Evaluation of hereditary syndromes that include pancreatic cancer

Similar documents
Genetics of Pancreatic Cancer. October 6, If you experience technical difficulty during the presentation:

Surveillance of Individuals At High Risk For Developing Pancreatic Cancer

Hereditary Aspects of Pancreatic Cancer

Family history of pancreatic cancer

Risk Factors and Early Detection Efforts for Pancreatic Cancer

Genetic testing and pancreatic disease

Clinical Cancer Genetics

CentoCancer STRIVE FOR THE MOST COMPLETE INFORMATION

Unusual Pancreatic Neoplasms RTC 2/11/2011

HEREDITY & CANCER: Breast cancer as a model

PANCREATIC CANCER RISK PERCEPTION AND WORRY IN FAMILIAL HIGH- RISK PATIENTS UNDERGOING ENDOSCOPIC ULTRASOUND FOR SURVEILLANCE.

Familial and Hereditary Colon Cancer

PANCREAS DUCTAL ADENOCARCINOMA PDAC

Primary Care Approach to Genetic Cancer Syndromes

Hepatobiliary and Pancreatic Malignancies

Genetic Risk Assessment for Cancer

5/1/2010. Genetic testing in patients with endocrine tumors. Genetic testing in Patients with Endocrine Tumors

Familial and Hereditary Colon Cancer

Neuro-endocrine and pancreatic non-adenocarcinomas. Marc Engelbrecht, AMC, Amsterdam

Combatting Pancreatic Cancer: Keys to Early Recognition and Diagnosis

Assessment and Management of Genetic Predisposition to Breast Cancer. Dr Munaza Ahmed Consultant Clinical Geneticist 2/7/18

Hereditary Cancer Update Strengthening Linkages Workshop April 22, 2017

Expert Interview: Inherited Susceptibility to Cancer with Dr. Nicoleta Voian

The Pancreas. Basic Anatomy. Endocrine pancreas. Exocrine pancreas. Pancreas vasculature. Islets of Langerhans. Acinar cells Ductal System

GI EMERGENCIES Acute Abdominal Pain

Assessing Your Patient s Breast Cancer Risk: Is Genetic Testing Necessary?

Management of Pancreatic Islet Cell Tumors

7th Annual Symposium on Gastrointestinal Cancers " St. Louis, Mo, 9/20/08

Genetic Risk Assessment for Cancer

Intraductal Papillary Mucinous Neoplasms: We Still Have a Way to Go! Francesco M. Serafini, MD, FACS

Neoplasias Quisticas del Páncreas

Myriad Financial Assistance Program (MFAP)

Are you at risk of Hereditary Cancer? Your Guide to the Answers

Identification of patients suggestive of hereditary breast and ovarian cancer syndrome that warrants further professional evaluation.

Hereditary Gastric Cancer

Hereditary Cancer Products

Radiology Pathology Conference

Pancreatic Cancer. BIOLOGY: Not well defined (genetic and enviromental factors) CLINICAL PRESENTATION: Abd pain, jaundice, weight loss.

Neuroendocrine Tumors

Hereditary Breast and Ovarian Cancer Rebecca Sutphen, MD, FACMG

Cancer Genomics 101. BCCCP 2015 Annual Meeting

Information for You and Your Family

Genetic Testing of Inherited Cancer Predisposition Genetic Testing - Oncology

The Genetics of Breast and Ovarian Cancer Prof. Piri L. Welcsh

ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes

Surveillance in patients with chronic pancreatitis or hereditary risks

Pancreatic Lesions. Valerie Jefford Pediatric Surgery Rounds June 6, 2003

6/8/17. Genetics 101. Professor, College of Medicine. President & Chief Medical Officer. Hereditary Breast and Ovarian Cancer 2017

Risk of Colorectal Cancer (CRC) Hereditary Syndromes in GI Cancer GENETIC MALPRACTICE

Outline. Intraductal Papillary Mucinous Neoplasm (IPMN) Guideline Review 4/6/2017. Case Example Background Classification Histology Guidelines

WHAT IS A GENE? CHROMOSOME DNA PROTEIN. A gene is made up of DNA. It carries instructions to make proteins.

BRCA and Pancreatic Cancer

Hereditary Cancer Update: What do GPOs need to know?

