Supporting Information

Similar documents
Available online Research Article

Employment of state-of-the-art technologies towards to metabolomic approaches on sweet cherry postharvest performance

THE IDENTIFICATION OF PHENOLIC ACIDS BY HPLC METHOD FROM STRAWBERRIES. Abstract

Molecules 2018, 23, 2472; doi: /molecules

TUM. Biocompounds II Concentration of Flavonols and Anthocyanidins in apple skin: Relation between Multiplex and HPLC values. Prof. Dr.

Optimization of extraction method and profiling of plant phenolic compounds through RP-HPLC

Berry press residues as a valuable source of polyphenolics: extraction optimisation and analysis

ISSN X CODEN (USA): PCHHAX. A study of the component composition of phenolic compounds obtained from Dahlia varieties Ken s Flame herb

Department of Food Science & Technology (FST), OSU Phone: (541) ;

STANDARD OPERATING PROTOCOL (SOP)

Bioavailability of dietary (poly)phenols following acute. ingestion of an enriched drink by ileostomists

Qualitative and quantitative determination of phenolic antioxidant compounds in red wine and fruit juice with the Agilent 1290 Infinity 2D-LC Solution

ANALYTICAL SCIENCES OCTOBER 2018, VOL The Japan Society for Analytical Chemistry

Chapter 4 SUMMARY AND CONCLUSION

Overview. Introduction

Food Chemistry 136 (2013) Contents lists available at SciVerse ScienceDirect. Food Chemistry

Evaluation of Phenolic Content in Avocado Fruit and Its By-Products

Application Note. Treatment of poor memory, memory loss, Alzheimer s disease, peripheral vascular disease.

Anthocyanin and Polyphenolic Composition of Fresh and Processed Cherries A. CHAOVANALIKIT AND R.E. WROLSTAD

Health Promoting Compounds in Black Currants - the Start of a Study Concerning Ontogenetic and Genetic Effects

6/8/2015 FOOD CONSTITUENTS. Determination of phytochemical components with advanced analytical methods Part I. Phenolic and polyphenolic compounds

Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia

Dr. Pran Kishore Deb Dr. Balakumar Chandrasekaran Assistant Professor Pharmaceutical Medicinal Chemistry Faculty of Pharmacy, Philadelphia

COMPOSITION OF SWEET CHERRY JUICE

This is a repository copy of Scalable anthocyanin extraction and purification methods for industrial applications.

Intracomplex general acid/base catalyzed cleavage of RNA phosphodiester bonds: the leaving group effect. Supporting information

hplc applications nutraceuticals vitamins Ginsenosides in Korean Ginseng Ginseneoside ww.discoverysciences.com Ginseng

TWO NEW ELLAGIC ACID GLYCOSIDES FROM LEAVES OF DIPLOPANAX STACHYANTHUS

Rebaudioside a From Multiple Gene Donors Expressed in Yarrowia Lipolytica

The impact of conventional and organic agricultural approaches on blackcurrant polyphenol content and diversity. Sean Conner

Simultaneous Determination of Phenolic Compounds in Different Matrices using Phenyl-Hexyl Stationary Phase

High Resolution LC-MS Data Output and Analysis

Natural Sciences. Introduction. Aneta Spórna-Kucab 1, S. Ignatova 2, I. Garrard 2, S. Wybraniec 1

Supporting information

BIOAVAILABILITY AND METABOLISM OF GRAPE TRANS-RESVERATROL ON CACO-2 CELLS

SUBCRITICAL WATER EXTRACTION OF ANTHOCYANINS FROM FRUIT BERRY SUBSTRATES

Rapid Gradient and Elevated Temperature UHPLC of Flavonoids in Citrus Fruit

High-Performance Liquid Chromatography-Mass Spectrometry for the Determination of Flavonoids in G.biloba Leaves

2 5.1 Roots of Withania somnifera Structure of Withanolide G 99. A- C 22 -O- β-d-glucoside) Structure of Withaferin A 100

Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green

Cultivar Variation and Anthocyanins and Rutin Content in Sweet Cherries Prunus avium L.

