie leaves were lower than control, however ammonia concentration in all treatments were in optimal range. Acetate proportion was higher in CMR which contain ramie leaves hay than CMR which contain silage and the nutrients digestibilities were lower. Adding ramie leaves silage in rations resulted higher propionate and butyrate proportion than control and rations which added with ramie leaves hay. Either silage or hay ramie leaves can be used up to 40% as Napier grass substitute in the PE CMR. Keywords: Etawah goat, hay, ramie leaves, silage Introductions Ramie leaves are byproduct from ramie (Boehmeria nivea) plantation that produced fiber for textile raw materials. Currently, ramie plantations are widely expanded in Garut and Wonosobo regencies. The previous research showed that

ramie leaves contained all major nutrients which were needed by animal (Duarte et al., 1997). Sufficiently high crude protein content (20%) and crude fibre (16%) exhibited that ramie leaves could be used as forage to fulfill dairy nutrient requirement like PE goat. Despal (2007) explained that supplementation of dried ramie leaves until 33% in ration based on field grass prevented sheep losing body weight loss during dry season and gave positive growth. Ramie leaves available periodically depend on stem harvest at 25 40 days interval. Harvesting occur at the same time and in great quantity. Each hectare of ramie plantation could produce forages up to 300 ton fresh material/year (FAO, 2005) or equivalent to 42 ton dry matter. Preservation of ramie leaves was necessary so that ramie leaves could be utilized more efficiently and being used as animal daily feed. General preservations of forages are wet (silage) and dry (hay) preservations. Each technique has advantages and disadvantages. Drying with open sun drying technique is a cheap forage conserving method. However, forage excess generally occur at rainy season so there is a needed for technology to handle the constraint. Whereas wet preservation (silage) is hampered by low water soluble carbohydrate (WSC) and high water content that may produce a low quality of silage. According to Despal and Permana (2008), ramie leaves dried by greenhouse technique produced better quality of hay than drying by open sun drying and oven technique. Adding dried cassava 20% (w/w) in silage ramie leaves produced better quality of silage than silage which were added with corn and pollard. The quality of preserved ramie leaves needed to be tested in ration. The objective of the research was to study preserved ramie leaves using wet and dry preservation as grass substitute in PE goat ration and their effect on nutrient content, fermentability and in vitro digestibility. Materials and Methods This research was conducted from November 2008 to March 2009 at Agrostology Laboratory, Dairy Animal Nutrition Laboratory, Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural

University, Laboratory of Inter University Center, Bogor Agricultural University, and Laboratory of Nutrition Physiology, Animal Research Center, Ciawi. Ramie leaves were obtained from Koperasi Pondok Pesantren (Koppontren) Darusalam, Garut Regency. As many as 2 kg of ramie leaves, that was chopped into a length of approximately 1,5 2 cm using forage chopper, added with 400 grams of dried cassava to make the silage. Silage was stored in plastic (28 x 50 cm) and rewrapped with plastic and polybag (60 x 120 cm) to avoid light intervention. Silages were incubated anaerobically for 35 days. After 35 days, silages were dried, ground, and mixed in ration. Hay was made by drying ramie leaves in greenhouse for 21 hours under intensive light and the hay was twisted every 2 hours. After 21 hours light intensities, hay was ground and mixed in ration. The forage which used in ration was napier grass whereas the concentrate consisted of corn, pollard, rice bran, pressed coconut cake, dried cassava, CaCO 3, and DCP. Chemical composition of ingredients which were used in complete mixed ration was appeared in Table 1. Table 1. Ingredients and its Chemical Composition No. Feed Ingredient DM Ash CP EE CF TDN Ca P --------------------- (%) ---------------------- 1. Ramie hay 90.43 21.57 14.02 3.70 13.09 52.79 4.65 2.18 2. Ramie silage 90.10 17.90 10.20 4.41 11.10 62.30 3.98 0.17 3. Napier grass 22.20 12.00 8.69 2.71 32.30 52.40 0.48 0.35 4. Rice bran 87.70 13.60 13.00 8.64 13.90 67.90 0.09 1.39 5. Pollard 88.50 5.90 18.50 3.86 9.80 69.20 0.23 1.10 6. Pressed coconut cake 88.60 8.20 21.30 10.90 14.20 78.70 0.17 0.62 7. Corn 86.80 2.20 10.80 4.28 3.50 80.80 0.23 0.41 8. Dried cassava 79.50 4.70 2.60 7.00 5.70 78.50 0.17 0.09 Complete ration was mixed appropriately according to formula (Table 2). Complete ration was formulated based on the nutrient requirement of lactating PE having 30 kg BW and produce 1 kg milk/d (4% FCM). The ration contained 66.5% TDN, 11.17% CP, 0.41% Ca, and 0.29% P (NRC, 1981). Nutrients content, i.e. dry matter (DM), crude protein (CP), crude fibre (CF), ether extract (EE), and ash were analyzed according to AOAC (1999). Fermentability and in vitro digestibility were determined as described by Tilley and Terry (1969),

