Bone Erosions and Bone Marrow Edema as Defined by Magnetic Resonance Imaging Reflect True Bone Marrow Inflammation in Rheumatoid Arthritis

Similar documents
Cover Page. The handle holds various files of this Leiden University dissertation.

The EULAR OMERACT rheumatoid arthritis MRI reference image atlas: the wrist joint

Comparative Analysis of Bone Erosions and -Cysts in Rheumatoid Arthritis, Psoriatic Arthritis and Erosive Hand Osteoarthritis

S tructural joint damage, a major outcome in

Cover Page. The handle holds various files of this Leiden University dissertation.

Numerous studies have demonstrated that magnetic resonance imaging (MRI) is more sensitive for detection of

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE

Original Research JOURNAL OF MAGNETIC RESONANCE IMAGING 22: (2005)

Role of Ultrasound and MRI in Detection of Hand and Wrist Joints Erosions in Rheumatoid Arthritis Patients, Comparative Study

The Egyptian Journal of Hospital Medicine (October 2017) Vol. 69 (4), Page

Cover Page. The handle holds various files of this Leiden University dissertation.

Denosumab-Mediated Increase in Hand Bone Mineral Density Associated With Decreased Progression of Bone Erosion in Rheumatoid Arthritis Patients

An Overview of RAMRIQ: An Automated MRI Rheumatoid Arthritis Quantitative Assessment System

triquetrum in rheumatoid arthritis

Urate crystal deposition and bone erosion in gout: inside-out or outside-in? A dual-energy computed tomography study

Radial magnetic resonance imaging and pathological findings of acetabular labrum in dysplastic hips

OSTEOPHYTOSIS OF THE FEMORAL HEAD AND NECK

BONE TISSUE. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology

Key Indexing Terms: PSORIATIC ARTHRITIS MAGNETIC RESONANCE IMAGING OMERACT

Low field dedicated magnetic resonance imaging in untreated rheumatoid arthritis of recent onset

MRI of Cartilage. D. BENDAHAN (PhD)

Imaging and intervention of sacroiliac joint. Dr Ryan Lee Ka Lok Associate Consultant Prince of Wales Hospital

OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Exercise 3: An International Multicenter Reliability Study Using the RA-MRI Score

Types of osteoarthritis

T he treatment strategy in rheumatoid arthritis (RA) has

MR IMAGING OF THE WRIST

The Rheumatoid Hand Deformities & Management. Dr. Anirudh Sharma Resident Department of Orthopedics

Why the dog? Analogy of the anatomy

Ultrasound in Rheumatology

Psoriatic Arthritis and Rheumatoid Arthritis: Findings in Contrast-Enhanced MRI

Articular disease of the hand - the target joint approach

NEUFLEX MCP/PIP FINGER JOINT IMPLANT SYSTEMS SURGICAL TECHNIQUE. This publication is not intended for distribution in the USA.

Immunological Aspect of Ozone in Rheumatic Diseases

Advanced hip osteoarthritis: magnetic resonance imaging aspects and histopathology correlations

Osteochondral regeneration. Getting to the core of the problem.

WORKSHOP. Organizers: Oran D. Kennedy, PhD Tamara Alliston, PhD

A 3-page standard protocol to evaluate rheumatoid arthritis (SPERA): Efficient capture of essential data for clinical trials and observational studies

Assessing synovitis based on dynamic gadolinium-enhanced MRI and EULAR-OMERACT scores of the wrist in patients with rheumatoid arthritis

Early Rheumatoid Arthritis: AReview of MRI and Sonographic Findings

Sacroiliac Joint Imaging

Early diagnosis of Rheumatoid

Comparison of Synovial Tissues From the Knee Joints and the Small Joints of Rheumatoid Arthritis Patients

MR imaging of the knee in marathon runners before and after competition

AOS 3: Rheumatoid Arthritis

Case reports CASE 1. A 67-year-old white man had back pain since the age. our clinic several years later with progressive symptoms.