Determination of Benzoic Acid in Cranberry (Vaccinium Macrocarpon Ait) by Hplc with Using Different Extraction Methods

MOL2NET, 2016, 2, 1

Separation of Macrocyclic Lactones (Avermectins) on FLARE C18 MM & FLARE C18+ Columns

Amudha S et al., Asian Journal of Pharmthiaceutical Technology & Innovation, 04 (21); 2016; Research Article

A Previous Study of Phenolic Profiles of Quince, Pear, and Apple Purees by HPLC Diode Array Detection for the Evaluation of Quince Puree Genuineness

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

Supplemental Table 1. Concentrations of anthocyanins of wild blueberry and Concord grape 1.

Antioxidant compounds in blueberry fruits from southern Chile, Ribera et al.

Optimization of a High-Performance Liquid Chromatography Method for the Separation and Identification of Six Different Classes of Phenolics

Delineation of the Role of Glycosylation in the Cytotoxic Properties of Quercetin using Novel Assays in Living Vertebrates

HPLC Column for Structural Isomers COSMOSIL Cholester

Title Revision n date

Simultaneous determination of ten major phenolic acids in sugarcane by a reversed phase HPLC method

8/6/2015. Training Course. About Cyprus. Cyprus University of Technology (CUT)

POLYPHENOLIC COMPOUNDS FROM ABUTILON GRANDIFLORUM LEAVES

Validation of Quantitative Method for Glycidol Fatty Acid Esters (GEs) in Edible Oils

Jagua (Genipin-Glycine) Blue (Tentative)

Development and Validation of a Simultaneous HPLC Method for Quantification of Amlodipine Besylate and Metoprolol Tartrate in Tablets

DETERMINATION OF PHENOLIC COMPOUNDS IN PRUNUS DOMESTICA LEAVES EXTRACT

Fig.1. Denatonium benzoate (DB) chemical structure

Investigation of phenolic compounds of the herbs of Veronica Genus

APPLICATIONS Improving Intact Biogeneric Protein Separations with Aeris WIDEPORE Core-Shell Columns

LC-MS Analysis of Botanicals

Flupyradifurone. HPLC Method

Computer assisted identification of green tea metabolites in human urine. Lars Ridder ICCS, Noordwijkerhout 2014

Journal of Pharmacognosy and Phytochemistry

ACE. For increased polar retention and alternative selectivity. Alternative selectivity for method development

Carbon Dioxide induced Changes in Color and Anthocyanin Synthesis of Stored Strawberry Fruit

Article. Shan Lin 1,JiYe 1, Wei-dong Zhang 1, Bang-jing Cao 2, Xi-ke Xu 1, Lei Shan 1, and Juan Su 1, * Abstract. Introduction

Core-Shell Technology for Proteins and Peptides

Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016.

Reference Standards in the Analysis of Botanicals

Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberries

MIRTOSELECT A NEW VALIDATED HPLC METHOD OF ANALYSIS. mirtoselect. product

Influence of sugar syrup adulterants on bioactive properties and phenolic content of different honey types

Supporting Information

SUMMARY, CONCLUSION & RECOMMENDATIONS

APPLICATIONS TN A Comparison of Various Kinetex C18 Phases USP: L1

APPLICATIONS TN µm Core-Shell Particle. (continued on page 2) Page 1 of 8. For additional technical notes, visit

RP-HPLC Method Development and Validation of Abacavir Sulphate in Bulk and Tablet Dosage Form

Matrix-induced Signal Enhancement of Propamocarb in LC-MS/MS

ASSAY AND IMPURITY METHOD FOR DURACOR TABLETS BY HPLC

Shuguang Li, Jason Anspach, Sky Countryman, and Erica Pike Phenomenex, Inc., 411 Madrid Ave., Torrance, CA USA PO _W

Efficient extraction of flavonoids of sea buckthorn berries

Automated Purification and Analytical Reinjection of a Small Molecule Drug, Probenecid, on a Gilson LC/MS Dual Function System

Supporting Information

Chapter 6 IDENTIFICATION AND CHARACTERIZATION OF FLAVONOIDS BY HPLC AND LC-MS/MS ANALYSIS

INFLUENCE OF FEEDING OF FRANKLINIELLA OCCIDENTALIS PERGANDE (THYSANOPTERA:THRIPIDAE) ON THE POLYPHENOLIC COMPLEX IN THE LEAVES

Separation of Saccharides Using TSKgel Amide-80, a Packing Material for High-performance Normal Phase Partition Chromatography (2) Table of Contents

11:00 a.m. EST Telephone Number: Chair Person: Tim Spaeder

Analysis of several common. organic acids in tobacco leaf, snus, and moist snuff

Chukvelutins A-C, 16-norphragmalin limonoids with unprecedented skeletons from Chukrasia tabularis var. velutina

New immunomodulators with antitumoral properties; Isolation of active naturally-occurring anti-mitotic components of MR>1KD from pollen extract T60

Anticancer properties of sea buckthorn extracts

High Performance Liquid Chromatographic Identification of Anthocyanins

Effect of Meteorological Conditions on Flavonoids in Portuguese Landrace Varieties of Onion

ACE C18-AR Use the Power!

