Polymers: large molecules made up of repeating smaller units (monomer) peptides and proteins (Chapter 25) nucleic acids (Chapter 26)

Similar documents
Carbohydrates hydrates of carbon: general formula C n (H 2 O) n. Polymers: large molecules made up of repeating smaller units (monomer)

Chapter 23: Carbohydrates hydrates of carbon: general formula C n (H 2 O) n. Polymers: large molecules made up of repeating smaller units (monomer)

Carbohydrates. Chapter 12

BIOMOLECULES & SPECTROSCOPY TABLE OF CONTENTS S.NO. TOPIC PAGE NO. i) Carbohydrates B3. ii) Proteins & Nucleic Acids.

24.1 Introduction to Carbohydrates

Fundamentals of Organic Chemistry. CHAPTER 6: Carbohydrates

Chapter 22 Carbohydrates

Long time ago, people who sacrifice their sleep, family, food, laughter, and other joys of life were called SAINTS. But now, they are called STUDENTS!

Chapter 23 Carbohydrates and Nucleic Acids. Carbohydrates

Organic Chemistry III

Carbohydrates. Chapter 18

Questions- Carbohydrates. A. The following structure is D-sorbose. (Questions 1 7) CH 2 OH C = O H C OH HO C H H C OH

Chapter 20 Carbohydrates Chapter 20

Name LastName Student ID

CHAPTER 23. Carbohydrates

Carbohydrates 1. Steven E. Massey, Ph.D. Assistant Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras

Chemistry 106 Lecture Notes Examination 5 Materials. *Hydrated Carbons.

Chem 263 Nov 22, Carbohydrates (also known as sugars or saccharides) See Handout

CARBOHYDRATES (SUGARS)

I (CH 2 O) n or H - C - OH I

BCH 4053 Spring 2001 Chapter 7 Lecture Notes

Dr. Nafith Abu Tarboush. Rana N. Talj

Carbohydrates. Green plants turn H 2 O, CO 2, and sunlight into carbohydrates.

Chapter 24: Carbohydrates

Chapter 27 Carbohydrates

CHAPTER 27 CARBOHYDRATES SOLUTIONS TO REVIEW QUESTIONS

Number of Carbohydrate Units

Chapter-8 Saccharide Chemistry

Classification of Carbohydrates. monosaccharide disaccharide oligosaccharide polysaccharide

STRUCTURE OF MONOSACCHARIDES

Carbohydrate Chemistry

A Getting-It-On Review and Self-Test. . Carbohydrates are

among the most important organic compounds in the living organisms;

Chapter 7 Carbohydrates

For more info visit

Chapter 18. Carbohydrates with an Introduction to Biochemistry. Carbohydrates with an Introduction to Biochemistry page 1

IntroducKon to Carbohydrates

Lecture Notes Chem 51C S. King. Chapter 28 Carbohydrates. Starch, Glycogen and cellulose are all polymers of glucose.

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Ninth Edition. Introduction to General, Organic and Biochemistry Chapter 20 Carbohydrates

Carbohydrates I. Scheme 1. Carbohydrates are classified into two main classes, sugars and polysaccharides.

Chapter 7 Overview. Carbohydrates

Carbohydrates CHAPTER SUMMARY

Welcome to Class 7. Class 7: Outline and Objectives. Introductory Biochemistry

MahaAbuAjamieh. BahaaNajjar. MamoonAhram

IntroducKon to Carbohydrates

B.sc. III Chemistry Paper b. Submited by :- Dr. Sangeeta Mehtani Associate Professor Deptt. Of Chemistry PGGCG, sec11 Chd

You know from previous lectures that carbonyl react with all kinds of nucleophiles. Hydration and hemiacetal formation are typical examples.

Carbohydrates. Organic compounds which comprise of only C, H and O. C x (H 2 O) y

Chapter 16: Carbohydrates

Introduction to Carbohydrates

Carbohydrates 26 SUCROSE

Carbohydrates. Learning Objective

Chemistry 1050 Exam 3 Study Guide

What are Carbohydrates? Aldoses and Ketoses

Dr. Basima Sadiq Ahmed PhD. Clinical biochemist

Anomeric carbon Erythritol is achiral because of a mirror plane in the molecule and therefore, the product is optically inactive.