NH 3 Analysis was conducted according to General Laboratory Procedure (1966), and partial VFA were analyzed with gas chromatography using Chrompack method (1998). Data were subjected to analysis of variance (ANOVA) using SPSS 17 procedure. Significant differences between individual means were identified using Duncan s multiple tests. Table 2. Formula of Dietary Treatments in Research Feed Ingredient P0 P1 P2 P3 P4 P5 P6 ----------------- (%) ----------------- Ramie hay 0 0 0 0 20 30 40 Ramie silage 0 20 30 40 0 0 0 Napier grass 50 30 20 10 30 20 10 Rice bran 10 10 12 7.87 10 10 10 Pollard 10.39 17.67 17.85 23.16 15.64 19.74 18.42 Pressed coconut cake 7.32 11.8 13.67 15.09 5 5 5 Corn 18 9.03 5 3 13.09 7.04 5 Dried cassava 3.94 0 0 0 10 10 15 CaCO 3 0.35 1 1 0.38 1 0 0 DCP 0 0.5 0.5 0.5 0.28 0 0 TDN 66.5 66.5 66.91 68 66.5 66.5 66.5 PK 12 12 12 12 12 12 12 Ca 0.41 1.518 1.879 2 1.584 1.558 1.982 P 0.561 0.614 0.635 0.589 0.462 0.455 0.436 Results and Discussions Nutrient Composition of Complete Ration Proximate composition of the complete ration is presented on Table 3. Statistical analysis showed that nutrient composition among treatments ration were significantly different (P<0.05). Substitution between napier grass and ramie leaves hay on level 20% decreases the DM weight of ration, but it was still higher than the DM weight of the control ration. Substitute between napier grass and silage 20% caused the DM weight of ration was lower than of the control ration. On higher level substitute (30% and 40%), DM weight of ration that was produced were higher than control. The difference of ration s DM weight was not only because of hay and silage alone, but also because of other ingredients (Table 1).