CHAPTER 8 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) ANALYSIS OF PHYTOCHEMICAL CONSTITUENTS OF M. ROXBURGHIANUS AND P. FRATERNUS PLANT EXTRACTS

Korean Journal of Environmental Agriculture

Transcription:

Supporting Information Staility of Hydroxycinnamic Acid Derivatives, Flavonol Glycosides and Anthocyanins in Black Currant Juice Leenamaija Mäkilä,*, Oskar Laaksonen, Aino-Liisa Alanne, Maaria Kortesniemi, Heikki Kallio,, Baoru Yang Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI- 14 Turku, Finland Instrument Centre, Department of Chemistry, University of Turku, FI-14, Turku, Finland Department of Food Science and Engineering, Jinan University, 516 Guangzhou, China * Corresponding author (Tel: + 58 6871; Fax: +58 686: E-mail: leenamaija.makila@utu.fi) Tale of Contents Tales S1 S and Figures S1 S8. Reference S1

Tale S1. List of the Reference Compounds Used for Quantitation of the Sample Compounds. Sample compound Reference compound used for quantitation No HYDROXYCINNAMIC ACID COMPOUNDS 1 neochlorogenic acid (E)-caffeic acid (E)-caffeic acid O-glucoside and (E)-pcoumaric (E)-caffeic acid acid O-glucoside * (E)-caffeoylglucose (E)-caffeic acid 4 (E)-p-coumaroylquinic acid (E)-p-coumaric acid 5 (Z)-p-coumaric acid O-glucoside (E)-p-coumaric acid 6 (E)-p-coumaroylglucose (E)-p-coumaric acid and chlorogenic acid * 7 (Z)-p-coumaroylglucose (E)-p-coumaric acid 8 (E)-caffeic acid (E)-caffeic acid 9 (E)-feruloylglucose (E)-ferulic acid 1 (E)-p-coumaric acid (E)-p-coumaric acid 11 (Z)-p-coumaric acid (E)-p-coumaric acid 1 (E)-ferulic acid (E)-ferulic acid 1 (E)-caffeoyloxymethyleneglucosyloxyutenenitrile purified compound of (E)-coumaroyloxymethyleneglucosyloxyutenenitrile (peak 14) 14 (E)-coumaroyloxymethyleneglucosyloxyutenenitrile purified compound of (E)-coumaroyloxymethyleneglucosyloxyutenenitrile (14) 15 (Z)-coumaroyloxymethyleneglucosyloxyutenenitrile purified compound of (E)-coumaroyloxymethyleneglucosyloxyutenenitrile (14) 16 (E)-feruloyloxymethyleneglucosyloxyutenenitrile purified compound of (E)-coumaroyloxymethyleneglucosyloxyutenenitrile (14) FLAVONOL COMPOUNDS 19 myricetin rutinoside myricetin glucoside myricetin glucoside myricetin glucoside 1 myricetin arainoside myricetin glucoside myricetin malonylglucoside and aureusidin myricetin glucoside glucoside * quercetin rutinoside quercetin rutinoside 4 quercetin glucoside quercetin glucoside 5 kaempferol rutinoside kaempferol glucoside 6 quercetin malonylglucoside quercetin glucoside 7 isorhamnetin rutinoside quercetin glucoside 8 kaempferol glucoside kaempferol glucoside 9 isorhamnetin glucoside ** quercetin glucoside myricetin myricetin 1 quercetin quercetin kaempferol kaempferol isorhamnetin ** quercetin ANTHOCYANINS 7 delphinidin glucoside delphinidin glucoside 8 delphinidin rutinoside delphinidin rutinoside 9 cyanidin glucoside cyanidin glucoside 4 cyanidin rutinoside cyanidin rutinoside Anthocyanin degradation products (hydroxyenzoic acids) 4 protocatechuic acid protocatechuic acid 5 4-hydroxyenzoic acid 4-hydroxyenzoic acid 6 phloroglucinaldehyde phloroglucinaldehyde CITRIC ACID METHYL ESTERS AND FLAZIN 17 citric acid methyl esters (E)-p-coumaric acid S