I. Carbohydrates Overview A. Carbohydrates are a class of biomolecules which have a variety of functions. 1. energy

!"#$%&'()*+(!,-./012-,345(

Chem 263 Apr 11, 2017

Carbohydrate Structure and Nomenclature. Essentials of Glycobiology 1 April 2004

Pharmacognosy- 1 PHG 222. Prof. Dr. Amani S. Awaad

HW #9: 21.36, 21.52, 21.54, 21.56, 21.62, 21.68, 21.70, 21.76, 21.82, 21.88, 21.94, Carbohydrates

Part I => CARBS and LIPIDS. 1.2 Monosaccharides 1.2a Stereochemistry 1.2b Derivatives

UNIT 4. CARBOHYDRATES

Chemistry B11 Chapters 13 Esters, amides and carbohydrates

Review from last lecture

Carbohydrates. Monosaccharides

Carbohydrates. Dr. Mamoun Ahram Summer,

CLASS 12th. Biomolecules

May 21 st, 2008 Biochemistry Recitation

Farah Al-Khaled. Razi Kittaneh. Mohammad Omari

Chemistry 1120 Exam 2 Study Guide

Carbohydrates. TOPICS: Role & Significance of Carbohydrates Monosacharides Oligosacharides Polysacharides Glyconoconjugates

Basic Biochemistry. Classes of Biomolecules

Dr. Nafith Abu Tarboush. Tarek Khrisat

Chemistry 107 Exam 3 Study Guide

CLASS 11th. Biomolecules

Sheet #10 Dr. Mamoun Ahram Sec 1,2,3 15/07/2014. Carbohydrates 2

Chapter 11 Lecture Notes: Carbohydrates

Dr. Mahendra P. Bhatt (BMLT, MS-Ph.D., Post-doctorate) Associate Professor Clinical Biochemistry

Chapter 11. Learning objectives: Structure and function of monosaccharides, polysaccharide, glycoproteins lectins.

Chem 263 Nov 21, 2013

Module-04: Food carbohydrates: Monosaccharides and Oligosaccharides

2/25/2015. Chapter 6. Carbohydrates. Outline. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates

2. Structural e.g. bacterial cell walls, cellulose. 3. Information e.g. signals on proteins and membranes.

Carbohydrates. What are they? What do cells do with carbs? Where do carbs come from? O) n. Formula = (CH 2

I. Multiple Choice Questions (Type-I)

Biochemistry: A Short Course

1. Denaturation changes which of the following protein structure(s)?

Carbohydrates Learning Objectives

Nafith Abu Tarboush DDS, MSc, PhD

PAPER No. 16 Bioorganic and biophysical chemistry MODULE No.3: Sugars and polysaccharides

Chapter 11: Carbohydrates

Chapter 8 - Carbohydrates. 2. Structural e.g. bacterial cell walls, cellulose. 3. Information e.g. signals on proteins and membranes.

OH OH H H. (c) ( )-Mannoheptulose

2.2: Sugars and Polysaccharides François Baneyx Department of Chemical Engineering, University of Washington

INTRODUCTION TO BIOCHEMISTRY/POLYMERS. 3. With respect to amino acids, polypeptides, and proteins, know:

Topic 4 - #2 Carbohydrates Topic 2

Carbohydrate Structure

CHAPTER 7 Carbohydrates and Glycobiology. Key topics about carbohydrates

Transcription:

Chapter 23: Carbohydrates hydrates of carbon: general formula C n (H 2 O) n Plants: photosynthesis 6 CO 2 + 6 H 2 O hν C 6 H 12 O 6 + 6 O 2 Polymers: large molecules made up of repeating smaller units (monomer) Biopolymers: carbohydrates (Chapter 23) peptides and proteins (Chapter 25) nucleic acids (Chapter 26) Monomer units: monosaccharides amino acids nucleotides 263 23.1: Classification of Carbohydrates. I. Number of carbohydrate units monosaccharides: one carbohydrate unit (simple carbohydrates) disaccharides: two carbohydrate units (complex carbohydrates) trisaccharides: three carbohydrate units polysaccharides: many carbohydrate units 264 1

