Study of a spherical phantom for Gamma knife dosimetry

Similar documents
Rotating and static sources for gamma knife radiosurgery systems: Monte Carlo studies

Dose differences between the three dose calculation algorithms in Leksell GammaPlan

Monte Carlo simulation of 192 Ir radioactive source in a phantom designed for brachytherapy dosimetry and source position evaluation.

Phantom Positioning Variation in the Gamma Knife Perfexion Dosimetry

Dosimetry of the Gamma Knife TM

Comparison of dosimetry parameters of two commercially available Iodine brachytherapy seeds using Monte Carlo calculations

Canadian Partnership for Quality Radiotherapy. Technical Quality Control Guidelines for Gamma Knife Radiosurgery. A guidance document on behalf of:

ph fax

Basic dosimetric data for treatment planning system


Calibration of dosimeters for small mega voltage photon fields at ARPANSA

Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 4, NUMBER 4, FALL 2003

Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients

AAPM s TG 51 Protocol for Clinical Reference Dosimetry of High-Energy Photon and Electron Beams

On the impact of ICRU report 90 recommendations on k Q factors for high-energy photon beams

Dose distribution and dosimetry parameters calculation of MED3633 palladium-103 source in water phantom using MCNP

Dosimetric characteristics of 137 Cs sources used in after loading Selectron system by Monte Carlo method

Dosimetric characterization of surface applicators for use with the Xoft ebx system

Unrivaled, End-to-End

FLUKA Monte Carlo Simulation for the Leksell Gamma Knife Perfexion TM radiosurgery system

STEREOTACTIC DOSE VERIFICATION PHANTOM VERSATILE STEREOTACTIC QA PHANTOMS

Small Field Dosimetry: Overview of AAPM TG-155 and the IAEA-AAPM Code of Practice (Therapy)

Comparative Study on Homogeneous and Inhomogeneous Photon Dose Distribution from a High Dose Rate 192 Ir Brachytherapy Source using MCNP5

AAPM TG178: Towards the Recommendation of a Standard Dosimetry Protocol for Gamma Knife Stereotactic Radiosurgery

A new geometric and mechanical verification device for medical LINACs

INTRODUCTION. Material and Methods

Effect of skull contours on dose calculations in Gamma Knife Perfexion stereotactic radiosurgery

Assessment of variation of wedge factor with depth, field size and SSD for Neptun 10PC Linac in Mashhad Imam Reza Hospital

ROPES eye plaque dosimetry: commissioning and verification of an ophthalmic brachytherapy treatment planning system

Strategies and Technologies for Cranial Radiosurgery Planning: Gamma Knife

Standard calibration of ionization chambers used in radiation therapy dosimetry and evaluation of uncertainties

EORTC Member Facility Questionnaire

Radiosurgery by Leksell gamma knife. Josef Novotny, Na Homolce Hospital, Prague

CALCULATION OF BACKSCATTER FACTORS FOR LOW ENERGY X-RAYS USING THE TOPAS MONTE CARLO CODE

D DAVID PUBLISHING. Uncertainties of in vivo Dosimetry Using Semiconductors. I. Introduction. 2. Methodology

Can we hit the target? Can we put the dose where we want it? Quality Assurance in Stereotactic Radiosurgery and Fractionated Stereotactic Radiotherapy

Accurate Accurate boost or Simply Accuboost

Verification of Relative Output Factor (ROF) Measurement for Radiosurgery Small Photon Beams

Monte Carlo Simulation Study on Dose Enhancement by Gold Nanoparticles in Brachytherapy

Diode calibration for dose determination in total body irradiation

IMRT QUESTIONNAIRE. Address: Physicist: Research Associate: Dosimetrist: Responsible Radiation Oncologist(s)