Ash shows the mineral contents of the substances. Generally, substitution of king grass with ramie increased the ash-content. This was because of the higher ashcontent of both preserved ramie leaves compared to napier grass. The higher ramie hay and silage on ration, the higher ash-content was. Substitution of napier grass with ramie leaves hay increased the ration s ash-content higher compared to substitution with silage. This was because of the ash-content on ramie leaves hay was higher than on ramie leaves silage (Table 1). Ash-content of ramie leaves was dominated by Ca that ranging from 4 5%. High content of 6% Ca on ramie leaves was also reported by Duarte et al. (1997). The high content of Ca on ramie leaves was expected to be more available for dairy animals than inorganic Ca that usually added in ration (McDowell, 2003). Ration fat-content (EE) that contained both preserved ramie leaves (silage and hay) were not different with control. Ration containing 40% silage had higher EE content than control and ration containing hay on every level. Because of that, the higher silage level that was added, the higher EE content was on ration. On the contrary, the higher hay level added, the lower EE content was. Crude fat-content on ration was high because of the high percentage of pressed coconut cake (Table 2). Table 3. Nutrient Composition of Complete Ration Treatments DM (%) Ash EE CP CF (% DM) (% DM) (% DM) (% DM) P0 82,17 b 10,01 a 4,52 abc 12,97 a 23,78 e P1 81,23 a 10,81 a 2,83 a 13,69 ab 16,97 cd P2 86,15 e 11,11 b 5,21 bc 12,69 a 14,29 bc P3 86,14 e 11,17 b 5,58 d 13,16 abc 11,45 a P4 85,26 e 12,03 b 4,75 bc 13,83 bcd 16,53 d P5 83,92 d 14,26 c 3,77 ab 14,52 d 17,18 d P6 83,86 c 14,94 c 3,94 abc 14,31 cd 13,08 ab Different superscript in the same column differ significantly (P < 0.05). Ration containing hay ramie leaves had a higher CP content than control. Hay ramie leaves contained of 14.01% crude protein were able to increase the CP content of the ration significantly. Eventhough, it was not obviously different, ration containing silage ramie leaves had a higher CP content than control. There was no obvious different caused by the level of hay-added on CP content of ration. The low CP content on using silage was proceed from dried cassava-added on hay ramie leaves that has 2.6% CP content. The use of dried cassava-added on ensilage had

caused ramie ensilage to have content of 10.2% CP, which was not really different with napier grass (8.9%). Ration that consisted of preserved ramie leaves had a lower CF content than control. This was because of lower CF content on preserved ramie leaves compared to napier grass. The higher use of preserved ramie leaves (hay or silage) in the ration, the lower crude fiber-content on ration was. The lower crude fiber-content on ration was expected to cause a higher digestibility. According to Despal (2000), crude fiber had a negative correlation to digestibility. The lower crude fiber was, the higher digestibility of the ration was. But, the very low crude fiber on dairy animal ration can intrude the syntheses of milk fat that impacted on the lowering of milk production. This was because of the low content of crude fiber deliver the VFA pattern that has more proportion of molar propionate acid. Propionate was much more used as energy reserve and a bit as syntheses of milk fat. Seymour et al. (2005) reported that the content of milk fat had a negative correlation with propionate and butyrate content of the diet but had a positive correlation with acetate. Fermentability and Digestibility Ration fermentability can be measured by VFA production as the product of organic matter fermentation and NH 3 as the fermentation product from protein. VFA was the main energy source to ruminant livestock and was an output from the ration fermentation on rumen (Orskov and Ryle, 1990). On that account, VFA production on rumen could be used as an indicator on ration fermentability (Hartati, 1998). VFA profile (molar proportion of VFA) that yielded could be used to describe whether a ration was approprioate to the livestock. The influence of adding ramie leaves silage and hay on ration fermentability was shown on Table 4. Statistical analysis resulted that organic matter and protein fermentability of the ration were not showing any different among treatments (P>0.05). Table 4: Fermentability of complete ration VFA (mm/l) )* NH 3 Perlakuan Acetate Propionate Isobutyrate Butyrate Isovalerate Total (mm/l) P0 26,25 4,44 0,62 2,67 0,32 34,30 11,46