18 flazin purified compound of flazin * ) When the sample peaks overlapped, the reference compound was chosen for the more aundant compound. ** ) Due to low content of isorhamnetin glucoside and isorhamnetin, quantification was done as quercetin glucoside and quercetin. Figure S1. Identification of anthocyanidins monitored at 5 nm. Chromatograms of (A) cyanidin and (B) delphinidin reference compounds, (C) aseline juice sample co-injected with reference compounds, (D) aseline juice sample and (E) 5 month storage sample. Juice samples (C-E) were extracted with acidified MeOH. Identification was carried out with HPLC-DAD-apparatus using previous method 16. Column used was a 1 mm 4.6 mm i.d.,.6 μm, Kinetex C18 1A, with a guard column of the same material (Phenomenex, Torrance, CA). S

Figure S. 1 H NMR (CD OD, 5.1 MHz) spectrum of -(Z)-p-coumaroyloxymethylene-4-β-Dglucopyranosyloxy--(Z)-utenenitrile. Figure S. 1 C NMR (CD OD, 15.77 MHz) spectrum of -(Z)-p-coumaroyloxymethylene-4-β-Dglucopyranosyloxy--(Z)-utenenitrile. S4

Figure S4. Optimizing chromatographic separation of the peaks 14 (E)- coumaroyloxymethyleneglucosyloxyutenenitrile and 15 (Z)- coumaroyloxymethyleneglucosyloxyutenenitrile. Various inary gradients were applied (data not shown). (A) The highest separation of the isomers, approximately 1 minutes, was otained with the gradient program (lue line), with solvents A:.1% formic acid in water and B: 1% acetonitrile. The gradient for solvent B, 15 min, 18%; 15 4 min, 18 19%; 4 5 min, 19 8%; 5 min, 8%; 5 min, 8 %; 5 8 min, 69%; 8 41 min, 69 %; 41 45 min, %. The flow rate was 4.9 ml / min. (B) The purity of the re-isolated (Z)-coumaroyloxymethyleneglucosyloxyutenenitrile was checked via analytical HPLC-DAD machinery. S5

Figure S5. Decomposition of phenolic compounds and flazin in lack currant juice at various storage conditions during 1 months of storage. RT, room temperature. (A) Total HCA compounds, (B) total HCA derivatives, (C) total free HCAs, (D) total flavonol compounds, (E) total flavonol glycosides and (F) total free flavonols, (G) total anthocyanins, (H) anthocyanin degradation products and (I) flazin. Values at -month of storage equal with 1% on y-axis, asolute values are given in Tale S. Statistically significant changes*, when compared with the aseline sample ased on Oneway ANOVA together with Tukey s post hoc and LSD test (p <.5). The error ars are relative standard deviations (%). S6

Figure S6. Decomposition of individual HCA compounds in lack currant juice during one year of storage. RT, room temperature. Changes in p-coumaric, caffeic and ferulic acids and their derivatives (A D) when stored at RT in light, (E H) at RT in dark and (I L) in refrigerator (+ 4 C), respectively. E-isomers of free HCAs,(Z)-p-coumaric acid, (E)-caffeoyl / coumaroyl / feruloylglucose, (E)-coumaroyl-/caffeoyl-/feruloyloxymethyleneglucosyloxyutenenitrile, (Z)-coumaroyloxymethyleneglucosyl-oxyutenenitrile, neochlorogenic acid / (E)-pcoumaroylquinic acid, (Z)-coumaroylglucose, (E)-caffeic and (E)-p-coumaric acid O- glucoside, (Z)-p-coumaric acid O-glucoside. The co-eluting O-glucosides of (E)- caffeic and (E)-p-coumaric acids are represented y the same lines. Values at -month of storage equal with 1% on y-axis, asolute values are given in Tale S. Statistically significant changes*, when compared with the aseline sample ased on One-way ANOVA together with Tukey s post hoc and LSD test (p <.5). The error ars are relative standard deviations (%). S7

