Contragestazol (DL111-IT) inhibits proliferation of human androgen-independent prostate cancer cell line PC3 in vitro and in vivo

Similar documents
The effect of insulin on chemotherapeutic drug sensitivity in human esophageal and lung cancer cells

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Key words: apoptosis, beta-amyrin, cell cycle, liver cancer, tritepenoids

8. CHAPTER IV. ANTICANCER ACTIVITY OF BIOSYNTHESIZED SILVER NANOPARTICLES

School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, , People s Republic of China; 2

Bakuchiol inhibits cell proliferation and induces apoptosis and cell cycle arrest in SGC-7901 human gastric cancer cells.

IN VITRO ANTICANCER ACTIVITY OF FLOWER EXTRACTS OF COUROUPITA GUIANENSIS

A549 and A549-fLuc cells were maintained in high glucose Dulbecco modified

Thea viridis extract inhibits growth and invasion of colorectal cancer via MAPK/ERK signaling pathway suppression.

Oncolytic virus strategy

Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy

The Annexin V Apoptosis Assay

Research Article Ginseng Extract Enhances Anti-cancer Effect of Cytarabine on Human Acute Leukemia Cells

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

B16-F10 (Mus musculus skin melanoma), NCI-H460 (human non-small cell lung cancer

Effects of metallothionein-3 and metallothionein-1e gene transfection on proliferation, cell cycle, and apoptosis of esophageal cancer cells

Part-4. Cell cycle regulatory protein 5 (Cdk5) A novel target of ERK in Carb induced cell death

Annals of Oncology Advance Access published January 10, 2005

RESEARCH ARTICLE. Ginsenoside-Rh2 Inhibits Proliferation and Induces Apoptosis of Human Gastric Cancer SGC-7901 Side Population Cells

Effect of starvation-induced autophagy on cell cycle of tumor cells

In Vitro Studies of the Aurora-Kinase Inhibitor MLN8237 in Prostate Cancer Cell Lines

Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Focus Application. Compound-Induced Cytotoxicity

Biodegradable Zwitterionic Nanogels with Long. Circulation for Antitumor Drug Delivery

Li et al. Journal of Experimental & Clinical Cancer Research (2018) 37:108

Impact factor: Reporter:4A1H0019 Chen Zi Hao 4A1H0023 Huang Wan ting 4A1H0039 Sue Yi Zhu 4A1H0070 Lin Guan cheng 4A1H0077 Chen Bo xuan

ONCOLOGY LETTERS 7: , 2014

Effects of COX-2 Inhibitor on the Proliferation of MCF-7 and LTED MCF-7 Cells

Supplementary Information

This article is downloaded from.

Focus Application. Compound-Induced Cytotoxicity

A novel bfgf antagonist peptide inhibits breast cancer cell growth

Supplementary data Supplementary Figure 1 Supplementary Figure 2

Anti-cancer activity of Aya Thambira Chendooram (ATC) in in-vitro cell line against Breast Carcinoma

Effects of Kanglaite Injedction on Reversing Multiple Drug Resistance (MDR) of Tumor Cells

Effect of ST2825 on the proliferation and apoptosis of human hepatocellular carcinoma cells

McAb and rhil-2 activated bone marrow on the killing and purging of leukemia cells

Cinnamomum Essential Oil Prevents DNA Damage- Induced by Doxorubicin on CHO-K1 Cells

In-vitro assay for Cytotoxicity activity in ethonolic extract of fruit rind of Couropita Guianensis aubl

http / / cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology COX-2 NTera-2 NTera-2 RT-PCR FasL caspase-8 caspase-3 PARP.

Data Sheet TIGIT / NFAT Reporter - Jurkat Cell Line Catalog #60538

Effect of Survivin-siRNA on Drug Sensitivity of Osteosarcoma Cell Line MG-63

Inhibition of andrographolide in RAW murine macrophage osteoclastogenesis by downregulating the nuclear factor-kappab signaling pathway

Supporting Information

Supporting Information Nitric oxide releasing photoresponsive nanohybrids as excellent therapeutic agent for cervical cancer cell lines

Supporting Information

ORIGINAL ARTICLE. Hang Huang 1,2, Lin-Jin Li 3, Hai-Bo Zhang 4, An-Yang Wei 4. Summary. Introduction

Regulation of cell cycle. Dr. SARRAY Sameh, Ph.D

C-Phycocyanin (C-PC) is a n«sjfc&c- waefc-jduble phycobiliprotein. pigment isolated from Spirulina platensis. This water- soluble protein pigment is