II. Position of carbonyl group at C1, carbonyl is an aldehyde: aldose at any other carbon, carbonyl is a ketone: ketose III. Number of carbons three carbons: triose four carbons: tetrose five carbons: pentose six carbons: hexose seven carbons: heptose etc. IV. Cyclic form (chapter 23.6 and 23.7) 265 23.2: Fischer Projections and the D, L Notation. Representation of a three-dimensional molecule as a flat structure (Ch. 7.7). Tetrahedral carbon represented by two crossed lines: horizontal line is coming out of the plane of the page (toward y ou) substituent (R)-(+)-glyceraldehyde carbon v ertical line is going back behind the plane of the paper (away f rom you) (S)-(-)-glyceraldehyde 266 2

before the R/S convention, stereochemistry was related to (+)-glyceraldehyde D-glyceraldehyde R-(+)-glyceraldhyde (+)-rotation = dextrorotatory = d L-glyceraldehyde S-(-)-glyceraldhyde (-)-rotation = levorotatory = l D-carbohydrates have the -OH group of the highest numbered chiral carbon pointing to the right in the Fischer projection as in R-(+)-glyceraldhyde For carbohydrates, the convention is to arrange the Fischer projection with the carbonyl group at the top for aldoses and closest to the top for ketoses. The carbons are numbered from top to bottom. 267 Carbohydrates are designated as D- or L- according to the stereochemistry of the highest numbered chiral carbon of the Fischer projection. If the hydroxyl group of the highest numbered chiral carbon is pointing to the right, the sugar is designated as D (Dextro: Latin for on the right side). If the hydroxyl group is pointing to the left, the sugar is designated as L (Levo: Latin for on the left side). Most naturally occurring carbohydrates are of the D-configuration. 268 3

23.3: The Aldotetroses. Glyceraldehyde is the simplest carbohydrate (C 3, aldotriose, 2,3-dihydroxypropanal). The next carbohydrate are aldotetroses (C 4, 2,3,4-trihydroxybutanal). 269 23.4: Aldopentoses and Aldohexoses. Aldopentoses: C 5, three chiral carbons, eight stereoisomers Aldohexoses: C 6, four chiral carbons, sixteen stereoisomers 270 4

Manipulation of Fischer Projections 1. Fischer projections can be rotate by 180 (in the plane of the page) only! 180 180 Valid Fischer projection Valid Fischer projection 271 a 90 rotation inverts the stereochemistry and is illegal! 90 This is not the correct convention for Fischer projections Should be projecting toward you Should be projecting away you This is the correct convention for Fischer projections and is the enantiomer 272 5

2. If one group of a Fischer projection is held steady, the other three groups can be rotated clockwise or counterclockwise. 120 120 hold steady hold steady hold steady 120 120 hold steady hold steady hold steady 273 Assigning R and S Configuration to Fischer Projections 1. Assign priorities to the four substitutents according to the Cahn-Ingold-Prelog rules 2. Perform the two allowed manipulations of the Fischer projection to place the lowest priority group at the top or bottom. 3. If the priority of the other groups 1 2 3 is clockwise then assign the carbon as R, if priority of the other groups 1 2 3 is counterclockwise then assign the center as S. 274 6

Fischer projections with more than one chiral center: 275 23.5: A Mnemonic for Carbohydrate Configuration. (please read) 25.6: Cyclic Forms of Carbohydrates: Furanose Forms. (Ch. 17.8) Ch. 23.14 276 7

Cyclization of carbohydrates to the hemiacetal creates a new chiral center. The hemiacetal or hemiketal carbon of the cyclic form of carbohydrates is the anomeric carbon. Carbohydrate isomers that differ only in the stereochemistry of the anomeric carbon are called anomers. Converting Fischer Projections to Haworth formulas 277 23.7: Cyclic Forms of Carbohydrates: Pyranose Forms. ribopyranose glucopyranose Note: the py ranose forms of carbohydrates adopt chair conformations. 278 8