Figure S7. Decomposition of individual flavonol compounds and anthocyanins in lack currant juice during 1 months of storage. RT, room temperature. Myricetin, quercetin and cyanidin glycosides and their aglycones / degradation products (A C) stored at RT in light, (D F) at RT in dark and (G I) in refrigerator (+ 4 C), respectively. Myricetin and quercetin, myricetin / quercetin rutinoside, myricetin / quercetin glucoside, myricetin / quercetin malonylglucoside, myricetin arainoside. Protocatechuic acid, phloroglucinaldehyde, cyanidin glucoside, cyanidin rutinoside. Values at -month of storage equal with 1% on y-axis, asolute values are given in Tale S. Statistically significant changes*, when compared with the aseline sample ased on One-way ANOVA together with Tukey s post hoc and LSD test (p <.5). The error ars are relative standard deviations (%). S8

Tale S. Concentrations of the Metaolites in Black Currant Juices During Storage for One Year. concentration (µg per 1 g of juice) No Compounds -mo mo 6 mo 9 mo 1 mo RT light RT dark +4 C RT light RT dark +4 C RT light RT dark +4 C RT light RT dark +4 C ph.9.9..9.9..9.9.9.9.9.9.8 Brix 18 18 19 17 19 19 19 19 17 17 18 18 18 HYDROXYCINNAMIC ACID COMPOUNDS 1 neochlorogenic acid 1.8±1. (E)-caffeic acid O- 1.4±1. glucoside and (E)-pcoumaric 8 acid O- glucoside (E)-caffeoylglucose 97.5±5. 6 4 (E)-p-coumaroylquinic acid 5 (Z)-p-coumaric acid O- glucoside 6 (E)-p-coumaroylglucose chlorogenic acid and 1.464±.48 18.1±.95 a 1.5±. 71 1.8±. 8 17.±1. 6 a 1.6±. a 14.6±. 41.9±.9 a 5.87±. 8.±. 7.1± 5.5±..7±. 8.47±. 85 a 76.56 5 9 68 71.7±4.6 1±1 65.9±. 117.9±. 91 c 6.1±4. 4 14.1±. 1 5.7±. 8 87.±4. 95.9±. 79.1±1.9 68.77±. 95.5±. a 9.6±. a 7.66±. 19 1 a 55 a 7 a 7.7 a a 6 95.6±7. 61.±. 11.9± 14.8±1. 6.6±1.6 1.5±..1±.1 5.4±.6.±7.6.4±1.1 7.889 ±.57 a 7±18 181.4±9. 6.4±1. ±14 a 168.41± ± 6 1 a.5 a.891± 6.5±.1 6.5±..59 6 16.5±4.7 15.6±1. 15.5±. 15.4±4. 4 9±11 4.8±. 41.4±.4.±6. 11±6 7.8±.9 5 77.4±. 9±18 1±9 6.1±5. 1.8±9. 11±1 4 a a 8±1.9±6. 5.7±5..±6. 1 67.±4. 15.±. 59.±. 4±96 a 1.6±1 88.5±1. ± 6 a 7 a. a a 7 (Z)-p-coumaroylglucose c.±7. 6.6±7. a 7.5±6.5 7.8±1.4 65.4±4.1 a.7±1..6±1.6 7±1.75±. 44±16 48.±. a 1.9±.8 c 7.±4. 56 5 8 (E)-caffeic acid 48.4±. 8.1±1. 9.4±.4 a 48.7±. 18.±4. 11.4± 4.8±4.1 1±11 a 18.71± 56.6±.4 145.1±7. 169.±1. 5.8±5. 7 a 64 5 a.1 a.7 a 8 8 a 9 c 9 (E)-feruloylglucose 11±1 8.±. c 17.1± 94.8±. 7.±1.4 97.1±5. 1.65± 78.4±1. 8.±1.9 1±9 69±11 9±1 1±.6 a 54 9 a.48 a 1 (E)-p-coumaric acid 7.1±7. 96.11± 144.8±. 75.±5. c 17.1±6. 199.± 55.7±4.8 c 157.±..9±1. 85.1±6.9 c 18.6±6. 76.±6. 85.6±9. 6.8 4 a 5. a 5 1 a 5 4 a 7 c 11 (Z)-p-coumaric acid 11.±4. 7.7±6.9 a 9.6±.8 16.±4.5 c 11.±4. 5.4±1. 18.4±. c 1.8±. 5.1±..1±6.7 c 14±1 a 8±15.4±7. 6 a a 8 c 1 (E)-ferulic acid 4.9±8. 48.4±1.6 6.±. a 9.±1.6 c 59.7±1.6 76.7±4..9±. c 7.7±1.7 8.78±. 7.6±.1 c 75.7±. a 99±14 a 6.4±5. 5 a 45 a 5 S9