P1 26,31 5,47 0,37 3,16 0,31 35,62 10,30 P2 27,74 6,56 0,58 3,75 0,40 39,03 10,62 P3 24,78 6,38 0,39 3,65 0,27 35,47 9,67 P4 22,57 4,57 0,52 2,93 0,15 30,74 8,42 P5 25,27 4,13 0,47 2,37 0,19 32,43 9,70 P6 18,42 3,20 0,31 2,31 0,11 24,35 8,94 According to Sutardi (1980), the optimal range of ration VFA was 80-160 mm. Total VFA that yielded in this study was so low compared to range of VFA that was needed for the optimal growth of rumen microorganism. This was because of the different measurement method, in case on this research VFA was measured by GC, whereas on Sutardi (1980), the measurement was done using steam destilation. The low values of VFA on measurement using GC were also found by Despal (2005); Madrid et al., (1999); and McCullough and Sisk (1972). On steam distillation methods, all volatile substances are counted as VFA, but not in VFA measured using GC. Ration containing hay was less fermentable than ration containing silages. This was because of microorganism activity on the ensilage helped digesting the feedstuffs and caused silage in the rumen system more fermentable. The same result was also found by Schingoethe et al. (1976). Acetic acid was present in greatest amount and the proportion of propionic acid usually exceeded that of butyric (Balch and Rowland, 1956). Acetate proportions to total VFA of the respective rations were 76.5%; 73.9%; 71.1%; 69.9%; 73.4%, 77.9% and 75.6%. The use of silage (P1 P3) gave a lower acetate proportion than control. The higher use of silage on ration, the lower acetate proportion was. This was because of the lower content of CF in silage containing ration compare to control (McCullough and Sisk, 1972). The use of hay on certain level might reduce acetate proportion, however not as much as on silage. On the use of hay as much as 30%, acetate proportion was seen higher compared to control. The high proportion of acetate on the use of hay can be found on Esdale et al. (1968). Ammonia was the main source of nitrogen to synthesize the microorganism s protein, so its concentration on rumen was a case that had to be observed (Satter and Slyter, 1974). According to McDonald et al. (2002), the range of NH 3 optimal concentration to synthesize the rumen microorganism s protein was 6 21 mm. The

NH 3 that yielded from protein fermentation on the experimental rations were on optimal range for the growth of livestock and not excessive. Digestibility was an early indication on the availability of nutrients in certain feed to livestock (Yusmadi, 2008). The influence on hay-added and silage-added to ration on in vitro digestibility is shown on Table 5. Statistical analysis resulted that ration treatment highly influential (P<0.01) to ration DM and OM digestibility. Table 5: In vitro digestibility of complete ration Treatments DMD (%) OMD (%) P0 61,21 a 60,40 a P1 66,33 abc 66,22 abc P2 69,53 bc 69,25 c P3 71,91 c 72,33 c P4 66,81 abc 67,44 bc P5 61,63 ab 61,89 ab P6 65,00 ab 66,14 abc Different superscripts at the same column showing significant differences at P < 0.01. Ramie leaves silage-added to ration increased the DM and OM digestibility in line with the increasing level. The increasing of digestibility also happened on hay ramie leaves-added however not as much as on silage. Moreover, on 30% hay-added on ration gave a relative same digestibility to control. A higher digestibility of silage compared to hay was also found by Yusmadi (2008). Dry matter and organic matter pattern was inversely proportional to CF ration. The higher CF was, the lower digestibility was. This case was in mutual according to Despal (2000). The increasing of OM digestibility was in line with increasing of DM digestibility. As reported by Sutardi (1980), because of most components of DM were consisted of OM so that factors that influenced DM digestibility, could also influence OM digestibility. Conclusions Ramie leaves silage and hay used as substitute for napier grass may improve nutrient content and ration digestibility. Eventhough ration fermentability using