Topics covered 7/21/2014. Radiation Dosimetry for Proton Therapy

Assessment of Dosimetric Functions of An Equinox 100 Telecobalt Machine

IORT with mobile linacs: the Italian experience

Evaluation of the Effects of Inhomogeneities on Dose Profiles Using Polymer Gel Dosimeter and Monte Carlo Simulation in Gamma Knife

Calculation methods in Hermes Medical Solutions dosimetry software

A preliminary clinic dosimetry study for synchrotron radiation therapy at SSRF

Multilayer Gafchromic film detectors for breast skin dose determination in vivo

DOSIMETRIC COMPARISION FOR RADIATION QUALITY IN HIGH ENERGY PHOTON BEAMS

Out-of-field doses of CyberKnife in stereotactic radiotherapy of prostate cancer patients

A Dosimetric study of different MLC expansion aperture For the radiotherapy of pancreas cancer

Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry

Concepts of Uncertainty and their Application in Gamma Knife SRS. David J. Schlesinger, Ph.D. University of Virginia

Using Monte Carlo Method for Evaluation of kvp & mas variation effect on Absorbed Dose in Mammography

MODELLING A GAMMA IRRADIATION PROCESS USING THE MONTE CARLO METHOD

Small field diode dosimetry

Manik Aima, Larry A. DeWerd, Wesley S. Culberson

AbstractID: 8073 Title: Quality Assurance, Planning and Clinical Results for Gamma Knife Radiosurgery S. Goetsch, Ph.D. Page 1 Seattle, WA May 2008

Radiochromic film dosimetry in water phantoms

Patient-specific quality assurance for intracranial cases in robotic radiosurgery system

PMP. Use of Cylindrical Chambers as Substitutes for Parallel- Plate Chambers in Low-Energy Electron Dosimetry. Original Article.

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics

Implementing New Technologies for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Mania Aspradakis John Byrne Hugo Palmans John Conway Jim Warrington Karen Rosser Simon Duane

PREDICTION OF ABSORBED DOSE DISTRIBUTIONS AND NEUTRON DOSE EQUIVALENT VALUES IN PROTON BEAM RADIATION THERAPY

Research Article Dose Distributions of an 192 Ir Brachytherapy Source in Different Media

SRS/SBRT Errors and Causes

IROC Liver Phantom. Guidelines for Planning and Irradiating the IROC Liver Phantom. Revised July 2015


CHEMICAL DOSIMETRY OF GAMMACELL WITH FERROUS SULFATE

Review of TG-186 recommendations

Protons Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry J. Phys.: Conf. Ser.

Normal tissue doses from MV image-guided radiation therapy (IGRT) using orthogonal MV and MV-CBCT

Implantable MOSFET dosimeter response to 192 Ir HDR radiation

Protection of the contralateral breast during radiation therapy for breast cancer

An Independent Audit and Analysis of Small Field Dosimetry Quality Assurance. David Followill IROC Houston QA Center

Dosimetry of Small Static Fields Used in External Beam Radiotherapy

8/2/2018. Disclosures. In ICRU91: SRT = {SBRT/SABR, SRS}

Lung Spine Phantom. Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014

A comparison of dose distributions measured with two types of radiochromic film dosimeter MD55 and EBT for proton beam of energy 175 MeV

Film-based dose validation of Monte Carlo algorithm for Cyberknife system with a CIRS thorax phantom

Dosimetry in digital mammography

Assessment of a three-dimensional (3D) water scanning system for beam commissioning and measurements on a helical tomotherapy unit

Traceability and absorbed dose standards for small fields, IMRT and helical tomotherapy

Practical Reference Dosimetry Course April 2015 PRDC Program, at a glance. Version 1.0. Day 1 Day 2 Day 3 Day 4

Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film

Gamma Knife radiosurgery with CT image-based dose calculation

Comparative Study of Absorbed Doses in Different Phantom Materials and Fabrication of a Suitable Phantom

S. Derreumaux (IRSN) Accidents in radiation therapy in France: causes, consequences and lessons learned

Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

Evaluation of Dosimetric Characteristics of a Double-focused Dynamic Micro-Multileaf Collimator (DMLC)

Disclosure. Outline. Machine Overview. I have received honoraria from Accuray in the past. I have had travel expenses paid by Accuray in the past.