23.8: Mutarotation. The α- and β-anomers are in equilibrium, and interconvert through the open form. The pure anomers can be isolated by crystallization. When the pure anomers are dissolved in water they undergo mutarotation, the process by which they return to an equilibrium mixture of the anomer. β-d-glucopyranose (64%) (β-anomer: C1-OH and CH 2 OH are cis) [α] D +18.7 acid-cataly zed mechanism: p. 1037 α-d-glucopyranose (36%) (α-anomer: C1-OH and CH 2 OH are trans) [α] D +112.2 279 23.9: Carbohydrate Conformation: The Anomeric Effect (please read) 23.10: Ketoses. Ketoses are less common than aldoses Fructofuranose and Fructopyranose furanose pyranose 280 9

25.11: Deoxy Sugars. Carbohydrates that are missing a hydroxy group. 23.12: Amino Sugars. Carbohydrates in which a hydroxyl group is replaced with an -NH 2 or -NHAc group 281 23.13: Branched-Chain Carbohydrates. (Please read) 23.14: Glycosides: The Fischer Glycosylation. Acetals and ketals of the cyclic form of carbohydrates. acid-cataly zed mechanism: p. 1045 Note that only the anomeric hydroxyl group is replaced by ROH 282 10

23.15: Disaccharides. A glycoside in which ROH is another carbohydrate unit (complex carbohydrate). 23.16: Polysaccharides. Cellulose: glucose polymer made up of 1,4 -β-glycoside linkages Amylose: glucose polymer made up of 1,4 -α-glycoside linkages 283 Amylopectin: Branched amylose polysaccaride 23.17: Reactions of Carbohydrates. Glycoside formation (Ch. 23.14) is related to acetal formation. 23.18: Reduction of Monosaccharides. C1 of aldoses are reduced with sodium borohydride to the 1 alcohol (alditols) Reacts like A carbonyl 284 11

Reduction of ketoses 23.19: Oxidation of Monosaccharides. C1 of aldoses can be selectively oxidized to the carboxylic acid (aldonic acids) with Br 2 or Ag(I) (Tollen s test)., H2O Reducing sugars: carbohydrates that can be oxidized to aldonic 285 acids. Oxidation of aldoses to aldaric acids with HNO 3. Uronic Acid: Carbohydrate in which only the terminal -CH 2 OH is oxidized to a carboxylic acid. 286 12

Reducing sugars: carbohydrates that can be oxidized to aldonic acids. cellobiose and maltose are reducing sugar lactose is a reducing sugar sucrose is not a reducing sugar 287 23.20: Periodic Acid Oxidation. The vicinal diols of carbohydrate can be oxidative cleaved with HIO 4. 23.21: Cyanohydrin Formation and Chain Extension. Kiliani-Fischer Synthesis - chain lengthening of monosaccharides 288 13

Symmetry Monarch butterf ly: bilateral sy mmetry= mirror sy mmetry Whenever winds blow butterflies find a new place on the willow tree -Basho (~1644-1694) I anticipate organic chemistry class highlight of my day - Rizzo 289 Determination of carbohydrate stereochemistry HNO 3, heat H H CO 2 H OH OH CO 2 H tartaric acid HNO 3, heat HO H CO 2 H H OH CO 2 H D-(-)-tartaric acid 290 14

291 292 15

enantiome rs 293 23.22: Epimerization, Isomerization and Retro-Aldol Cleavage. from Ch 20.16 f ructose is a reducing sugar (giv es a positiv e Tollen s test) 294 16

Retro-aldol reaction of carbohydrates Glycolysis 295 23.23: Acylation and Alkylation of Hydroxyl Groups Acylation (ester formation): Alkylation (ether formation): 296 17

23.24: Glycosides: Synthesis of Oligosaccharides mechanism: p. 1060-1061 23.25: Glycobiology (please read) Glycoproteins: glycosides of proteins 297 18