Research Article An Association between Single Nucleotide Polymorphisms of Lys751Gln ERCC2 Gene and Ovarian Cancer in Polish Women

Similar documents
Original Article Association between XRCC1 and ERCC2 gene. polymorphisms and development of osteosarcoma.

Association between ERCC1 and ERCC2 gene polymorphisms and susceptibility to pancreatic cancer

Association between ERCC1 and XPF polymorphisms and risk of colorectal cancer

Genetic variability of genes involved in DNA repair influence treatment outcome in osteosarcoma

Influence of the c.1517g>c genetic variant in the XRCC1 gene on pancreatic cancer susceptibility in a Chinese population

Association between ERCC1 and ERCC2 polymorphisms and breast cancer risk in a Chinese population

Association between the -77T>C polymorphism in the DNA repair gene XRCC1 and lung cancer risk

Lack of association between ERCC5 gene polymorphisms and gastric cancer risk in a Chinese population

Investigation on the role of XPG gene polymorphisms in breast cancer risk in a Chinese population

Investigation of the role of XRCC1 genetic polymorphisms in the development of gliomas in a Chinese population

Polymorphisms of XPC Gene And Susceptibility of Esophageal Cancer

Polymorphism of the PAI-1gene (4G/5G) may be linked with Polycystic Ovary Syndrome and associated pregnancy disorders in South Indian Women

Association of polymorphisms of the xeroderma pigmentosum complementation group F gene with increased glioma risk

Variants in DNA Repair Genes and Glioblastoma. Roberta McKean-Cowdin, PhD

Investigation on ERCC5 genetic polymorphisms and the development of gastric cancer in a Chinese population

Polymorphisms of DNA repair-related genes with susceptibility and prognosis of prostate cancer

Myoglobin A79G polymorphism association with exercise-induced skeletal muscle damage

Association of DNA Double strand Break Gene XRCC6 Genotypes and Lung Cancer in Taiwan

XRCC1 Polymorphisms and Pancreatic Cancer: A Meta-Analysis

Frequency of XRCC1 Exon 9 G>A gene polymorphism in Saudi Arabian population: A comparative study with worldwide

Biochemistry 201: DNA repair January 24, 26, 2000 Gilbert Chu

Original Article Association of single nucleotide polymorphisms of DNA repair genes in NER pathway and susceptibility to pancreatic cancer

Investigating the role of polymorphisms in mir-146a, -149, and -196a2 in the development of gastric cancer

RESEARCH ARTICLE. Comprehensive Assessment of Associations between ERCC2 Lys751Gln/Asp312Asn Polymorphisms and Risk of Non- Hodgkin Lymphoma

Association between rs G<C gene polymorphism and susceptibility to pancreatic cancer in a Chinese population

mir-146a and mir-196a2 polymorphisms in ovarian cancer risk

Investigation of ERCC1 and ERCC2 gene polymorphisms and response to chemotherapy and overall survival in osteosarcoma

Int J Clin Exp Med 2015;8(2): /ISSN: /IJCEM

Original Article The programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with non-small cell lung cancer risk in a Chinese Han population

Influence of ERCC2 gene polymorphisms on the treatment outcome of osteosarcoma

XRCC3 T241M polymorphism and melanoma skin cancer risk: A meta-analysis

Bin Liu, Lei Yang, Binfang Huang, Mei Cheng, Hui Wang, Yinyan Li, Dongsheng Huang, Jian Zheng,

Association of XRCC1 gene polymorphisms and pancreatic cancer risk in a Chinese population

Department of Respiratory Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China

Original Article ERCC1 rs and ERCC2 rs13181 gene polymorphisms contributes to the susceptibility to pancreatic cancer in a Chinese population

IL10 rs polymorphism is associated with liver cirrhosis and chronic hepatitis B

Association between MTHFR 677C/T and 1298A/C gene polymorphisms and breast cancer risk

Claire Seedhouse, Rowena Bainton, Michael Lewis, Alexander Harding, Nigel Russell, and Emma Das-Gupta

Title: DNA repair gene polymorphisms and risk of chronic atrophic gastritis: a case-control study