How normal are the hands of normal controls? A study with dedicated magnetic resonance imaging

Citation The Journal of dermatology, 37(1), available at

Rheumatoid Arthritis 2. Inflammatory Diseases. Definition. Imaging Signs

Publication for the Philips MRI Community

Rheumatoid Arthritis: Ultrasound Versus MRI

Musculoskeletal Imaging at 3T with Simultaneous Use of Multipurpose Loop Coils

INTEROSSEOUS MUSCLE BIOPSY DURING HAND SURGERY FOR RHEUMATOID ARTHRITIS

Patient #1. Rheumatoid Arthritis. Rheumatoid Arthritis. 45 y/o female Morning stiffness in her joints >1 hour

A Comparative Study of Ultrasonographic Findings with Clinical and Radiological Findings of Painful Osteoarthritis of the Knee Joint

Case Report Multiple Giant Cell Tumors of Tendon Sheath Found within a Single Digit of a 9-Year-Old

Immanuel Krankenhaus Berlin, Medical Centre for Rheumatology Berlin - Buch; 2

Aoyagi, Kiyoshi; Eguchi, Katsumi; K

Ascension. Silicone MCP surgical technique. surgical technique Ascension Silicone MCP

Concept of Spondyloarthritis (SpA)

Repair in Rheumatoid Arthritis, Current Status. Report of a Workshop at OMERACT 8

FieldStrength. Achieva 3.0T enables cutting-edge applications, best-in-class MSK images

development of erosive osteoarthritis?

Correspondence should be addressed to Thomas Kurien;

Figuring out the "fronds"-synovial proliferative disorders of the knee.

Autoimmune Diseases. Betsy Kirchner CNP The Cleveland Clinic

MR Tumor Staging for Treatment Decision in Case of Wilms Tumor

1.0 Abstract. Title. Keywords. Rationale and Background

Brain Atrophy. Brain Atrophy

Magnetic resonance imaging of femoral head development in roentgenographically normal patients

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING:

The Evidence for Magnetic Resonance Imaging as an Outcome Measure in Proof-of-Concept Rheumatoid Arthritis Studies

MR Imaging Manifestations of Rheumatoid Arthritis: An Educational Review

MRI IN NONOSSEOUS ABNORMALITIES OF THE FOREFOOT: A PICTORIAL REVIEW

Biology. Dr. Khalida Ibrahim

醫用磁振學 MRM 肌肉骨骼磁振造影簡介 肌肉骨骼磁振造影. 本週課程內容 General Technical Considerations 肌肉骨骼磁振造影簡介 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系

Silicone PIP, MCP & MCP-X (PreFlex)

UPDATE ON MRI OF SPONDYLOARTHRITIS. PART ONE: THE SACRO-ILIAC JOINT

MRI of Diabetic foot - appearances and mimics, a pictorial review

Silicone Finger Implant

Multicentric localized giant cell tumor of the tendon. sheath

Arthrographic study of the rheumatoid knee.

SKELETAL STRUCTURES Objectives for Exam #1: Objective for Portfolio #1: Part I: Skeletal Stations Station A: Bones of the Body

An Explanation for the Apparent Dissociation Between Clinical Remission and Continued Structural Deterioration in Rheumatoid Arthritis

T he ability to predict accurately prognosis at presentation

MRI XR, CT, NM. Principal Modality (2): Case Report # 2. Date accepted: 15 March 2013

OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Summary of OMERACT 6 MR Imaging Module

Radiography is the standard technique used to monitor the longterm progression of cartilaginous degradation and bone erosions in patients with rheumat

What is the additional value of MRI of the foot to the hand in undifferentiated arthritis to predict rheumatoid arthritis development?

Chapter 4 describes the results of systematic literature review of the diagnostic validity

Rheumatoid Arthritis. Manish Relan, MD FACP RhMSUS Arthritis & Rheumatology Care Center. Jacksonville, FL (904)

36 1 The Skeletal System Slide 1 of 40

Active (acute) inflammation on MRI highly suggestive of sacroiliitis associated with SpA

Joint Injuries and Disorders

Chapter 24. Arthroscopic Thumb Carpometacarpal Interposition Arthroplasty. Introduction. Operative Technique. Patient Preparation and Positioning

Bone marrow edema and osteitis in rheumatoid arthritis: the imaging perspective

SHORTLY AFTER ITS FIRST DEpiction

White Rose Research Online URL for this paper: Version: Accepted Version

The relationship between soft tissue swelling, joint space narrowing and erosive damage in hand X-rays of patients with rheumatoid arthritis