Colonic Polyp. Najmeh Aletaha. MD

GYNplus: A Genetic Test for Hereditary Ovarian and/or Uterine Cancer

Genetic Testing for BRCA1 and BRCA2 Genes

Célia DeLozier-Blanchet

COLON CANCER GENETICS (FOR SURGEONS) Mark W. Arnold MD Chief, Division of Colon and Rectal Surgery Professor of Surgery The Ohio State University

Hereditary Cancer Syndromes

Appendix 4: WHO Classification of Tumours of the pancreas 17

CANCER GENETICS PROVIDER SURVEY

Pancreas Quizzes c. Both A and B a. Directly into the blood stream (not using ducts)

WHAT IS A GENE? CHROMOSOME DNA PROTEIN. A gene is made up of DNA. It carries instructions to make proteins.

Management A Guideline Based Approach to the Incidental Pancreatic Cysts. Common Cystic Pancreatic Neoplasms.

Cancer Survivorship Symposium Cancer and Heredity January 16, Jeanne P. Homer, MS Licensed Certified Genetic Counselor

Hereditary Cancer Risk Assessment for Gynecological Cancers. FarrNezhatMD.com

Management of BRCA Positive Breast Cancer. Archana Ganaraj, MD February 17, 2018 UPDATE ON WOMEN S HEALTH

Chronic pancreatitis mimicking intraductal papillary mucinous neoplasm of the pancreas; Report of tow cases

Genetic Testing for Hereditary Cancer Susceptibility Syndromes

Familial Adenomatous Polyposis

Tumor markers. Chromogranin A. Analyte Information

GENETIC MANAGEMENT OF A FAMILY HISTORY OF BREAST AND / OR OVARIAN CANCER. Dr Abhijit Dixit. Family Health Clinical Genetics

Be Ready Pack Learn more about how Myriad myrisk is revolutionizing hereditary cancer testing.

Genetic Testing for BRCA1 and BRCA2 Genes

Germline Genetic Testing for Breast Cancer Risk

Diagnostic Challenges in Multiple Endocrine Neoplasia Type 1 (MEN1) : Usefulness of Genetic Analysis

Poblacions amb alt risc de càncer de pàncrees. Quin seguiment hem de fer?

Pancreas Cancer Genomics

GYNplus. genetic testing for hereditary ovarian and/or uterine cancer

Anatomy of the biliary tract

Imaging and Management of Pancreatic Endocrine Tumors in MEN 1

GeneHealth BreastGene_New qxp_Layout 1 21/02/ :42 Page 3 BreastGene GeneHealth UK

Policy and Procedure. Department: Utilization Management. SNP, CHP, MetroPlus Gold, Goldcare I&II, Market Plus, Essential, HARP

Pancreatic intraepithelial

Predictive and Diagnostic Testing for Cancer in Women. Aparna Rajadhyaksha MD

WELCOME. Taking Care of Your Health. April 30, 8 am to noon

GHUK BowelGene_2017.qxp_Layout 1 22/02/ :22 Page 3 BowelGene

Type 2 gastric neuroendocrine tumor: report of one case

Multigene Panel Testing for Hereditary Cancer Risk

Citation American Journal of Surgery, 196(5)

A Patient s Guide to Hereditary Cancer. Is Hereditary Cancer Testing Right for You?

Genetic Panel Testing and Implications for Cancer Care

What All of Us Should Know About Cancer and Genetics

Endocrine Tumors of the Gastrointestinal System. F. V. Nowak Ohio University March 22, 2005

HEREDITARY CANCER SYNDROMES: IDENTIFYING THOSE AT RISK

Dr Marion Harris (Medical Oncologist)

Hereditary Colorectal Cancer Syndromes Miguel A. Rodriguez-Bigas, MD

Intro to Gallbladder & Pancreas Pathology

GENETICS OF COLORECTAL CANCER: HEREDITARY ASPECTS By. Magnitude of the Problem. Magnitude of the Problem. Cardinal Features of Lynch Syndrome

Transcription:

Evaluation of hereditary syndromes that include pancreatic cancer UPR CCC 04/12/13 Jeffrey N. Weitzel, M.D. Chief, Division of Clinical Cancer Genetics Cancer Screening & Prevention Program City of Hope Comprehensive Cancer Center and Beckman Research Institute

PANCREATIC CANCER Worldwide estimates: Incidence- 232,306 Deaths- 227,000 A deadly disease CA Cancer J Clin 2012

PANCREATIC CANCER Non-Genetic Risk Factors Cigarette Smoking Doubles Risk Causes 26% of pancreatic cancer Obesity Increases risk by ~70% Diabetes Longterm (>10yrs) 2-Fold increase (Everhart 1995) 1% of new-onset diabetics develop pancreatic cancer within 3 years (Chari 2005)