Department of General Surgery, The Third People s Hospital of Dalian, Dalian Medical University, Dalian, Liaoning, China,

Programa Cooperación Farma-Biotech Jornada II: Oncología

The Expression and Significance of Drainderived Neurotrophic Factor (BDNF) and Its Specific Receptor Trk B in Colon Cancer Cells

Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation

P16 GENE EXPRESSION IN OVARIAN EPITHELIAL CYSTADENOCARCINOMA

SUPPLEMENTAL MATERIAL. Supplementary Methods

Original Article Ginkgo biloba extract induce cell apoptosis and G0/G1 cycle arrest in gastric cancer cells

Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA

Plasma exposure levels from individual mice 4 hours post IP administration at the

Serum Amyloid A3 Gene Expression in Adipocytes is an Indicator. of the Interaction with Macrophages

Methyl eugenol induces potent anticancer effects in

p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO

Research Article. Cell culture study on the cytotoxic effects of Cureit - a novel bio available curcumin-anti cancer effects

Development of a near-infrared fluorescent probe for monitoring hydrazine in serum and living cells

IN VITRO HORMESIS EFFECTS OF SODIUM FLUORIDE ON KIDNEY CELLS OF THREE-DAY-OLD MALE RATS

Effect of EGCG in combination with gemcitabine on β-catenin expression in PANC-1 human pancreatic cancer cells * Research Article

Research on the inhibitory effect of metformin on human oral squamous cell carcinoma SCC-4 and CAL-27 cells and the relevant molecular mechanism.

Effects of methionine-containing dipeptides on α s1 casein expression in bovine mammary epithelial cells *

A class of genes that normally suppress cell proliferation. p53 and Rb..ect. suppressor gene products can release cells. hyperproliferation.

Effects of AFP gene silencing on Survivin mrna expression inhibition in HepG2 cells

Islet viability assay and Glucose Stimulated Insulin Secretion assay RT-PCR and Western Blot

Supplementary Material

General Laboratory methods Plasma analysis: Gene Expression Analysis: Immunoblot analysis: Immunohistochemistry:

Anti-Tumor Efficacy of Gene Vaccine Expressing PSMA

Comparison of Cytotoxic Activity of Anticancer Drugs against Various Human Tumor Cell Lines Using In Vitro Cell-Based Approach

Supplementary Materials and Methods

Tanshinone l exhibits anticancer effects in human

injected subcutaneously into flanks of 6-8 week old athymic male nude mice (LNCaP SQ) and body

Supporting Information

Supplementary Materials

Overview of methodology, tools and reagents for evaluating cell proliferation and invasion using multicellular tumor spheroids.

IMMP8-1. Different Mechanisms of Androg and IPAD on Apoptosis Induction in Cervical Cancer Cells

Canqiu Yu 1, Jinwei Chen 2, Li Huang 3*

β-aescin shows potent antiproliferative activity in osteosarcoma cells by inducing autophagy, ROS generation and mitochondrial

RESEARCH COMMUNICATION. sirna Mediated Silencing of NIN1/RPN12 Binding Protein 1 Homolog Inhibits Proliferation and Growth of Breast Cancer Cells

CHAPTER 6 IN-VITRO PHARMACOLOGICAL STUDIES

The effect of elemene reversing the multidurg resistance of A549/DDP lung cancer cells

SUPPLEMENT. Materials and methods

Figure S1 Time-dependent down-modulation of HER3 by EZN No Treatment. EZN-3920, 2 μm. Time, h

MECHANISM OF TAXOL-INDUCED APOPTOSIS IN HUMAN BREAST CANCER CELLS

CANCER THERAPEUTICS: A NOVEL APPROACH

Supporting Information

TFEB-mediated increase in peripheral lysosomes regulates. Store Operated Calcium Entry

Marine Streptomyces sp. derived antimycin analogues. suppress HeLa cells via depletion HPV E6/E7 mediated by

SUPPLEMENTARY INFORMATION. Involvement of IL-21 in the epidermal hyperplasia of psoriasis

Biochemistry of Carcinogenesis. Lecture # 35 Alexander N. Koval

TITLE: Investigation of the Akt/Pkb Kinase in the Development of Hormone- Independent Prostate Cancer

SUPPLEMENTARY INFORMATION

Effects of Antiproliferative Protein (APP) on Modulation of Cytosolic Protein Phosphorylation of Prostatic Carcinoma Cell Line LNCaP

Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells

Transcription:

Asian J Androl 2005; 7 (4): 39 393 DOI: 10.1111/j.1745-7262.2005.00072.x. Original Article. Contragestazol (DL111-IT) inhibits proliferation of human androgen-independent prostate cancer cell line PC3 in vitro and in vivo Qiao-Jun He, Bo Yang, Yi-Jia Lou, Rui-Ying Fang Department of Pharmacology, College of Pharmaceutical Science, Zhejiang University, Hangzhou 310031, China Abstract Aim: To evaluate the antiproliferative activity of contragestazol (DL111-IT) on the human prostate cancer cell line PC3 in vitro and in vivo and to elucidate its potential molecular mechanisms. Methods: The cell killing ability of DL111-IT was measured by the 3-(4,5-dimethylthia-zol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent assay method and the tumor xenograft model. The cell cycle was analyzed by flow cytometry and protein expression, including retinoblastoma (prb), cyclin-dependent kinase 4 (CDK4) and cyclin D1, was detected by Western blotting. Results: DL111-IT exhibited high efficiency on cell growth inhibition of the human androgen-independent prostate cancer cell line PC3. The drug concentration that yielded 50 % cell inhibition (IC50 value) was 9.9 mg/ml. In the PC3 tumor xenograft study, DL111-IT (1.25 mg/kg 20.0 mg/kg) given once a day for 10 days significantly inhibited tumor growth, with the inhibition rate ranging from 21 % to 50 %. Flow cytometric analysis indicated that DL111-IT could cause G1 arrest in the PC3 cell line, but not apoptosis. DL111-IT enhanced prb expression and down-regulated CDK4 and cyclin D1 expression, suggesting that cell cycle regulation might contribute to the anticancer property of DL111- IT. Conclusion: DL111-IT inhibits the proliferation of human androgen-independent prostate cancer cell line PC3 in vitro and in vivo by a cell cycle regulation pathway. (Asian J Androl 2005 Dec; 7: 39 393) Keywords: DL111-IT; prostate cancer; prb; cyclin-dependent kinase 4; cyclin D1; PC3; cell line 1 Introduction Correspondence to: Prof. Yi-Jia Lou, Department of Pharmacology, College of Pharmaceutical Science, Zhejiang University, 353 YanAn Road, Hangzhou 310031, China. Tel/Fax: +6-571-721-7206 E-mail: Yijialou@zju.edu.cn Received 2005-01-17 Accepted 2005-03-1 The human prostate gland, a male sexual accessory tissue involved in seminal fluid production, has a remarkably high incidence of neoplastic disease. Prostate cancer remains the most common non-cutaneous malignancy in the developed world and is the second-highest cause of cancer death in males [1]. As local prostate cancer rarely causes symptoms, 3 % 51 % of patients present with locally extensive or metastatic disease at the time of diagnosis. Between 10 % and 50 % of clinically localized cases inevitably progress and the patients die from metastatic disease [2, 3]. Therefore, the development of novel anti-prostate cancer agents is an emergent issue. Contragestazol (DL111-IT), 3-(2-ethylphenyl)-5-(3- methoxypheyl)-1h-1,2,4 triazole, was originally reported 2005, Asian Journal of Andrology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. All rights reserved..39.