Calibration of Radiation Instruments Used in Radiation Protection and Radiotherapy in Malaysia

Measurements of Air Kerma Index in Computed Tomography: A comparison among methodologies

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation May 2009

The Journey of Cyberknife Commissioning

Calculation of Dose Distribution Around a Clinical 252. Cf Source for Neutron Therapy Based on AAPM, TG-43 Protocol

Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy

Transcription:

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 11, NUMBER 2, SPRING 2010 Study of a spherical phantom for Gamma knife dosimetry Dengsong Zhu, 1a Carlos Austerlitz, 2 Sidi Benhabib, 2 Helvecio Mota, 3 Ron R. Allison, 2 Diana Campos, 2,4 Q.E.D. Medical Physics, Inc, 1 Lebanon, TN, USA; Radiation Oncology Department, 2 The Brody School of Medicine at East Carolina University, Greenville, NC, USA; Carolinas Medical Center NorthEast Radiation Oncology, 3 Concord, NC, USA; Clinica Diana Campos, 4 Recife, PE, Brazil zhudengsong@gmail.com Received 10 June, 2009; accepted 8 December, 2009 Four 16 cm diameter spherical phantoms were modeled in this study: a homogenous water phantom, and three water phantoms with 1 cm thick shell each made of different materials (PMMA, Plastic Water TM and polystyrene). The PENELOPE Monte Carlo code was utilized to simulate photon beams from the Leksell Gamma Knife (LGK) unit and to determine absorbed dose to water (D w ) from a single 18 mm beam delivered to each phantom. A score spherical volume of 0.007 cm 3 was used to simulate the dimensions of the sensitive volume of the Exradin A-16 ionization chamber, in the center of the phantom. In conclusion, the PMMA shell filled with water required a small correction for the determination of the absorbed dose, while remaining within the statistical uncertainty of the calculations (± 0.71). Plastic Water TM and polystyrene shells can be used without correction. There is a potential advantage to measuring the 4 mm helmet output using these spherical water phantoms. PACS numbers: 87.10.Rt, 87.50.cm Key words: gamma knife, Penelope, Monte Carlo, water phantom, dosimetry, absolute calibration I. Introduction The Leksell Gamma Knife (LGK) is a complete system for radiosurgery marketed worldwide by Elekta. The effective non-invasive treatment is made by 201 Cobalt-60 ( 60 Co) beams that have sufficient penetration to reach even the most deep-seated tumors in the brain. The treatment is achieved by delivering prescribed doses (shots) of radiation, in compliance with a pre-prepared treatment plan to the exact site of the intracranial target. The tissue in the target is thus treated by radiation while sparing surrounding tissue. (1) It provides a low morbidity and effective alternative to conventional surgery. (2,3) A spherical polystyrene phantom 160 mm in diameter furnished by Elekta is usually used in dosimetry, according to the American Association of Physicists in Medicine (AAPM) Task Group 21 Protocol. (4-10) Currently, the worldwide trend in radiation dosimetry is to standardize absorbed dose to water (D w ) as measured by a water phantom, (11) and a new AAPM TG 51 protocol has been instituted for water calibration. (12) It provides the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Recently, a thimble-shaped calibration water phantom, with a 2 mm plastic wall was designed for LGK calibration in water. (13) This method avoids dosimetric uncertainties resulting from the composition of the traditional polystyrene phantom construction materials. In this work, four 16 cm diameter spherical phantoms were modeled: a homogenous water phantom, and three water phantoms with different 1 cm thick materials. The PENELOPE a Corresponding author: Dengsong Zhu, Q.E.D. Medical Physics, Inc, Lebanon, TN, 37087, USA; phone: +01.252.258.5391; fax: +01.615.444.4104; email: zhudengsong@gmail.com 222 222