Using ENBREL to Treat Rheumatoid and Psoriatic Arthritis

Transcription:

ARTHRITIS & RHEUMATISM Vol. 56, No. 4, April 2007, pp 1118 1124 DOI 10.1002/art.22496 2007, American College of Rheumatology Bone Erosions and Bone Marrow Edema as Defined by Magnetic Resonance Imaging Reflect True Bone Marrow Inflammation in Rheumatoid Arthritis Esther Jimenez-Boj, 1 Iris Nöbauer-Huhmann, 1 Beatrice Hanslik-Schnabel, 1 Ronald Dorotka, 1 Axel-Hugo Wanivenhaus, 1 Franz Kainberger, 1 Siegfried Trattnig, 1 Roland Axmann, 2 Wayne Tsuji, 3 Sonja Hermann, 2 Josef Smolen, 1 and Georg Schett 4 Objective. To investigate the pathologic nature of features termed bone erosion and bone marrow edema (also called osteitis) on magnetic resonance imaging (MRI) scans of joints affected by rheumatoid arthritis (RA). Methods. RA patients scheduled for joint replacement surgery (metacarpophalangeal or proximal interphalangeal joints) underwent MRI on the day before surgery. The presence and localization of bone erosions and bone marrow edema as evidenced by MRI (MRI bone erosions and MRI bone marrow edema) were documented in each joint (n 12 joints). After surgery, sequential sections from throughout the whole joint were analyzed histologically for bone marrow changes, and these results were correlated with the MRI findings. Results. MRI bone erosion was recorded based on bone marrow inflammation adjacent to a site of cortical bone penetration. Inflammation was recorded based on either invading synovial tissue (pannus), formation of lymphocytic aggregates, or increased vascularity. Fatrich bone marrow was replaced by inflammatory tissue, Supported by the Austrian Ministry of Sciences (START prize award to Dr. Schett). 1 Esther Jimenez-Boj, MD, Iris Nöbauer-Huhmann, MD, Beatrice Hanslik-Schnabel, MD, Ronald Dorotka, MD, Axel-Hugo Wanivenhaus, MD, Franz Kainberger, MD, Siegfried Trattnig, MD, Josef Smolen, MD: Medical University of Vienna, Vienna, Austria; 2 Roland Axmann, MD, Sonja Hermann, MD: University of Erlangen- Nuremberg, Erlangen, Germany; 3 Wayne Tsuji, MD: Amgen, Inc., Thousand Oaks, California; 4 Georg Schett, MD: Medical University of Vienna, Vienna, Austria, and University of Erlangen-Nuremberg, Erlangen, Germany. Dr. Tsuji holds stock or stock options in Amgen. Address correspondence and reprint requests to Georg Schett, MD, Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen 91054, Germany. E-mail: georg.schett@med3.imed.uni-erlangen.de. Submitted for publication October 3, 2006; accepted in revised form December 21, 2006. increasing water content, which appears as bright signal enhancement on STIR MRI sequences. MRI bone marrow edema was recorded based on the finding of inflammatory infiltrates, which were less dense than those of MRI bone erosions and localized more centrally in the joint. These lesions were either isolated or found in contact with MRI bone erosions. Conclusion. MRI bone erosions and MRI bone marrow edema are due to the formation of inflammatory infiltrates in the bone marrow of patients with RA. This emphasizes the value of MRI in sensitively detecting inflammatory tissue in the bone marrow and demonstrates that the inflammatory process extends to the bone marrow cavity, which is an additional target structure for antiinflammatory therapy. Chronic synovitis in the context of rheumatoid arthritis (RA) leads to pathologic changes in adjacent structures, such as the articular cartilage, the cortical bone surface, and the underlying bone marrow. Knowledge of this complex destructive process is predominantly driven by findings of radiographic examinations, which have identified local bone erosions as well as joint space narrowing as key monitoring parameters in RA (1,2). From these findings it is apparent that inflamed synovial tissue has the capacity to invade neighboring structures such as cartilage and bone. It has been particularly difficult, however, to unravel the histopathologic nature of these changes, since usual methods to assess and/or to surgically treat synovitis, such as biopsy or synovectomy, target the synovial tissue itself but do not yield insight into changes in cartilage, bone, or bone marrow. It is therefore not surprising that information about the structural and functional correlates of radiographic findings in RA is scarce and is driven by findings 1118