1 (E)-caffeoyloxymethyleneglucosyloxyutenenitrile 14 (E)-coumaroyloxymethyleneglucosyloxyutenenitrile 15 (Z)-coumaroyloxymethyleneglucosyloxy utenenitrile 16 (E)-feruloyloxymethyleneglucosyloxyutene nitrile Tot. caffeic acid derivatives* Tot. (E/Z) p-coumaric acid derivatives Tot. (E)-p-coumaric acid derivatives Tot. (Z)-p-coumaric acid derivatives Tot. ferulic acid derivatives Tot. O-acylglucoses of HCAs Tot. acyloxymethyleneglucosyloxyutenenitriles of HCAs Tot. O-acylquinic acids of HCAs Tot. O-glucosides of HCAs Tot. HCAs and their derivatives* 9±6 6±1 69.4±. 11± 6 5. ±7. 6.±5. 8 55.9±9. 1±7 a 89±55 a 5±16 9±66 4 a ±1 7± a 17.6±. 17±11 5±17 a 14±1 9 5±17 164.5±5. 15.7±. 1±11 a 141.6±. ±9 6 a a S1 4±1 9±16 81.±9..±7. 7 4±66 4±8 4± 6±7 944.±1. 488.±4. 8±17 a 99±77 a 5±6 88± 94±19 9 a 5 19.7±. 8±1 a 14±1 ±5 a 6±5 a 11.9±9. 17± a 6 a 6.±4. 16.1± 1±1 a 6 a.47 8±8 a 1.1±9. 4 19±19 a ±8 a 4±6 8±6 418.8±. 8±11 84.1±6. 8±9 4±15 414.±8. 6 8.6±7. 7 51±1 7± 7±1 4±65 19±6 1±46 17±15 a 15±9 a 11±9 16±1 1696.± 1117.1± 14±4 a 18±7 11±81 15± 16± a.87 a.9 a 7 16±5 8±19 15±7 a 1±76 a 77±18 14±9 1449.1± 74.67± 1± 16± 76±4 1±1 14± 6 5 a.5 a.98 1 a a 7±4 6±7 a ±1 ±17 4± a 19± 47.1±1. 76.4±. 18±1 9±5 a 4±9 a 15±18 ±4 6 a a a 6±5 44.8±7..8±. ±1 a 14.8±4. ±4 6.9±4. 8.6±1. 9±15 a 4±57 a 19± 8± ±49 8 8 a 6 a a 1 a 6 61±4 4±4 566.4±6. 51±15 a 79.7±5. 5±1 597.±6. 8±19 4.8±. 67±18 ± 47±18 a 55±64 a a a 6 a 18± 1±58 17± a 15±8 a 1±41 15±1 17±16 a 1±7 14±5 a 18± 11±97 14±5 16± 8 5 a a 9 1±14 79.8±. 16.±. 18.7±7. 74.1±.7 c 1.1± 118.4±1. 78.±1. 114.6±. 14± 77.7±6.4 1±1 1±18 91 c 6 a 7 9. a 5 7 57.4±5. 56.9±. 61.±.4 48.5±8.4 6.4±1.1 a 6.±. 5.5±. 65.±.8 6.88± 67± 71.7±8.4 67.1±8.6 55±1 1 5 a 9 c. 8±8 1±97 8±7 a 4±11 1±57 7± 567.9±4 ±7 5±7 9±45 ±16 7± 5±4 8 1 a. a 1 Tot. HCA derivatives* 6±7 18±78 4±16 a ±1 17±5 ±1 4±11 a 171.4±9 ±41 7±4 16±14 1±9 ± 9 a 9 a. 8 Tot. free HCA 16±1 ±19 a 4±11 a 17±11 96.±7. 45±14 1±15 c 49±18 a 499.5±4. ±19 54± a 6±7 a ±9 1 a 1 a FLAVONOL COMPOUNDS