DL111-IT inhibits prostate cancer cell line PC3 as a non-hormonal antifertility agent [4], and displayed a high activity of arresting early pregnancy in animals. Our previous study also demonstrated that DL111-IT inhibited progesterone synthesis by inactivating 3β-hydroxysteroid dehydrogenase, induced apoptosis in corpus luteum, and inhibited the growth of embryos [5 7]. As embryo and tumor cells share the same strong proliferation behavior, we hypothesized that DL111-IT could exert its cell killing ability on cancer cells. Based on the pilot study of DL111-IT effects on cancer, we confirmed that DL111-IT exhibited antiproliferation activity on various cancer cell lines both in vitro and in vivo. Here, we reported the effects of DL111-IT on human androgenindependent prostate cancer cell line PC3 in vitro and in vivo, and its potential mechanisms of the antiproliferation. 2 Materials and methods 2.1 Compounds DL111-IT was synthesized by the Department of Medicinal Chemistry, College of Pharmaceutical Science at Zhejiang University, Hangzhou, China. Injectable oleum camelliae (IOC) was manufactured by Zhejiang Xianju Pharmaceutical Co., Xianju, China. 2.2 Cell lines PC3 from bone was obtained from the Cell Bank, Chinese Academy of Sciences (Shanghai, China). Cells were maintained at 37 ºC, in a humidified atmosphere of 5 % CO2/95 % air and serially passaged in RPMI-1640 medium (Sigma Chemical Co., St. Louis, USA), supplemented with 10 % fetal bovine serum, penicillin (100 U/mL), and streptomycin (100 µg/ml). 2.3 MTT assay for cell growth and viability Cell growth and viability were tested using the 3-(4, 5-dimethylthia- zol,2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent (Sigma) assay. PC3 cells were seeded (5000 cells/well) in 96-well microtiter plates (100 µl/well). After 24-hour incubation in RPMI-1640 medium, the cells were treated with various concentrations of DL111-IT (2.5 µg/ml 40.0 µg/ml) for 4 h. The medium was removed at the end of incubation and 0.5 mg/ml of MTT was added to the medium. After 4-hour incubation, dimethyl sulfoxide (200 µl) was added to each well, and the optical density was read at 570 nm. Cell sensitivity to a drug was expressed as the drug concentration that yielded 50 % cell inhibition (IC 50). Experimental conditions were tested in sextuplicate (six wells of the 96-well plate per experimental condition). All of the experiments were performed in triplicate. 2.4 Cell cycle analysis PC3 cells (5 10 4 cells/ml, 5 ml) were cultured in complete medium in 25 cm 2 flasks, with or without DL111-IT (5 µg/ml 20 µg/ml) for 4 h. The cells were then harvested, washed in phosphate-buffered saline, centrifuged and re-suspended in 1 ml of 0.1 % sodium citrate containing 0.05 mg propidium iodide and 50 µg RNase for 30 min at room temperature in the dark. DNA content was measured with a Coulter Epicas Elite flow cytometer. 2.5 Western blotting analysis Proteins were extracted in radioimmunoprecipitation assay buffer (50 mmol/l NaCl, 50 nmol/l Tris, 1 % Triton X-100, 1 % sodiumdeoxycholate, and 0.1 % sodium dodecylsulfate) and 50 µg of total protein was loaded per lane. Proteins were fractionated on 12 % Tris-glycine gels, transferred to nitrocellulose membrane (Pierce Biotechnology Inc., USA), and probed with primary antibodies (retinoblastoma [prb], cyclin-dependent kinase 4 [CDK4] and cyclin D1) then horseradish peroxidaselabeled secondary antibodies (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA). Antibody-positive bands were visualized using ECL Western blot detection reagents (Pierce Biotechnology Inc., USA). 2.6 Antitumor activity in prostate cancer xenografted in athymic mice Tumors were established by injection of PC3 cells (5 10 6 cells/animal) s.c. into the armpit of 4- to 5-weekold Balb/c female athymic nude mice (National Rodent Laboratory Animal Resource, Shanghai, China). Treatments were initiated when tumors reached a mean group size of 70 mm 3. Tumor volume (mm 3 ) was calculated as (W 2 L)/2, where W = width and L = length, as measured with calipers. DL111-IT was formulated in IOC and was given i.m. once a day for 10 consecutive days at 1.25 mg/kg, 5.0 mg/kg and 20.0 mg/kg DL111-IT, respectively. The positive control group was given i.m. once a day for 10 consecutive days at 30.0 mg/kg cyclophosphamide (CTX). Animal body weights and tumor volumes were recorded every two days until the mice were killed at day 13. Animal care was in accor-.390.