223 Zhu et al.: Study of a spherical phantom for Gamma knife dosimetry 223 Monte Carlo code was utilized to simulate photon beams from the LGK unit and to determine D w from a single 18 mm beam delivered to center of each of the phantoms. II. Materials and Methods For the LGK Model B and Model C, the dose is delivered with 201 Cobalt-60 ( 60 Co) sources that are distributed on the surface of a hemisphere with a radius of about 400 mm, such that the beams are collimated to a common focal point (isocenter). Sources are distributed along five parallel circles separated from each other by an angle of 7.5. Each one of the 60 Co sources consists of 20 cylindrical 60 Co pellets 1 mm in diameter and 1 mm in length. According to a simplified model, (14,15) the active core can be considered as a unique cylindrical source of 1 mm diameter and 20 mm height made of 60 Co. The sources are encapsulated in 303 series stainless steel (C 1.0%, Mn 2.0%, P 0.045%, S 0.03%, Si 1.0%, Cr 18.0%, Ni 9.0%, Fe 69.8%) with welded closures. The dimensions of the source capsule are 7 mm in diameter and 33 mm long. Each beam channel consists of a 65 mm long tungsten cylinder with a radius of 2 mm in a precollimator followed by a 92.5 mm lead cone collimator and ends in a 60 mm interchangeable tungsten collimator helmet. The available sizes of the interchangeable collimator helmet are 4, 8, 14 and 18 mm. Four 16 cm diameter spherical phantoms were modeled: a homogenous water phantom and three water phantoms with 1 cm thick shells made of different materials. The shell materials were PMMA, Plastic Water TM and polystyrene. Table 1 gives the physical characteristics and composition of each material. The center coincides with the isocenter of the LGK unit. The schematic diagram of the spherical water phantom is shown in Fig. 1. Idealized experiments were performed using the PENELOPE Monte Carlo code for 18 mm collimator helmet to obtain the single-beam profiles, isodose distribution, and the percent deviation in D w at the center of the phantoms. The PENELOPE Monte Carlo code implements advance electron, positron and photon transport algorithms. It is suitable for simulating problems relevant to stereotactic radiosurgery. (17,18) A detailed description on the structure of PENELOPE can be found in Salvat et al. (19) During simulation, source capsule, precollimator and cone collimator (part I), collimator helmet (part II) and spherical water phantom (part III) were simulated separately. Two phase-space files (PSFI and PSFII) were obtained during the simulation of part I and part II, respectively. PSFI contained all the particles scored at the plane below the inner surface of the tube collimator. PSFII contained all the particles scored at the plane below the inner surface of the final collimator helmet. The simulation was controlled by means of several parameters: C 1, C 2, W cc and W cr, E abs (electron e - / e + /photon), as well as DSMAX. The first two refer to elastic collisions. C 1 represents an average angular deflection produced by multiple elastic scattering along a path length equal to the mean free path between hard elastic events. C 2 defines the maximum average Ta b l e 1. Composition (in weight percent fraction) and densities of PMMA, Plastic Water TM and polystyrene. PMMA a Plastic Water TM b Polystyrene a H 8.05 9.25 7.7 C 59.98 62.82 92.3 N 1.00 O 31.96 17.94 Cl 0.96 Ca 7.95 Br 0.03 Density (g cm -3 ) 1.190 1.014 1.060 a As given by Penelope. b As given by Tello et al, (16) its density was generated by Penelope according to its composition.