DDx: Start with Pathology Adenocarcinoma = >75% 5-year survival <5% Endocrine (AKA: islet cell) = ~ 1% Hormone-producing; control blood sugar levels Insulinoma, gastrinoma, VIPoma, glucagonoma, somatostatinoma, non-functional oma s Slower-growing better prognosis 5-year survival 50-70% if surgically resectable

DDx: Endocrine pancreatic tumor(s) MEN1 VHL NF1 TSC sporadic

Anterior Pituitary Parathyroid Adrenal cortex Pancreatic islet cells MEN 1 and MEN 2 MEN 1 MEN 2 Thyroid C-cells (MTC) Parathyroid Adrenal medulla (pheochromocytoma) Germline mutations in MEN1, chr 11 Germline mutations in RET, chr 10

Genetics of MEN 1: The Menin Gene Mutations in the MENIN (MEN1) gene on chromosome 11q13 Cloned in 1997 Tumor suppressor gene Involved in transcriptional regulation/cell growth and regulation > 400 distinct mutations identified throughout the gene; most are protein truncating

MEN 1 mutation - Epidemiology Two of the three main tumor types must be present (parathyroid, pancreatic, pituitary) Germline MEN1 mutations detected in 80-90% in families/cases with 2 or more major features >30% families with 1 major and 1 or more MEN1- associated tumors 10% de novo Penetrance: >50% by age 20 and 100% by age 60

MEN 1 Hyperparathyroidism (HPT) Generally the first manifestation Average age of diagnosis 14yrs, 80%-100% by age 40 Tumors usually multiglandular, hyperplastic Symptoms of HPT Fatigue, weakness Hypertension, nervousness Constipation, anorexia, nausia Polyuria, polydypsia, nocturia Kidney stones, bone disease

MEN 1- Gastro-Entero-Pancreatic Tumors Gastrinoma (50%) Major cause of morbidity and mortality Manifests as Zollinger-Ellison syndrome (peptic ulcer disease) Insulinoma (10%) Hypoglycemia VIPoma (2%) Watery diarrhea, hypokalemia, achlorhydria Glucagonoma (2%) Hyperglycemia, weight loss, anemia, skin rash Somatostatinoma, Pancreatic polypeptidoma, Enterochromaffin-like cell (ECL) Carcinoids

MEN 1 Screening Regimen Tumor Age (y) to start Biochemical tests annually Imaging tests, q 3 years Parathyroid adenoma 8 Calcium (esp Ca 2+ ), parathyroid hormone None Gastrinoma 20 Gastrin None Insulinoma 5 Glucose, insulin None Other enteropancreatic tumors 20 Chromogranin-A Somatostatin receptor scintigraphy, CT or MRI Anterior pituitary tumors 5 Prolactin MRI Thymus or bronchial carcinoid 20 None CT

von Hippel-Lindau Risk for benign cystic pancreatic lesions Also a risk for islet cell tumors (5-7%) Generally found in individuals with otherwise normal pancreas Malignant potential (<10%) Better prognosis than sporadic malignancies Main tumors: RCC, pheo, hemangioblastoma Annual abdominal ultrasound beginning at age 16, possible baseline MRI/CT, biochemical screening

Familial Pancreatic Adenocarcinoma Associated with several hereditary syndromes/genes: Hereditary pancreatitis (PRSS1- cationic trypsinogen gene) Hereditary breast-ovarian cancer syndrome (BRCA2) FAMMM sydrome (p16/cdkn2a) Peutz-Jeghers syndrome (STK11/serine-threonine kinase) Lynch Syndrome (HNPCC) (MLH1, MSH2, MSH6 and PMS2) FAP (APC) PALB2 ATM

Pancreatitis

Cystic Fibrosis Risk to homozygotes maybe as high as 30% due to pancreatitis Risk to heterozygotes Sharer et al. 1998 studied 134 patients with chronic pancreatitis 13.4% were CFTR mutation carriers (including T5 alleles) Pezzilli et al. 2003 studied 46 patients with chronic pancreatitis 19.6% were CFTR mutation carriers (including T5 alleles)

Hereditary Pancreatitis PRSS1 gene Penetrance of 80% 40% risk for pancreatic cancer by age 70 Risk increased by paternal-line transmission, possibly as high as 70% Smoking increases risk Begin screening 10 years after pancreatitis diagnosis

Hereditary Pancreatitis not subtle EUROPAC study: 112 families, 14 countries PRSS1 mutations in >80% of affected families Median onset of symptoms at 12 years over 70% symptomatic by age 20 years Median of 1.88 attacks per year 70/75 patients (93%) required hospital treatment pancreatitis