Asian J Androl 2005; 7 (4): 39 393 dance with institutional guidelines. 2.7 Statistics Significance (unpaired two-sided t-test) was determined by Microsoft Excel 2000 software. 3 Results 3.1 Cytotoxicity assay of DL111-IT on PC3 cell line The dose response of human androgen-independent prostate cancer cell line PC3 to DL111-IT (0 40.0 µg/ml) was shown in Figure 1. The IC 50 value of DL111- IT (95 % confidence interval) was 9.9 µg/ml (6.6 µg/ml 16.3 µg/ml). 3.2 Tumor growth of PC3 xenografts treated with DL111- IT Tumor volumes were recorded every two days until the animals were killed at day 13. At day 4, tumor volumes were significantly inhibited (P < 0.05 0.01) in the 5.00 mg/kg and 20.00 mg/kg DL111-IT groups. DL111- IT (1.25 mg/kg) initiated a reduction in tumor growth rate (P < 0.05) at day 6. From day 1 to day 13, tumor volumes in the control group achieved a 6.7-fold increase, whereas tumor volumes in the DL111-IT treatment groups obtained 3.5-fold (1.25 mg/kg), 2.6-fold (5.00 mg/kg), and 2.0-fold (20.00 mg/kg) elevations, respectively (Figure 2). At day 13, DL111-IT showed a significant effect on tumor weight, but not on animal body weight (Table 1). The inhibition rates of tumor weight caused by DL111- IT (1.25 mg/kg 20.00 mg/kg) ranged from 21 % to 50 % (Table 1). 3.3 Induction of G 0/G 1 arrest by DL111-IT The cell cycle profiles treated with DL111-IT and the proportions in each phase (%) are shown in Figure 3. Figure 1. Dose-dependent activity of DL111-IT on PC3 cell line. Cells were treated with DL111-IT (2.5 µg/ml 40.0 µg/ml) for 4 h, and cytotoxicity was analyzed using the 3-(4,5-dimethylthia- zol, 2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent assay method. Points represent mean ± SD. Figure 2. Tumor growth of PC3 xenografts treated with DL111-IT. DL111-IT was given i.m. once a day for 10 consecutive days at 1.25 mg/kg, 5.00 mg/kg, and 20.00 mg/kg, respectively. The positive control group was given i.m. cyclophosphamide (CTX) at 30.00 mg/kg once a day for 10 consecutive days. Table 1. Effects of DL111-IT on athymic mice body weight, tumor volume and tumor weight at pre-dose and post-dose. b P < 0.05; c P < 0.01; f P < 0.01 compared with control. CTX: cyclophosphamide. Groups No. of animals Body weight (g) Tumor size (mm 3 ) Tumor weight Inhibition rate Start End Start End (g) (%) Control 10 1 ± 2 17 ± 3 70. ± 12.4 473.4 ± 104.3 0.4 ± 0.14 / CTX 30.00 mg/kg 19 ± 1 7.3 ± 10.4 191.4 ± 34.2 d 0.26 ± 0.05 c 45. DL111-IT 1.25 mg/kg 1 ± 2 71.4 ± 14.2 252.3 ± 46.9 c 0.3 ± 0.07 20. DL111-IT 5.00 mg/kg 20 ± 2 70.5 ± 14.2 17.4 ± 46.1 d 0.2 ± 0.0 b 41.7 DL111-IT 20.00 mg/kg 1 ± 2 77.4 ± 14.4 157.3 ± 49.5 d 0.24 ± 0.04 c 50.0.391.

DL111-IT inhibits prostate cancer cell line PC3 Figure 3. DL111-IT induced G1 arrest in PC3 cells. (A): The profiles show the cell cycle after treatment with DL111-IT. (B): The proportions in each phase (%). DL111-IT caused cell cycle arrest in the G 0/G 1 phase. DL111-IT caused G 0/G 1 arrest in a dose-dependent manner. The percentage of cells in the G 2/M and S phases declined as the concentrations of DL111-IT increased. 3.4 Expression of prb, cyclin D1 and CDK4 The basal and DL111-IT-treated expression of prb, cyclin D1 and CDK4 was measured by immunoblotting. As shown in Figure 4, DL111-IT (5.00 mg/ml 20.00 mg/ml) enhanced prb protein levels in the PC3 cell line after 24-hour exposure. DL111-IT (10.00 mg/ml 20.00 mg/ml) obviously reduced cyclin D1 and CDK4 expression. The DL111-IT-mediated regulations of protein expression mentioned above were in dose-dependent patterns. 4 Discussion DL111-IT was originally reported as a non-hormonal contraceptive. One of its key antifertility mechanisms is apoptosis in corpus luteum [7]. As triggering apoptosis is a critical property for a promising anticancer drug, we proposed DL111-IT had potential anticancer activity. In.392. Figure 4. Protein expression of prb, cyclin D1 and CDK4. PC3 cells were treated with DL111-IT (5.00 mg/ml 20.00 mg/ml) for 24 h. Expression of prb, cyclin D1 and CDK4 was detected by Western blot analysis. Overexpression of prb and reduction of cyclin D1 and CDK4 expression, mediated by DL111-IT in a dose response pattern, were observed. this study, we tested the sensitivity of PC3 to DL111-IT. The IC 50 value was 9.6 mg/ml (6.60 mg/ml 16.30 mg/ml) in vitro, and DL111-IT (1.25 mg/kg 20.00 mg/kg)