224 Zhu et al.: Study of a spherical phantom for Gamma knife dosimetry 224 Fig. 1. Schematic diagram of the spherical water phantom. fractional energy loss between consecutive hard elastic events. W cc and W cr are energy cutoff values to separate hard and soft events. The inelastic collisions with energy loss W < W cc and emission of bremsstrahlung photons with W < W cr are considered as soft stopping interactions in simulation. E abs (electron e - / e + /photon) is the absorption energy, when the energy becomes smaller than a given energy and particles are assumed to be effectively stopped and absorbed in the medium. The input parameter DSMAX defines the maximum allowed step length for e - /e + for photons. In each simulation of part I, II and III, C 1 and C 2 are 0.1; W cc and W cr are 10 kev; E abs (electron e - / e + /photon) is 10 kev. DSMAX is given a value of the order of one-tenth of the thickness of that body. In the simulation of part I, a total of 6.7 10 7 histories were followed and the initial directions were sampled in a cone with semi-aperture angle 10 toward the isocenter to get PSFI. In the simulation of part II, PSFI was used with a splitting factor 20 to obtain PSFII. In the simulation of part III, PSFII was used with a splitting factor 50. The statistical uncertainty of the Monte Carlo estimate is determined by the Eq.1 and Eq. 2: (19) (1) (2)

225 Zhu et al.: Study of a spherical phantom for Gamma knife dosimetry 225 where N is a large number of simulated histories, q 1 is a random value scored by all particles of the i th history, and is an average score of N. The statistical uncertainties given throughout this paper correspond to i th. III. Results & Discussion Figure 2 shows the single-beam dose profiles of three spherical phantoms for the 18 mm collimator helmet of the LGK unit, which were normalized in homogenous water at the region of dose maximum. The solid, dot, dash-dot and dash-dot-dot lines correspond to the homogenous water phantom, water phantoms with 1cm Plastic Water TM shell, PMMA shell and polystyrene shell, respectively. The dash curve shows the single-beam dose profile simulated by another Monte Carlo code, EGS4 for the 18 mm collimator helmet. (6) In the study by Chung et al., the single-beam dose profile was normalized with Elekta profiles at the region of dose maximum; the agreement is very good. Wu et al. (20) reported that the dimension of the 50% isodose or full-with- at- half- maximum (FWHM) of 18 mm collimator helmet equals 18 mm. As shown in Fig.2, our Monte Carlo results were consistent with those in the Wu et al. study. The curves in Fig. 3 were obtained by fitting the values of the relative dose for each material in a radial distance varying from 0 to 5 mm. Even though there was a relatively large uncertainty in the MC calculation, these results showed not only the expected relationship among the absorbed dose with these materials and their mass energy attenuation coefficient, but also the sensitivity of the modeling technique. Based only on the value of the energy absorption coefficient by the National Institute of Standards and Technology (NIST), a correction of about 0.2% and 0.8% were found for polystyrene and for PMMA, respectively, which were very close to that performed in this work. Nevertheless, the calculations performed in this work served to predict, in a more accurate fashion, the required amount of correction which was needed Fig. 2. Comparison of single-beam dose profile in the center of the spherical water phantoms with the different shell materials for the 18 mm collimator helmet.

226 Zhu et al.: Study of a spherical phantom for Gamma knife dosimetry 226 Fig. 3. Isodose distribution in the center of the spherical water phantoms with the radial distance varying from 0 to 5 mm. to compensate for the thickness of the shell material rather than water, which was used in a spherical water phantom. Measurements performed with a 1 cm and 0.5 cm PMMA shell thickness are in progress and will be published. Figure 4 shows the isodose distribution in the center of the spherical water phantom with the PMMA material for 18 mm collimator helmet. With the different shell materials, there is no observable difference. The Exradin A-16 chamber of collecting volume of 0.007 cm 3 is used in the AAPM TG-21 calibration of the LGK unit. (9) A score spherical volume of 0.007 cm 3 was used to simulate the dimensions of the sensitive volume of the Exradin A-16 ionization chamber, in the center of the phantom. Within the statistical uncertainty of the modeling prediction (± 0.71%), Table 2 gives the attenuation factor of the shell material in the D w in the center of the water phantom. Within the statistical uncertainty of the modeling prediction, the following percent deviations were found in D w in the center of the water phantom: 0.2%, 0.7%, and 1.4% as compared with homogenous water phantom for water phantom with Plastic Water TM, polystyrene and PMMA shells, respectively. The spherical water phantom with 1 cm thick shell can be easily machined. A spherical water phantom with 1 cm thick PMMA shell made of two hemispheres and with a diameter of 16 cm was designed and built (Fig. 5). It can be positioned at the mechanical center of LGK and can be rotated in one plane. At the center of the phantom, either an ionization chamber or films can be placed with good accuracy, due to their geometric construction. It is difficult to measure output factor of 4 mm helmet using ionization chambers due to their size. Film was used to measure the 4 mm helmet output factor for the LGK using a spherical polystyrene phantom 16 cm in diameter. (21,22) Butson et al. (23) reported that water would be the optimal medium for use in film dosimetry. The effects of water on the film are minimal