MRI BONE EROSION AND BONE MARROW EDEMA IN RA 1119 in specimens obtained at joint replacement surgery, which usually occurs late in the disease course. Thus, key features of local bone erosions in RA have only recently been described, revealing that these lesions are populated by osteoclasts, which have the capacity to degrade bone (3,4). Improvements in imaging strategies, in particular, technical developments in magnetic resonance imaging (MRI), have provided insight into the complexity of joint destruction in RA (5,6). Thus, MRI scanning has extended our knowledge of RA by allowing direct visualization of synovial inflammation and by depicting the invasion of inflammation into bone and bone marrow very early in the disease. Importantly, MRI scans show signal changes, which extend into the bone marrow cavity and are linked either to cortical bone destruction ( MRI bone erosion ) or to more diffuse changes in the bone marrow space ( MRI bone marrow edema or MRI osteitis ). The latter lesions have also been described in osteoarthritis, ankylosing spondylitis, and systemic lupus erythematosus (7 9). Both lesions exhibit signal characteristics consistent with increased water content (5), distinguishing these lesions from the fatty bone marrow of the extremities. The morphologic nature of bone marrow changes in RA, however, has not been well investigated. The lack of easy access to bone marrow from RA patients is a logistic challenge and has so far prevented clear definition of the structural correlates of MRI changes. However, recent histologic investigations using specimens obtained at joint replacement surgery have shown that fat-rich bone marrow can indeed be focally replaced by inflammatory synovial tissue, which invades the cortical bone, penetrates the cortical barrier, and exposes the bone marrow to inflammatory triggers, leading in particular to B cell rich cellular aggregates (10). In the present study, we aimed to define the nature of bone marrow edema in RA. We studied RA patients scheduled for total joint replacement of the proximal interphalangeal (PIP) and metacarpophalangeal (MCP) joints. These joints were scanned by MRI on the day before surgery and subsequent histologic processing. This allowed investigation of the histopathologic nature of bone marrow changes in RA as depicted by MRI. PATIENTS AND METHODS Patients. Twelve different joints (heads of 2 second metacarpal, 3 third metacarpal, 2 fourth metacarpal, 2 fifth metacarpal, 1 second proximal phalangeal, 1 third proximal phalangeal, and 1 fourth proximal phalangeal bone) from 3 patients (all women, ages 43, 56, and 61 years) with longstanding RA (disease duration 8, 14, and 24 years) were assessed. All patients fulfilled the American College of Rheumatology (formerly, the American Rheumatism Association) criteria for the classification of RA (11). Patients were scheduled for joint replacement surgery because of chronic and persistent pain, joint swelling, and impaired range of motion in the target joint. All patients were being treated with methotrexate (15 mg/ week) and low-dose glucocorticoids (5 mg/day). Surgical procedures were performed according to the methods described by Swanson (12), consisting of resection of the affected metacarpal or proximal phalangeal heads followed by implantation of a silicone spacer (NeuFlex; DePuy Orthopaedics, Warsaw, IN) (13). Written informed consent was obtained for all procedures. Magnetic resonance imaging. MRI was performed with a 1.5T MR scanner (Philips, Nijmegen, The Netherlands), using a flexible surface coil (flex medium) to obtain coronal STIR sequences. The acquisition parameters were as follows: repetition time (TR) 1,200 msec, echo time (TE) 14 msec, 2 averages, field of view (FOV) 200 mm, matrix 1,926 256 pixels, slice thickness 3 mm, interslice gap 0.3 mm, scan time 2 minutes 18 seconds. In addition, coronal T1-weighted sequences were obtained (TR 450 msec, TE 13.8 msec, 2 averages, FOV 200 mm, matrix 1,926 256 pixels, slice thickness 3 mm, interslice gap 0.3 mm, scan time 2 minutes 18 seconds). MRI bone erosions were defined based on hyperintensity on STIR sequences and hypointensity on T1-weighted sequences, in direct contact with cortical bone and with well-defined margins and apparent destruction of the cortical bone barrier. MRI bone marrow edema was identified as hyperintense lesions on STIR sequences, with less clearly defined margins and intact trabecular structures (5). Histologic examination. After resection, the localization (MCP or PIP joint; second, third, fourth, or fifth digit), side (left or right), and dorsal-palmar plane of each joint were documented. To ascertain an orientation of the histologic sections identical to that of the MRI, the 3-dimensional orientation of the joint had to be documented (Figure 1). In accordance with the MR images, joints were cut in the coronal axis. This was ascertained by defining the distal-proximal orientation by the resection rim and the cartilage, respectively, the lateral-medial orientation by the side of the joint (left or right hand), and the dorsal-palmar orientation by marking the dorsal rim with a suture. After explantation, the specimen was immediately placed into 0.9% NaCl, fixed in 4.0% formalin, and decalcified in 14% EDTA (Sigma, St. Louis, MO). Paraffin-embedded joints were then cut into 2 equal-sized pieces along the coronal plane. Both pieces were used to cut sequential sections (2 m) every 50 m, directed to the dorsal rim of the joint in 1 piece and to the palmar rim in the other. For each joint 70 serial sections were analyzed. All sections were stained with hematoxylin and eosin and analyzed quantitatively for the degree of bone marrow alterations, using a histomorphometric technique with an Axioskop 2 microscope (Zeiss, Marburg, Germany) and the OsteoMeasure Analysis System (Osteometrics, Decatur, GA) (14). The area covered by bone (cortical plus trabecular), normal bone marrow, and bone marrow with mild cellular infiltration ( 50% inflammatory infiltrates per tissue