CYP19 gene polymorphisms and the susceptibility to breast cancer in Xinjiang Uigur women

H.F. Liu, J.S. Liu, J.H. Deng and R.R. Wu. Corresponding author: J.S. Liu

Research Article Prevalence and Trends of Adult Obesity in the US,

Beata Smolarz Marianna Makowska Dariusz Samulak Magdalena M. Michalska Hanna Romanowicz

A common genetic variant of 5p15.33 is associated with risk for prostate cancer in the Chinese population

Case Report Five-Year Survival after Surgery for Invasive Micropapillary Carcinoma of the Stomach

American Journal of EPIDEMIOLOGY

Original Article Association of NER pathway gene polymorphisms with susceptibility to laryngeal cancer in a Chinese population

2) Cases and controls were genotyped on different platforms. The comparability of the platforms should be discussed.

XRCC1 codon 399Gln polymorphism is associated with radiotherapy-induced acute dermatitis and mucositis in nasopharyngeal carcinoma patients

Systematic review on the association between ERCC1 rs and ERCC2 rs13181 polymorphisms and glioma risk

Conference Paper Programmed Cell Death Induced by Modulated Electrohyperthermia

Lung cancer remains the deadliest cancer worldwide despite

Role of Paired Box9 (PAX9) (rs ) and Muscle Segment Homeobox1 (MSX1) (581C>T) Gene Polymorphisms in Tooth Agenesis

DNA Repair Gene Polymorphisms in the Nucleotide Excision Repair Pathway and Lung Cancer Risk: A Meta-analysis

TITLE: CYP1B1 Polymorphism as a Risk Factor for Race-Related Prostate Cancer

Conditions. Name : dummy Age/sex : xx Y /x. Lab No : xxxxxxxxx. Rep Centre : xxxxxxxxxxx Ref by : Dr. xxxxxxxxxx

Tumor suppressor genes D R. S H O S S E I N I - A S L

Significant Association of Ku80 Single Nucleotide Polymorphisms with Bladder Cancer Susceptibility in Taiwan

Genetic variability of DNA repair mechanisms in chemotherapy treatment outcome of gastric cancer patients

RESEARCH ARTICLE. Prevalence of CTR1 and ERCC1 Polymorphisms and Response of Biliary Tract Cancer to Gemcitabine-Platinum Chemotherapy

ORIGINAL ARTICLE. DNA Repair Gene ERCC1 and ERCC2/XPD Polymorphisms and Risk of Squamous Cell Carcinoma of the Head and Neck

Association between IL-17A and IL-17F gene polymorphisms and risk of gastric cancer in a Chinese population

Daofang Zhu, Xianming Dou, Liang Tang, Dongdong Tang, Guiyi Liao, Weihua Fang, and Xiansheng Zhang

ABSTRACT INTRODUCTION. Yan-Ling Li 1, Feng Wei 1, Yu-Ping Li 1, Li-Hua Zhang 1 and Yan-Zhi Bai 1. Research Paper

Association between XPD Lys751Gln polymorphism and risk of head and neck cancer: a meta-analysis

Inhibidores de PARP Una realidad? dónde y cuando?

Spring 2015 Module 2 System Engineering and Protein Founda<ons

Award Number: W81XWH TITLE: CYP1B1 Polymorphism as a Risk Factor for Race-Related Prostate Cancer

IL-17 rs genetic variation contributes to the development of gastric cancer in a Chinese population

Materials and methods. Carcinogenesis vol.28 no.6 pp , 2007 doi: /carcin/bgl242 Advance Access publication December 6, 2006

Cytochrome P450 2E1 RsaI/PstI and DraI Polymorphisms Are Risk Factors for Lung Cancer in Mongolian and Han Population in Inner Mongolia

Association between matrix metalloproteinase-9 rs polymorphism and development of coronary artery disease in a Chinese population

Sylwia Mizia, 1 Dorota Dera-Joachimiak, 1 Malgorzata Polak, 1 Katarzyna Koscinska, 1 Mariola Sedzimirska, 1 and Andrzej Lange 1, 2. 1.