ramie leaves silage and hay lower than control, fermentability in all ration still in optimal range. Acetate proportion was higher on hay ramie leaves substitution though it had a lower digestibility than on silage. Either silage and hay ramie leaves can be used up to 40% as Napier grass substitute in Etawah TMR. References AOAC. 1999. Official methods of Analysis. AOAC International. Washington. Balch, D. A. and S. J. Rowland. 1956. Volatile fatty acids and lactic acid in the rumen of dairy cows receiving a variety of diets. Nutr. 11 : 288 298. Crompack. 1998. Reference Manual CP-9002 Gas Chromatograph. Middleburgh. Netherland. Conway, E. J. 1957. Microdiffusion of Analysis of Association Official Analytical Chemist. Georgia Press. Georgia. Despal. 2000. Kemampuan komposisi kimia dan kecernaan in vitro dalam mengestimasi kecernaan in vivo. Media Peternakan 23 (3): 84 88. Despal. 2005. Nutritional Properties of Urea Treated Cocoa Pod for Ruminant. Cuvillier Verlag. Goettingen. Despal. 2007. Suplementasi nutrient defisien untuk meningkatkan penggunaan daun rami (Boehmeria nivea L. Gaud) dalam ransum domba. Media Peternakan 30 (3): 181-188. Duarte, A. A, V.C. Sgarbieri and E. R. B. Juniar. 1997. Composition and nutritive value of ramie leaf flour for monogastric animals. Revista PAB : 32 (12). Esdale, W. J., G. A. Broderick, and L. D. Satter. 1968. Measurement of ruminal volatile fatty acid production from alfalfa hay or corn silage rations using a continuous infusion isotope dilution technique. J. Dairy Science 51 (11) : 1823 1830. FAO. 1978. Data from International Network of Feed Information Centres. Rome, FAO. In FAO (2005). Animal Feed Resources Information System. htttp://www.fao.org/ag/aga/agap/frg/afris/data/361. HTM. [1 Juni 2009]. Hartati, E. 1998. Suplementasi minyak lemuru dan seng ke dalam ransum yang mengandung silase pod kakao dan urea untuk memacu pertumbuhan sapi Holstein jantan. Disertasi. Program Pasca Sarjana. IPB. Bogor. Madrid, J., M.D. Megias dan F. Hernandez. 1999. Determination of short volatile fatty acids in silages from artichoke and orange by-products by capillary gas chromatography. J. Sci. Food Agric 79: 580-584. McCullough, M. E. and K. R. Sisk. 1972. Crude fiber, form of ration, type of silage and digestibility of optimum rations. J. Dairy Sci. 55 (4) : 484.

McDonald, P. R. A., Edwards J. F. D. Greenhalge and C. A. Morgan. 2002. Animal nutrition. 6 th Edition. Longman Science and Technology. New York. McDowell, Lee Russell. 2003. Minerals In Animal and Human Nutrition. 2 nd Edition. Elseivier Science. Amsterdam. NRC. 1981. Nutrient Requirement of Goat. National Academy Press. USA. Orskov, E.R and Ryle M. 1990. Energy Nutrition In Ruminant. Elseivier. London. Schingoethe, D. J., H. H. Voelker, G. L. Beardsley, and J. G. Parsons. 1976. Rumen volatile fatty acids and milk composition from cows fed hay, haylage, or ureatreated corn silage. J. Dairy Sci. 59 (5) : 894 901. Satter, L. and L. L Slyter. 1974. Effect of` amonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 32 : 199 208. Sutardi, T. 1980. Landasan Ilmu Nutrisi. Jilid I. Fakultas Peternakan. Institut Pertanian Bogor. Bogor. Sutardi, T. 1988. Sapi Perah dan Pemberian Makanannya. Ilmu Nutrisi Makanan Ternak. Institut Pertanian Bogor. Bogor. Sutardi, T. 2001. Revitalisasi peternakan sapi perah melalui penggunaan ransum berbasis limbah perkebunan dan suplemen mineral organik. Laporan Akhir RUT VIII. Institut Pertanian Bogor. Bogor. Tilley, J. M. A. and R. A. Terry. 1969. A two stage technique for the in vitro digestion of forage crop. J. British Grassland Society 18 : 104-111. Seymour, W. M., D.R. Campbella, and Z.B. Johnson. 2005. Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows : a literature study. Animal Feed Science and Technology 119 : 155 169. Yusmadi. 2008. Kajian Mutu dan Palatabilitas Silase dan Hay Ransum Komplit Berbasis Sampah Organik Primer pada Kambing PE. Tesis. Program Pascasarjana. Institut Pertanian Bogor. Bogor.