1120 JIMENEZ-BOJ ET AL Figure 1. Ascertainment of coronal-plane magnetic resonance images (MRIs) and histologic sections. Metacarpophalangeal and proximal interphalangeal joints were analyzed in the coronal plane by MRI scanning, as well as by histologic examination of serial sections (black bars). To precisely define the orientation of sections, all 3 dimensions were documented: the distal-proximal orientation was based on the distal localization of the articular cartilage, the dorsal-palmar axis was identified through labeling with a suture placed at the dorsal rim of the joint head (red box) directly after explantation, and the lateral-medial axis was defined based on knowledge of whether the explants came from the left or the right hand. Serial sections were obtained at intervals of 50 m, allowing identification of the exact localization of the respective section within the dorsal-palmar axis. area; intact trabecular structure) or severe infiltration ( 50% inflammatory infiltrates per tissue area; trabeculae destroyed) were recorded. MRI and histomorphometric data were interpreted by 2 independent observers (EJ-B and IN-H), under blinded conditions. RESULTS Colocalization of cellular infiltrates with bone marrow edema seen on MRI. To better understand the processes causing the pathologic changes seen on MRI in patients with RA, we performed a serial histologic analysis of sections from throughout the entire finger joint of patients who had undergone joint replacement surgery. STIR MRI sequences obtained on the day before surgery were compared with histologic sections. In all 12 joints analyzed, bone marrow changes were evident on MRI scans as well as in histologic sections. Bone lesions seen on MRI were designated as erosions when they were localized close to cortical bone and associated with synovitis, whereas the more diffuse lesions in the bone marrow were designated bone marrow edema or osteitis. Both types of lesion appeared bright on the STIR sequences but dark on the T1- weighted images, reflecting increased water content and decreased fat content. Origin of bone erosions seen on MRI. Analysis of corresponding histologic sections showed that bone erosions seen on MRI were due to localized replacement of bone marrow fat by accumulated inflammatory cells adjacent to a broken cortical bone barrier. Cortical bone is actually only a very thin barrier ( 0.25 mm in width) between the synovium and the bone marrow. A perforation of this layer enabled the accumulation of inflammatory tissue, in the form of either synovial inflammatory tissue or lymphocytic B cell rich aggregates within the marrow space, appearing as bone erosions. In fact, only a small portion of the MRI lesion that was designated bone erosion represented true structural damage of bone, since inflammation affects the bone marrow after penetration through the cortical barrier. Figure 2 shows an example of 2 histologic sections of a second metacarpal head from a patient with RA, as well as matched MR images with STIR and T1-weighted sequences. MRI lesions were characterized as a clearly demarcated zone of hyperintense signal within normal hypointense marrow on STIR images, and a hypointense signal on T1-weighted sections. The histologic correlate was identified as local bone marrow inflammation and accumulation of blood vessels at these sites, which were closely linked to a break in the adjacent cortical bone. Origin of bone marrow edema seen on MRI. More diffuse MRI signal alterations in the bone marrow of patients with RA are considered to indicate bone marrow edema or osteitis. As was seen with the abovementioned lesions, they appeared bright on STIR sequences, indicating increased water but lower fat content. Similar to the findings in MRI bone erosions, the histopathologic correlate of MRI bone marrow edema/ osteitis was infiltration of the bone marrow by inflammatory tissue. This lends more credence to the term osteitis rather than bone marrow edema. Thus, all lesions that appeared bright on STIR sequences (and dark on T1-weighted sequences) and were localized within the cortical bone layer were due to inflammatory infiltrates in the bone marrow, regardless of whether these lesions were attached to the endosteum and associated with cortical penetration (MRI bone erosion) or were more diffusely located within the marrow space (MRI bone marrow edema/osteitis). Distribution of bone marrow changes. Normal bone marrow is dominated by adipocytes, with occa-