227 Zhu et al.: Study of a spherical phantom for Gamma knife dosimetry 227 because water could remove any spurious results caused by imperfect film-phantom contact during parallel film exposure which could occur with the use of solid phantom. The film can be located at the center of our designed spherical water phantom. There is a potential advantage to measure the 4 mm helmet output using our spherical water phantom using film dosimetry instead of the ionization chamber. Ta b l e 2. Attenuation factor of the shell material in the dose to water (D w ) in the center of the water phantom; D w normalized to the homogenous water phantom. The statistical uncertainty of each simulation was ± 0.71%. Shell Material, 1 cm thick D w Attenuation Factor Water 1.000 N/A PMMA 0.986 1.4% Plastic Water TM 0.998 0.2% Polystyrene 0.993 0.7% Fig. 4. Isodose distribution in the center of the spherical water phantoms with the PMMA material for 18 mm collimator helmet. With the different shell materials, there is no observable difference. Fig. 5. A spherical water phantom with 1 cm thick PMMA shell.

228 Zhu et al.: Study of a spherical phantom for Gamma knife dosimetry 228 IV. Conclusions In this work, four 16 cm diameter spherical phantoms were modeled: a homogenous water phantom, and three water phantoms with 1cm thick shells of different materials. The PENELOPE Monte Carlo code was utilized to simulate photon beams from the LGK unit and to determine D w in their center from a single 18 mm beam delivered to each phantoms. A spherical volume of 0.007 cm 3 was used to simulate the dimensions of the sensitive volume of the Exradin A-16 ionization chamber in the center of the phantom. The PMMA shell filled with water required a small correction for the determination of the absorbed dose, while remaining within the uncertainty of the calculations (± 0.71). The Plastic Water TM and polystyrene shells can be used without correction. There is a potential advantage to measuring the 4 mm helmet output using these spherical water phantoms. Acknowledgements This work was partially funded by the Brody Brothers Endowment Fund. The author Dengsong Zhu would like to acknowledge Dr. Shifeng Chen, from the Department of Radiation Oncology of University of Nebraska Medical Center, for his advice on 3D dose distribution and Dr. Haibo Lin, from Department of Radiation Oncology of University of Pennsylvania, for helpful discussions. References 1. Leksell Gamma Knife 4C - System Description. Elekta. Available from: http://www.elekta.com/healthcare_ international_leksell_gamma_knife_4c.php 2. Corn BW, Curran WJ Jr, Shrieve DC, Loeffler JS. Stereotactic radiosurgery and radiotherapy: new developments and new directions. Semin Oncol. 1997;24(6):707 14. 3. Phillips MH, Stelzer KJ, Griffin TW, Mayberg MR, Winn HR. Stereotactic radiosurgery: a review and comparison of methods. J Clin Oncol. 1994;12(5):1085 99. 4. Bank MI. Ion chamber measurements of transverse gamma knife beam profiles. J Appl Clin Med Phys. 2002;3(1):12 18. 5. Cheung JY, Yu KN, Chan JF, Ho RT, Yu CP. Dose distribution close to metal implants in Gamma Knife Radiosurgery: a Monte Carlo study. Med Phys. 2003;30(7):1812 15. 