BRCA1- and BRCA2-Associated Cancers: Lifetime Risk Breast cancer 50%-85% (often early age at onset) Second primary breast cancer 40%-60% Ovarian cancer 15%-45% Absolute risk likely to be higher than 10% - Prostate cancer Absolute risk 10% or lower - Male breast cancer - Fallopian tube cancer - Pancreatic cancer ASCO

Population Relative Cancer Risks and 95% CI by Mutation status and Cancer Site Risch et al. J Natl Cancer Inst 2006;98:1694-1706 First degree relatives of patients with BRCA1 (n=534); BRCA2 (n=446)

Age specific cancer risks in Dutch BRCA2 mutation carriers* For all presented cancer sites, p for difference is <0.001. *Among 1,811 at 50% carrier probability Most striking risks are for earlier onset for pancreas, pharynx and prostate van Asperen CJ et al: Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 42:711-9, 2005

Estimated cumulative risks for pancreas and prostate cancer in BRCA2 mutation carriers by sex and age van Asperen CJ et al: Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet 42:711-9, 2005

BRCA2 Mutations, Relative Risks (RR), and Lifetime Risk of Pancreatic Cancer in Jewish Patients and Controls PAC (n = 145) Controls (n = 5,318) Mutation No. (%) No. (%) RR (95% CI) LRP RR LRC BRCA2 6 (4.1) 59 1.1 3.85 (2.1 to 10.8) 1.3% 3.85 4.9% 6174delT Abbreviations: LRP, lifetime risk of pancreatic adenocarcinoma in the general population LRC, lifetime risk of pancreatic adenocarcinoma in the BRCA2 heterozygotes Ferrone et al: BRCA Germline Mutations in Jewish Patients with Pancreatic Adenocarcinoma. JCO 27:433-438, 2009

BRCA and Prostate Cancer BRCA1 and BRCA2 mutations increase prostate cancer risk - BRCA1: relative risk 1-2 - BRCA2: relative risk 4-7 BRCA2 may result in early onset prostate cancer BRCA1 and BRCA2 are unlikely to account for a high percentage of familial prostate cancer BRCA2 may account for 2% of early onset PC and 5% of familial prostate cancer HOXB13 and CHEK2 mutations may also play a role in prostate cancer susceptibility

Familial Atypical Multiple Mole Melanoma (FAMMM) p16: cyclin dependent kinase (CDKN2A) at 9p21 Somatic mutations in 75-85% of pancreatic cancer Pancreatic cancer only present in some CDKN2A families Risk by age 75 is ~17% (10-40 fold increase) Phenotypically expressed FAMMM in 12% of families with familial pancreatic cancer Individuals with CDKN2A mutations should be considered for pancreatic cancer screening

Melanoma and Pancreatic cancer 2 fold increase in risk in individuals diagnosed with melanoma <50 y Reports of pancreatic cancer in families lacking CDKN2A mutations, but uncommon

Peutz-Jeghers Syndrome Serine threonine kinase 11 (STK11) gene at 19p13 Literature review found the risk for pancreatic cancer to be 132 times the general population (Giardiello et al. 2000) Risk by age 65 of 11-36% EUS every 1-2 years beginning at age 30

HNPCC MLH1 and MSH2 mutations reported in kindreds with pancreatic cancer Reported more frequently in Korean, Taiwanese, and Finnish families, less frequently in Dutch families Tumors are often MSI high Often of Medullary histology Not all kindreds meeting Amsterdam criteria for HNPCC have been found to have germ line mutation despite MSI high and absence of MLH1 expression Risk of pancreatic cancer up to 4%, but not well defined

Familial Adenomatous Polyposis APC gene at 5q21-22 RR 4.5 (1.2-11.4 CI) ~2% lifetime risk of pancreatic cancer Consider EUS after age 20 Giardiello (1993) Gut 34:1394

Pancreatoblastomas Reported in individuals with APC mutations and Beckwith-Wiedemann Syndrome <1% of all pancreatic tumors Often occur in children Potentially similar mechanism to hepatoblastoma

PALB2 (partner and localizer of BRCA2) Cancer Risks (Casadei et al. 2011): Breast: 2.3-fold by 55 yo; 3.4-fold by 85 yo Male Breast CA: 4-fold Pancreas CA: 6-fold Prevalence in BrCa: 0-2% of unselected BrCa s (ethnicity-based 3.4% (33/972) non-aj FBC; 0/172 AJ FBC Prevalence in FPC: 3-4% (Jones 2009; Slater 2010)