MRI BONE EROSION AND BONE MARROW EDEMA IN RA 1121 Figure 2. T1-weighted (A) and STIR (B) magnetic resonance images (MRIs) and corresponding histologic sections at low and high magnification (C and D), of a second metacarpal head from a patient with rheumatoid arthritis. MRI bone erosion is defined based on penetration of cortical bone and localized bone marrow inflammation, depicted as a circumscribed area of hypointense signal at the medial circumference on the T1-weighted image in the upper row (arrowhead) within normal hyperintense bone marrow. This corresponds to findings on the STIR image in the upper row, where the erosion is seen as a clearly demarcated zone of hyperintense signal within normal hypointense marrow at this site (arrowhead). A blood vessel and inflammatory tissue next to the junction zone of the joint (arrowheads) are seen in the corresponding histologic images in the upper row. The MR and histologic images in the lower row show a more palmar view of the same joint, with clear signs of invasion of inflammatory tissue into subchondral bone and bone marrow seen on the STIR MRI (arrowhead). The corresponding histologic section shows cortical penetration at this site, with inflammatory tissue invading the bone marrow space and replacing fatty tissue (arrowheads). (Original magnification 10 in C; 50 in D.) sional interspersed stromal cells. Mild infiltration of bone marrow was characterized by a decreased number of adipocytes in favor of hematopoietic cells infiltrating the bone marrow ( 50% infiltrates/tissue area [grade I lesion]). Severe infiltration of bone marrow was recorded based on findings of either synovial pannus like tissue within the cortical lining, lymphocytic aggregates, or blood vessels associated with inflammatory infiltrates almost completely replacing bone marrow fat (grade II lesion). Most areas of the more diffuse lesions reflecting MRI bone marrow edema/osteitis were composed of grade I lesions, with some interspersed grade II lesions. In contrast, peripheral lesions reflecting MRI bone erosions were almost exclusively dense infiltrates corresponding to grade II lesions. In accordance with this, grade II lesions were localized peripherally at the dorsal and palmar rims of the bone marrow cavity, reflecting their close interaction with synovial tissue penetrating through the cortical barrier into the bone marrow. Grade II lesions were absent in the center of the bone marrow. Grade I lesions, in contrast, were localized at the center and palmar areas of the joint, colocalizing with lesions appearing as MRI bone marrow edema/ osteitis. Areas of mild infiltration of the bone marrow (grade I lesions) were generally more prevalent (by 4-fold) than areas with more severe changes (grade II lesions) (Figures 3C and D). Our findings indicated that STIR MRI sequences can depict mild inflammatory infiltrates in the bone marrow, which are commonly termed bone marrow edema/osteitis, as well as dense bone marrow infiltrates associated with penetration of cortical bone, termed bone erosions.