6. Cheung JY, Yu KN, Yu CP and Ho RT. Monte Carlo calculation of single-beam dose profiles used in a gamma knife treatment planning system. Med Phys. 1998;25(9):1673 75. 7. Kurjewicz L, Berndt A. Measurement of Gamma Knife helmet factors using MOSFETs. Med Phys. 2007;34(3):1007 12. 8. Perks J, Gao M, Smith V, Skubic S, Goetsch S. Glass rod detectors for small field, stereotactic radiosurgery dosimetric audit. Med Phys. 2005;32(3):726 32. 9. American Association of Physicists in Medicine. A protocol for the determination of absorbed dose from high-energy photon and electron beams. AAPM Radiation Therapy Committee Task Group 21. Med Phys. 1983;10(6):741 71. 10. Trnka J, Novotny J, Kluson J. MCNP-based computational model for the Leksell gamma knife. Med Phys. 2007;34(1):63 75. 11. International Atomic Energy Agency. Absorbed dose determination in external beam radiotherapy: an international Code of Practice for dosimetry based on standards of absorbed dose to water. IAEA Technical Report Series No 398. Vienna, Austria: IAEA; 2000. 12. Almond PR, Biggs PJ, Coursey BM, et al. AAPM s TG-51 protocol for clinical reference dosimetry of high energy photon and electron beams. Med Phys. 1999;26(9):1847 70. 13. Drzymala RE, Wood RC, Levy J. Calibration of the Gamma Knife using a new phantom following the AAPM TG51 and TG21 protocols. Med Phys. 2008;35(2):514 21. 14. Al-Dweri FMO, Lallena AM, Vilches M. A simplified model of the source channel of the Leksell GammaKnife tested with PENELOPE. Phys Med Biol. 2004;49(12):2687 703. 15. Cheung JY, Yu KN. Study of scattered photons from the collimator system of Leksell Gamma Knife using the EGS4 Monte Carlo code. Med Phys. 2006;33(1):41 45. 16. Tello VM, Tailor RC, and Hanson WF. How water equivalent are water-equivalent solid materials for output calibration of photon and electron beams? Med Phys. 1995;22(7):1177 89.

229 Zhu et al.: Study of a spherical phantom for Gamma knife dosimetry 229 17. Moskvin V, DesRosiers C, Papiez L, Timmerman R, Randall M, DesRosiers P. Monte Carlo simulation of the Leksell Gamma Knife: I. Source modeling and calculation in homogeneous media. Phys Med Biol. 2002;47(12):1995 2011. 18. Moskvin V, Timmerman R, DesRosiers C, et al. Monte Carlo simulation of the Leksell Gamma Knife: II. Effects of heterogeneous versus homogeneous media for stereotactic radiosurchery. Phys Med Biol. 2004;49(21):4879 95. 19. Salvat F, Fernandez-Varea JM, Sempau, J. PENELOPE 2006, a code system for Monte Carlo simulation of electron and photon transport. Nuclear Energy Agency workshop proceedings, 4 7 July, 2006; Barcelona, Spain. Paris: NEA; 2006. 20. Wu A, Lindner G, Maitz AH, et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1990;18(4):941 49. 21. Ekstrand KE, Bourland, JD. A film technique for the determination of output factors and end effect times for the Leksell Gamma Knife. Phys Med Biol. 2001;46(3):703 06. 22. Ma LJ, Li XA, Yu CX. An efficient method of measuring the 4 mm helmet output factor for the Gamma knife. Phys Med Biol. 2000;45(3):729 33. 23. Butson MJ, Cheung T, Yu PK. Radiochromic film dosimetry in water phantoms. Phys Med Biol. 2001;46(1):N27 31.