Asian J Androl 2005; 7 (4): 39 393 -mediated tumor inhibition rates in the PC3 xenograft model was 21 % 50 %, without causing significant loss of animal body weight. Contrary to expectation, DL111- IT killed PC3 cells without causing apoptosis, but by inducing G 0/G 1 arrest. Cyclin D1 mrna levels have been shown to be augmented in six prostate cancer cell lines and in 25 % 30 % of prostate cancer samples examined. Accordingly, it is suggested that modification of cyclin D1 is implicated in the pathogenesis of prostate cancer [, 9]. Cyclin D1 functions by activating CDK4 and CDK6, which in turn phosphorylate the product of the retinoblastoma tumor-suppressor gene (prb), resulting in the loss of prb grip on the E2F transcription factor. The latter is thus released and enabled to activate its own transcription, in parallel with the transactivation of important genes for S-phase entry [10, 11]. Overexpression of cyclin D1 enhances cell growth and is constitutively expressed in PC3 cells [12]. These previous data demonstrated that overexpression of cyclin D1 contributes to androgenindependent growth of prostate cancer cells. Our study has demonstrated that DL111-IT elevates prb expression, downregulates cyclin D1 and CDK4 expression, and increases the percentage of G 1 phase in a dose-dependent manner. Thus, DL111-IT-mediated accumulation of hypophosphorylated prb, through downregulating cyclin D1 and CDK4, induced G 0/G 1 arrest, inhibited PC3 cell proliferation, and ultimately exerted anticancer activity. In conclusion, as a lead compound, DL111-IT exhibited a high level of anti-prostate cancer cell proliferation both in vitro and in vivo, mainly through the cell cycle regulation pathway, thereby implicating triazole series compounds as potentially promising agents in prostate cancer therapeutics. Acknowledgment This study received financial support from the National Natural Science Foundation of China (No. 30000209). References 1 Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics. CA Cancer J Clin 1999; 49: 31. 2 Vercelli M, Quaglia A, Marani E, Parodi S. Prostate cancer incidence and mortality trends among elderly and adult Europeans. Crit Rev Oncol Hematol 2000; 35: 133 44. 3 Gao HW, Li YL, Wu S, Wang YS, Zhang HF, Pan YZ, et al. Mass screening of prostate cancer in a Chinese population: the relationship between pathological features of prostate cancer and serum prostate specific antigen. Asian J Androl 2005 Jun; 7:159-63. 4 Galliani G, Luzzani F, Colombo G, Conz A, Mistrello L, Baroae D, et al. On the mode of action of a new contragestational agent (DL111-IT). Contraception 196; 33: 263 3. 5 Yang B, Fang RY. Synergistic effects on pregnancy-termination activity of DL111-IT in combination with mifepristone. Acta Pharmacol Sin 1996; 17: 361 5. 6 He QJ, Yang B, Wang WF, Wu HH, Fang RY. Synergistic effects of DL111-IT in combination with mifepristone and misoprostol on termination of early pregnancy in preclinical studies. Contraception 2003; 6: 29 95. 7 Yang B, Cao L, Fang RY, Gu ZP. Luteolytic effects of DL111- IT in pregnant rats. Eur J Pharmacol 1999; 30: 145 52. Han EK, Lim JT, Arber N, Rubin MA, Xing WQ, Weinstein IB. Cyclin D1 expression in human prostate carcinoma cell lines and primary tumors. Prostate 199; 35: 95 101. 9 Wang L, Liu D, Ahmed T, Chung FL, Conaway C, Chiao JW. Targeting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Int J Oncol 2004; 24: 17 92. 10 Cao MY, Lee Y, Feng NP, Al-Qawasmeh RA, Viau S, Gu XP, et al. NC31, a novel anticancer agent, arrests the cell cycle in G0-G1 and inhibits lung tumor cell growth in vitro and in vivo. J Pharmacol Exp Ther 2004; 30: 53 46. 11 Maddison LA, Sutherland DW, Darrios RJ, Greenberg NM. Conditional deletion of Rb causes early stage prostate cancer. Cancer Res 2004; 64: 601 25. 12 Chen Y, Martinez LA, LaCava M, Coghlan L, Conti CJ. Increased cell growth and tumorigenicity in human prostate LNCaP cells by overexpression to cyclin D1. Oncogene 199; 16: 1913 20..393.