19 myricetin rutinoside 7.8±. 5 7±11 79.86±. 69 myricetin glucoside 65± 6±98 79.±. 6 1 myricetin arainoside 6.1±1..9±. 6.±. 7 79 myricetin 1.5± 65.5±.5 malonylglucoside and 6. aureusidin glucoside 6.±.1 7±1 8.±. 4 74.±.7 78.±1.4 7.±1.1 1±5 85.±.8 7±19 74±11 54±41 59±84 68±47 6±17 616.4±8. 578.5±4. 7±14 7±66 64±17 6±14.8±1..±1.1 4.56± 4.5±1. a.16±..±. 5.4±.1.±6.4 9.7±.1.6±4..91 a 4 19 67.6±4. 1.1±. 65.7±.9 6.±. 1±17 a 5.8±7.4 56±11 96±14 9 4 a 14 85.17±. 9.±7. a 58.4±1. 1 a 19.±. 8±1 a 9±4 5±7 ±61 quercetin rutinoside 87±14 96.±. 11.8±. 96±1 1.8 1±17 1.5±5. 9.7±4.6 15±1 1±11 1±19 14±9 4 a 9.8±4.6 ±.1 4 quercetin glucoside 6±1 ±4 8.8± ±1 ±5 8±8 5±1 5.4±9..1 a 5 kaempferol rutinoside 4.5±4. 5.±.8 1.5±1.5 4.8±.4 1.5±. 6.8±. 4 6.4±1. 1.19±. 5.7±.6 9.4±11.±9. 7.7±8.1 7.4±. 9 6 quercetin 46.4±4. 1.4±.1 c.1±1.1 5.±. a 1.5±. 1.8±.±4. a 8.±1.1.8±.6.84±. 5.8±1..94±.7 4±1 a malonylglucoside 1. 4 a 7 isorhamnetin rutinoside.±. ±11 1.4±.86 16.5±1. 15.4±1.4 17.1±1. 1 17.8±5.4.9±6.9 1.946±.6 19.±6.6 16.4±.4 1.±4.5.6±5. 8 kaempferol glucoside 59.±. 56.6±8. 68.±1. 5.9±1.6 55.±7.8 66.±4. 59.4±.6 61.7±5.8 5.7±. 65.1±6. 77±1 6±15 57±15 8 9 isorhamnetin glucoside.±7. 4±1.6±. 8 1.4±. 7 15.94±. 97 18.±. 14.±. 8±14 16.7±. 14.8±. 64 5.6±4.1 18.9±6.1 16.6±5. 5 myricetin 1.4± 79±15 1.9± 96.18±. 9.±.5 a 11.7± 9.1±.9 1.7±1. 98.7±.9 7.±. c 14±19 1±18 8±6 9.9.8 46 6.9 a 1 a 4 1 quercetin 1.±4. 5.±5.9 9.5±1. 19.4±.9.6±1.4.8±8. 9 5.7±4.1 4.±1. a 6.7±. 9.6±1. c 4±1 4.5±1.7.1±. kaempferol 1.8±7. 4 1.6±. 1.7±1.4 8.1±.6 11.1±. 5 1.7±. 9.56±.7 1.64±. 11.9±1. 8.6±.4 1.4±.5 16.±6. 1.441 ±. isorhamnetin 8.6±.7 9.95±.4 9.7±.4 1.±7. 9.97±. 8 1.±1. 7 1.5±. 58 1.9±. 5 a 1.5±. 5 a 4.4±1. 11.5±.8 a 1.81±. 97 a 4.94±. 57 Tot. myricetin and myricetin glycosides 97±9 86±1 1.±.5 81±5 8±99 97±6 9±8 91±1 8.6±6. 1± 1±11 91± 89±1 Tot. quercetin and quercetin glycosides 51±4 46±5 557.8±. 44±17 46±8 5±46 54±1 5±17 a 45.±1. 4 58±51 a 55±66 5±91 5±1 Tot. kaempferol and 96.4±7. 9±1 11.1±1. 8.84±. 87.8±5.1 1.9± 95.4±5.5 15.5±5. 91.±6. 1±15 1±5 11±9 95±19 kaempferol glycosides 4 7 4 5. Tot. isorhamnetin and isorhamnetin 51.1±9. 4 54± 54.1±1. 8.9±5. 41.±.4 45.6±1. 5 41.8±8.9 65±1 4.7±1.5 8.4±6.1 5.6±9. 4.±. 6 44±1 S11