Hereditary Pancreatic cancer risk Cancer Discovery 2: 41 6, 2011 WGS on 16 subjects in 6 families, followed by WES on 22 subjects from 10 families; 2.4% (4/166) of familial pancreatic cancer probands carried deleterious ATM mutations

Progression Model

Pancreatic Intraepithelial Neoplasia Klapman J, Malafa MP: Early detection of pancreatic cancer: why, who, and how to screen. Cancer Control 15:280-7, 2008

Screening for pancreatic cancer Three common precursor neoplastic lesions: Intraductal papillary mucinous neoplasms (IPMN) Mucinous cystic neoplasm (MCN) Pancreatic intraepithelial neoplasm (PanIN) IPMN- CT, papillary or rarely flat epith neoplasm arise from main duct or main branch ducts >1cm can be visualized by multidetector MRI, US, or EUS Branch ducts are most common in high risk individuals

Screening for pancreatic cancer PanIN- papillary or flat noninvasive epith neoplasms arise in smaller pancreatic ducts usually <5mm low grade PanIN is not always distinguishable from IPMNs < 1cm

Screening for pancreatic cancer Imaging: Multidetector CT High accuracy but may still miss EARLY stage disease Concern for repeated exposure to radation if used for surveillance MRI/MRCP No published data on accuracy High costs; not tolerable by those with claustrophobia or metal implants Ultrasound (US) Endoscopic ultrasound (EUS)* Gastrointest Endoscopy Clin N Am 2008 (18):535-553

Screening for pancreatic cancer EUS Combines endoscopy and high frequency ultrasonography ± FNA Limited by potential adverse events, cost and operator dependence Pilot study in 36 patients- one time screening with EUS- diagnostic yield 5.3% 2 pancreatic neoplasms; one CT neg ductal adenoca in woman from a kindred with 6 affected individuals, one benign IPMN adenoma in pt with PJS Gastrointest Endoscopy Clin N Am 2008 (18):535-553

Endoscopic Ultrasound Klapman J, Malafa MP: Early detection of pancreatic cancer: why, who, and how to screen. Cancer Control 15:280-7, 2008

Endoscopic ultrasound images of pancreatic lesions Klapman J, Malafa MP: Early detection of pancreatic cancer: why, who, and how to screen. Cancer Control 15:280-7, 2008

Screening for pancreatic cancer Goal of Screening: Detect and treat early pancreatic neoplasia in high risk individuals. Should be offered only to those individuals who are willing and able to undergo treatment of pancreatic neoplasms detected by screening No consensus EUS or MRCP two to four times a year for pts with pancreatic lesions 1 to 3 year interval for high risk individuals who do not have pancreatic lesions. Gastrointest Endoscopy Clin N Am 2008 (18):535-553

BRCA2 and Pancreatic Cancer - does informative testing make a difference?

CASE-continued Given Ashkenazi Jewish ancestry, tested patient for founder BRCA gene mutations: NEGATIVE How would we screen her? her children? and her brother s children? Blood/DNA had been banked for deceased brother BRCA2 6174delT POSITIVE Patient s mother s test was negative

Abnormal Screen Total pancreatectomy Partial pancreatectomy is not recommended due to mutifocal and widespread nature of dysplasia If opt not to have surgery, follow-up EUS and CT scan at 3-6 months to assess any changes

Pancreatectomy Risk of mortality is 3% Brittle diabetes Exocrine insufficiency requiring pancreatic enzyme replacement High rate of ulceration, lifelong acidsuppressive therapy Bleeding, infection, and poor wound healing

Pancreatectomy Cost effective when compared to cost of carcinoma Cost ~$37,000 Cost of diabetes care ~$11,000 Surgical approaches Partial pancreatectomy with frozen section analysis intraoperatively Laparoscopic distal pancreatectomy then complete pancreatectomy if dysplasia is found Pancreatic rests in the bowel are present in ~10% and should be removed

Recommendations: Genetic Testing Need to know pathology/phenotype first May be pursued if family history is suggestive of syndrome Low yield for p16 absent melanoma (only pancreatic cancer family history) BRCA2/PALB2 testing may be considered in families with adenocarcinoma of the pancreas, especially with breast cancer Hx Multigene panels may help illuminate prevalence and phenotype of rare genes

Recommendations: Screening Careful evaluation of family history Some families may be at risks as high as 70% Evaluation of personal history Smoking is a large risk factor Assessment of psychosocial concerns and anxiety Screening is costly and is most advantageous under research protocols