1122 JIMENEZ-BOJ ET AL Figure 3. Different localization patterns of mild and severe bone marrow inflammation. Magnetic resonance imaging (MRI) bone marrow edema is defined based on bone marrow inflammation. A, STIR MRI of the third metacarpal head, showing signal enhancement reflecting bone marrow edema. The image on the right is a close-up of the boxed area in the image on the left. B, Histologic section corresponding to the boxed area in the right image shown in A, demonstrating inflammatory infiltrates in the bone marrow at the site of the MRI lesion. C, Higher-magnification views of the boxed areas in B, showing normal bone marrow containing adipocytes (left portion of C, corresponding to the boxed area in the upper right of B), mild infiltration with hematopoietic cells, reflecting a grade I lesion (middle portion of C, corresponding to the boxed area in the middle of B), and strong infiltration (grade II lesion) with almost complete replacement of fatty tissue by inflammatory tissue (right portion of C, corresponding to the boxed area in the lower left of B). D, Graph depicting the findings in 70 serial coronal sections from the metacarpal head, showing that grade II lesions are localized peripherally at the dorsal and palmar rims where bone erosions are present, whereas grade I lesions are distributed more centrally. (Original magnification 20 in B; 200 in C.) DISCUSSION Magnetic resonance imaging not only allows visualization and quantification of synovitis, but has also enabled more detailed viewing of the pathologic changes of neighboring bone, cartilage, and bone marrow. Localized MRI changes in close association with the cortical bone are termed bone erosions, whereas more diffuse changes in the bone marrow are termed bone marrow edema or osteitis (5,6). These changes originate from focally increased water content in the bone marrow, suggesting that bone marrow fat is replaced by water, or structures containing more water and less fat than normal bone marrow. They appear dark (low signal intensity) on T1-weighted MRIs, whereas they are bright (high signal intensity) on STIR MRI sequences (5). The fact that MR techniques have revealed profound changes in a previously uncharacterized compartment of the rheumatoid joint, beneath the inflamed

MRI BONE EROSION AND BONE MARROW EDEMA IN RA 1123 surface, is of particular interest. MRI is increasingly used in the monitoring of RA patients who are receiving immunomodulatory therapies, including biologic agents, in both clinical trials and daily clinical practice. Among the radiographic changes observed on the MRIs, the anatomic basis of synovitis is very well characterized and the structural nature of local bone erosion has been recently defined (3,10,15,16). In contrast, little information has been available on the nature of bone marrow changes found in RA joints but not in normal joints. This is due to 1) the apparent difficulty in assessing this particular joint region, which is not accessible via synovial biopsy or synovectomy, and 2) the scientific focus on joint pathology at the outside, but not the inside, of the cortical bone barrier (10). The cortical bone barrier, which separates the synovial compartment from the bone marrow compartment, is only a very thin layer. The vast majority of the lesion termed bone erosion on MRI scans and the whole lesion termed bone marrow edema/osteitis is clearly localized within this cortical bone layer. This suggests that MRI can depict pathologic changes in the bone marrow beneath the inflamed joint. The present study reveals that these lesions are due to the replacement of bone marrow fat by an inflammatory infiltrate resembling a sterile osteitis or osteomyelitis, rather than a true edema. Dense bone marrow infiltrates were found at the periphery of the bone marrow, where adjacent cortical bone had been fenestrated by synovial inflammatory tissue (MRI bone erosions). These lesions were composed of dense infiltrates consisting of 1) synovial inflammatory tissue invading the bone marrow, 2) lymphocytic infiltrates emerging at the interface between synovial tissue and bone marrow fat, and 3) blood vessels close to inflammatory infiltrates. Thus, MRI bone erosions not only show penetration of the cortical barrier, but are largely due to inflammatory changes in the neighboring bone marrow. MRI bone marrow edema was also due to inflammatory infiltrates, but infiltration was less severe and localized to more central regions of the bone marrow. This study had limitations due to the small number of patients investigated and the focus on late-stage disease. The number of patients was small due to the low frequency of surgical replacement of finger joints, the improved control of disease by pharmacologic methods, and the complexity of the histologic analysis ( 70 sections per joint for histomorphometric analysis). However, the fact that MRI lesions corresponded to histologic signs of bone marrow inflammation in all 12 joints investigated is a strong indicator that true inflammation is the cause of MRI lesions in the bone marrow. The second limitation of the study, lack of inclusion of patients with early disease, was unavoidable since, for obvious reasons, finger joint replacement surgery is not the treatment of choice in early arthritis. Thus, we cannot exclude the possibility that MRI bone marrow changes in early disease, which can be reversible, have a different structural correlate than the lesions found in advanced disease as investigated in this study. In summary, the present results show that MRI bone erosions as well as MRI bone marrow edema/ osteitis reflect bone marrow inflammation. This indicates that, in addition to the synovial membrane, juxtaarticular parts of the bone marrow are inflamed in RA, suggesting active involvement of this compartment in the inflammatory process. These findings reveal a previously uncharacterized component of the pathophysiology of RA. ACKNOWLEDGMENTS We thank Ivana Mikulic and Birgit Tuerk for excellent technical assistance. AUTHOR CONTRIBUTIONS Dr. Schett had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study design. Jimenez-Boj, Nöbauer-Huhmann, Dorotka, Wanivenhaus, Kainberger, Tsuji, Smolen, Schett. Acquisition of data. Jimenez-Boj, Nöbauer-Huhmann, Hanslik- Schnabel, Dorotka, Wanivenhaus, Trattnig, Axmann, Hermann, Schett. Analysis and interpretation of data. Jimenez-Boj, Nöbauer-Huhmann, Hanslik-Schnabel, Kainberger, Trattnig, Axmann, Hermann, Smolen, Schett. Manuscript preparation. Jimenez-Boj, Dorotka, Tsuji, Smolen, Schett. Statistical analysis. Jimenez-Boj, Schett. Operations. Hanslik-Schnabel, Dorotka, Wanivenhaus. REFERENCES 1. Van der Heijde DM. Radiographic imaging: the gold standard for assessment of disease progression in rheumatoid arthritis. Rheumatology (Oxford) 2000;39:9 16. 2. Sharp JT, Young DY, Bluhm GB, Brook A, Brower AC, Corbett M, et al. How many joints in the hands and wrists should be included in a score of radiologic abnormalities used to assess rheumatoid arthritis? Arthritis Rheum 1985;28:1326 35. 3. Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 1998;152:943 51. 4. Schett G, Hayer S, Zwerina J, Redlich K, Smolen J. Mechanisms of disease: the link between RANKL and arthritic bone disease. Nat Clin Pract Rheum 2005;1:47 54. 5. Ostergaard M, Peterfy C, Conaghan P, McQueen F, Bird P,