The Breast Cancer Family Registry: Description of Resource and some Applications

CYP1A2-163C/A (rs762551) polymorphism and bladder cancer risk: a case-control study

Clinical Study Changing Trends in Use of Laparoscopy: A Clinical Audit

Brian T Burgess, DO, PhD, GYN Oncology Fellow Rachel W. Miller, MD, GYN Oncology

Influence of interleukin-18 gene polymorphisms on acute pancreatitis susceptibility in a Chinese population

R. F. Falkenstern-Ge, 1 S. Bode-Erdmann, 2 G. Ott, 2 M. Wohlleber, 1 and M. Kohlhäufl Introduction. 2. Histology

Additions to the Medical Geologist s Toolbox

Matrix metalloproteinase variants associated with risk and clinical outcome of esophageal cancer

Association between interleukin gene polymorphisms and risk of recurrent oral ulceration

Case Report A Rare Cutaneous Adnexal Tumor: Malignant Proliferating Trichilemmal Tumor

Chapter 4 INSIG2 Polymorphism and BMI in Indian Population

Minoru Isomura, 1,2 Tao Wang, 1 Masayuki Yamasaki, 2,3 Md. Zahid Hasan, 1 Kuninori Shiwaku, 2,3 and Toru Nabika 1,2. 1.

Research Article The Impact of the Menstrual Cycle on Perioperative Bleeding in Vitreoretinal Surgery

Association Between the Ku C/G Promoter Polymorphism and Cancer Risk: a Meta-analysis

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage?

DNA/RNA: polynucleotide chains

Genetic polymorphisms and head and neck cancer risk (Review)

Research Article Self-Monitoring of Blood Pressure in Hypertension: AUKPrimaryCareSurvey

Role of TGFB1 polymorphism in the development of metastatic brain tumors in non-small cell lung cancer patients

Diversity and Frequencies of HLA Class I and Class II Genes of an East African Population

Supplementary Figure 1 Forest plots of genetic variants in GDM with all included studies. (A) IGF2BP2

Relation between the angiotensinogen (AGT) M235T gene polymorphism and blood pressure in a large, homogeneous study population

Course Title Form Hours subject

RESEARCH COMMUNICATION

XRCC3 THR241MET POLYMORPHISM IS NOT ASSOCIATED WITH LUNG CANCER RISK IN A ROMANIAN POPULATION

Conference Paper Oncothermia Basic Research at In Vivo Level: The First Results in Japan

Correspondence should be addressed to Alicia McMaster;

Transcription:

Advances in Medicine Volume 2015, Article ID 109593, 6 pages http://dx.doi.org/10.1155/2015/109593 Research Article An Association between Single Nucleotide Polymorphisms of Lys751Gln ERCC2 Gene and Ovarian Cancer in Polish Women Magdalena M. Michalska, 1 Dariusz Samulak, 1,2 Hanna Romanowicz, 3 Maciej Sobkowski, 4 and Beata Smolarz 3 1 DepartmentofObstetricsandGynaecology,RegionalHospitalinKalisz,Poznańska 79, 62-800 Kalisz, Poland 2 Cathedral of Mother s and Child s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznań, Poland 3 Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother s Memorial Hospital, Rzgowska 281/289, 93-338 Łódź, Poland 4 Department of Obstetrics and Gynaecology, University Hospital, Polna 33, 60-535 Poznań, Poland Correspondence should be addressed to Beata Smolarz; smolbea@wp.pl Received 10 February 2015; Revised 18 June 2015; Accepted 29 July 2015 Academic Editor: Stephen H. Safe Copyright 2015 Magdalena M. Michalska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aim. The aim of this study was to evaluate the role of the Lys751Gln(rs13181)ERCC2 gene polymorphism in clinical parameters and the risk for development of ovarian cancer. Material and Methods. The study consisted of 430 patients with ovarian cancer (mean age: 53.2 ± 10.11) and 430 healthy subjects (mean age: 50.31 ± 18.21). Analysis of the gene polymorphisms was performed using the PCR-based restriction fragment length polymorphism (PCR-RFLP). The odds ratios (ORs) and 95% confidence intervals (CIs)for each genotype and allele were calculated.results. The results obtained indicate that the genotype Gln/Gln is associated with an increased risk of ovarian cancer (OR 5.01; 95% CI 3.37 7.43; p < 0.0001).AssociationofLys751Glnpolymorphismwith histological grading showed increased ERCC2 Gln/Gln (OR = 6.96; 95% CI 3.41 14.21; p < 0.0001) genotype in grading 1 as well as Gln allele overrepresentation (OR = 4.98; 95% CI 3.37 7.40; p < 0.0001) in G1 ovarian patients. Finally, with clinical FIGO staging under evaluation, an increase in ERCC2 Gln/Gln homozygote frequencies in staging I and Gln allele frequencies in SI were observed. Conclusion. On the basis of theseresults,we conclude that ERCC2 gene polymorphism Lys751Gln may be associated with an increased risk of ovarian carcinoma. 1. Introduction The system of DNA repair takes part in maintaining the genomic integrity which undergoes changes under exo- and endogenous factors. There were more than 130 DNA repair genes identified, in which a series of single nucleotide polymorphisms (SNPs) were discovered [1]. In order to define the role, which may be played by these variants in modulating the risk of cancer formation, it is necessary to define their functional significance. The variability, perceived in DNA repair genes, may be of clinical importance for evaluation of the risk of occurrence of a given type of cancer and its prophylactics and therapy. The repair process usually encompasses two stages: the excision of lesion and the repair synthesis. This is how the repair system acts via base-excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Totally converse is the repair system activity by direct lesion reversal, in which there is merely a single-stage process with maintained integrity of the DNA phosphodiester chain and the system of recombination repair (HR). A NER system removes short DNA oligonucleotides containing a damaged base [2]. NER recognizes bulky lesions caused by carcinogenic compounds and covalent linkages between adjacent pyrimidines resulting from UV exposure. NER is a multistep process involving multiple proteins such as ERCC1, ERCC2, ERCC3, ERCC4, PCNA, RPA, XPA, and p53. Because NER is involved in removing a substantial amount of DNA damage, which can contribute to the genome instability, it is reasonable to check whether variability in the genes