glycosides Tot. FlaGly and FlaAgl 16±5 8 15±1 1746.9±.8 Tot.FlaGly 15±5 1±19 159.±6 4.5 Tot. FlaAgl 14±1 1± 154.9±. 7 14±64 14±15 16±1 16±54 16±54 1417.6±9.5 1±77 1±14 15±9 15±45 14±5 157.7±6.6 1±14 14±5.4 17±1 15.4±9. 18±7 17±7 18± 15±17 16±4 14± 16± 5 14± 1 191.4±. 159.9±. 16.±1. 1±7 199±5 118±9 4 a 9 6 c ANTHOCYANINS 158.±7. 168.9± ± 4.4±8. 9±17 1± 11±11 1± 11±1 145.1± ±14 99±19 a 19.±1. 68.±.4 c 74±1 ±1 64±17 58±44 61±6 76.7±1.1 c 99.±.8 48.1±. 9.7±5.1 47±1 15±4 1±1 1±4 1± 169.6±8. ±18 1±4 19.7± 8.4±5.8 91±1 5±16 7± 64±5 66±7 85.1±4. 54±5 a 64.1±.1 47±1 7 delphinidin glucoside 5±1 71±1 79±4 8±1 9.8±.8 ±5 a 19.9±1. 1.±.5 1776.9 6 a 7 8.8 a ±.6 a 8 delphinidin rutinoside 16± 6±9 5 8 a 7 a.94 a 1 a 9 cyanidin glucoside 11± ±18 ±8 9±14 a 59.±9. 5.8±1. 1.±5.6 67±19 4 1 69±64 8.4±.9 1.8±. 44 61±54 16.±.1 a 4 cyanidin rutinoside 99±9 ± 57±16 4744.± 4±8 a a.81 a 97 8 a Tot. delphinidin 19± 44±51 glycosides 65 1 a 1 9 a 1 4 a.1 4 a Tot. cyanidin 11± ±4 64± 11.9±. 9.67±. glycosides 11 a a 5 1 a Tot. anthocyanins ± 11 67±9 71±7 ±7 1 a 19±17 19±6 7 19±6 1 a 54.6±4. c 4±15 1749.7± 9.6 a 19.1±1. 9 1.±6. 14± 1 a Anthocyanin degradation products (hydroxyenzoic acids) 615.±6. 66±5 4 protocatechuic acid ±1 46±51 a 48±14 a 4.6±. 8 a a 5 4-hydroxyenzoic acid **n.d. **n.d. **n.d. **n.d. 1±17 15.15 ±.81 6 phloroglucinaldehyde 8.9±6. 1.6±8.9.±4.1 9.5±.4 6.7±. 1.1±4. 1 6 4 Tot. Ant. degradation 6±1 48±59 5±17 54.1±4. 77± a 8±8 products 5 a CITRIC ACID METHYL ESTERS AND FLAZIN S1 8.1± 1±7 99±6 a 9±5 a 5.6± 19±11 84.9±. 9 a.44 a 5. **n.d. 15.17± 14±1 **n.d. 185.7±. 17.6±6. **n.d..85 5 9±1 6.6±1.8.77±. 4.±4.8 9.6±1.9 8.9±6.9 8.5±7. 7 9 17.8±1. 11.7±1 99±11 a 4± 1±4 a 11±51 a 4.1± 1. a.6 8±19 5±16 17 citric acid methyl esters 97.± ±1 4±7 a 6.4±6. 8± c 7±17 48±14 a 4± 48.1±. 47±78 41±8 6.7 a 1 18 flazin 9±1 48±7 a 49±4 a ±11 94± a 9±7 ±11 16±5 a 1±48 5±19 c 1±5 a 16±9 ±87

a a Means and standard deviations of two replicates, aseline sample had 5 replicates, n.d., not detected. Significant differences etween storage conditions are marked with a c. Statistical significance was ased on One-way ANOVA with Turkey s HSD and LSD test (p <.5). * ) Chlorogenic acid was not taken into account in the sum of total caffeic acid and its derivatives, total caffeic acid derivatives and total quinic acid derivatives. ** ) At aseline and at 1-month storage in refrigerator (+ 4 C) 4-hydroxyenzoic acid did not show its characteristic UV asorption maximum. S1

Figure S8. Increase of peak 17 during pasteurization. Peak 17 contains citric acid methyl esters. Chromatograms were otained via analytical HPLC-DAD. S14

REFERENCE (16) Sandell, M.; Laaksonen, O.; Järvinen, R.; Rostiala, N.; Pohjanheimo, T.; Tiitinen, K.; Kallio, H. Orosensory profiles and chemical composition of lack currant (Ries nigrum) juice and fractions of press residue. J. Agric. Food Chem. 9, 57, 718-78. S15