1124 JIMENEZ-BOJ ET AL Ejbjerg B, et al. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies: core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol 2003;30:1385 6. 6. McQueen FM, Benton N, Perry D, Crabbe J, Robinson E, Yeoman S, et al. Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet six years later in patients with rheumatoid arthritis. Arthritis Rheum 2003;48: 1814 27. 7. Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 2000;215:835 40. 8. Appel H, Loddenkemper C, Grozdanovic Z, Ebhardt H, Dreimann M, Hempfing A, et al. Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res Ther 2006;8:R143. 9. Boutry N, Hachulla E, Flipo RM, Cortet B, Cotton A. MR imaging findings in hands in early rheumatoid arthritis: comparison with those in systemic lupus erythematosus and primary Sjogren syndrome. Radiology 2006;241:320 1. 10. Jimenez-Boj E, Redlich K, Turk B, Hanslik-Schnabel B, Wanivenhaus A, Chott A, et al. Interaction between synovial inflammatory tissue and bone marrow in rheumatoid arthritis. J Immunol 2005;175:2579 88. 11. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988;31:315 24. 12. Swanson AB. Silicone rubber implants for replacement of arthritis or destroyed joints in the hand. Surg Clin North Am 1968;48: 1113 27. 13. Erdogan A, Weiss AP. NeuFlex silastic implant in metacarpophalangeal arthroplasty. Orthopade 2003;32:789 93. 14. Deleuran BW, Chu CQ, Field M, Brennan FM, Mitchell T, Feldmann M, et al. Localization of tumor necrosis factor receptors in the synovial tissue and cartilage pannus junction in patients with rheumatoid arthritis: implications for local actions of tumor necrosis factor. Arthritis Rheum 1992;35:1170 8. 15. Bromley M, Woolley DE. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum 1984;27:968 75. 16. Goldring SR. Bone and joint destruction in rheumatoid arthritis: what is really happening? J Rheumatol 2002;65:44 8.