2 Advances in Medicine coding for NER products may be associated with ovarian cancer. Xeroderma pigmentosum complementation group D (XPD), also called excision repair cross-complimentary group 2 (ERCC2), is one of the most important low-penetrant genes which is located at chromosome 19q13.3 and involved in the nucleotide excision repair (NER) pathway and removes certain DNA cross-links, ultraviolet photolesions, and bulky chemical adducts. ERCC2 gene is highly polymorphic. An A Cpolymorphism in ERCC2 codon 751 of exon 23 leads to Lys Gln amino acid substitution (Lys751Gln, rs13181) that is associated with a DNA damage repair phenotype. Many epidemiological studies with the aim of identifying theroleofercc2 polymorphisms in the risk of various cancers have been done and different association between Lys751Gln polymorphism and the risk of lung cancer [3 5], glioma [6], colorectal cancer [7], breast cancer [8, 9], and esophageal squamous cell carcinoma [10] has been reported. Inthereportedstudy,theinterestoftheauthorswas focusedontothestudiesofthelys751glnpolymorphismof ERCC2 gene in a group of patients with ovarian cancer and in a group of healthy people. The Lys751Gln polymorphism of ERCC2 genewasselectedonthebasisofliteraturedata, which are highly suggestive of its correlations with ovarian cancer [11 13]. In patients with ovarian cancer, evaluated by Wu et al. and Kang et al., the Lys751Gln polymorphism was associated with cancer development [11, 12]. In ovarian cancer subjects, described by Vella et al., polymorphisms in the ERCC2 gene (Lys751Gln and Asp312Asn) positively affect the response to therapy with carboplatin/paclitaxel [13]. Therefore, more research is needed to better understand the possible biological mechanisms of development and the role of Lys751Gln polymorphism in this rare, neoplastic transformation process. The aim of this study was to analyze the frequency of alleles and genotypes of Lys751Gln (rs13181) in ERCC2 with anattempttodeterminetheimpactthispolymorphismexerts on ovarian cancer. 2. Materials and Methods 2.1. Patients. Formalin-fixed paraffin-embedded (FFPE) tumour tissue specimens were obtained from women (n = 430)withovariancarcinoma,treatedattheDepartment of Surgical Gynaecology and Gynaecologic Oncology, Institute of Polish Mothers Memorial Hospital, between 2000 and2012.weenrolledonlywomenbornandlivingincentral Poland (Łódź region). The distribution of sociodemographic features of the study participants is shown in Table 1. Study subjects were interviewed using questionnaire that included sociodemographics, medical history, health related information, alcohol consumption, smoking status, menstrual and reproductive histories, and hormone replacement therapy (HRT) use. All of the studied individuals were Caucasians and constituted a homogenous population from the same ethnic and geographical origins. Body mass index (BMI) was calculated based on current weight in kilograms divided by height in meters squared. Drinking habits were categorized in terms Table 1: Characteristics of the study population (n = 430). Characteristics Number of cases (%) Histology of tumour Serous 148 (34.4) Mucinous 20 (4.7) Endometrioid 120 (27.9) Clear cell 23 (5.3) Undifferentiated 103 (24.0) Other 16 (3.7) Number of pregnancies 1 196(46) 2-3 152 (35) >4 82(19) Body mass index <19 0 0 34 (8.0) 18 25 25 37 260 (60.4) 26 29 40 50 98 (22.8) >30 38 (8.8) Smoking status Never 99 (23) Ever 172 (40) Moderate 60 (14) Heavy 99 (23) Alcohol intake Never/rare 132 (31) Light 108 (25) Moderate 60 (14) Heavy 64 (15) Ex-drinker 66 (15) Family history of ovarian cancer Yes 150 (35) No 280 (65) Ascites Present 153 (36) Absent 277 (64) Use of hormone replacement therapy (HRT) Yes 293 (8) No 137 (32) Size of tumor >5cm 270(63) <5cm 160(37) Tumour wall infiltration/injury Present 129 (30) Absent 301 (70) Menarche <12 years old 290 (67) >12 years old 140 (33) Grading G1 200 (47) G2 220 (51) G3 10 (2)

Advances in Medicine 3 Table 1: Continued. Characteristics Number of cases (%) Staging I 190(44) II 230 (54) III 10 (2) of never/rare drinkers, ex-drinkers, or current drinkers who consumed 1 8.9 U/week (light drinkers), 9 17.9 U/week (moderate drinkers), or 18 U/week (heavy drinkers), where 1 U = 22 g ethanol. Participants were divided into four groups: nonsmokers (never), subjects smoking 10 cigarettes per day for 10 years (ever), those smoking 20 cigarettes per day for 20 years (moderate), and those smoking 20 cigarettes per day for 30 years (heavy). A positive family history of ovarian cancer was defined as reporting of ovarian cancer in one or more first-degree relatives. None of the recruited patients received preoperative chemo- or radiotherapy. The age of the patients ranged from 38 to 81 years (the mean age 53.2 ± 10.11). All the diagnosed tumours were graded by criteria of the International Federation of Gynaecology and Obstetrics (FIGO). DNA from normal ovarian tissue (n = 430) served as control (age range 39 83, mean age 50.31 ± 18.21). They were nonrelated women that have never been diagnosed with ovarian tumors, other tumors, or chronic disease and were randomlyselectedandfrequencymatchedtothecasesonage. The Local Ethical Committee approved the study and each patient gave a written consent for participation in the study. 2.2. DNA Isolation. Genomic DNA was prepared using QIAamp DNA FFPE Tissue Kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer instruction. 2.3. Genotype Determination. The PCR-restriction fragment length polymorphism (PCR-RFLP) method was used to detect the genotypes of the Lys751Gln polymorphisms as described previously [14]. Primers (forward: 5 -CTGCTCAGCCTGGAGCAGC- 3,reverse:5 - TAGAATCAGAGAGAGGAGACGCTG-3 ) were applied to assess SNP Lys751Gln (rs13181). The 25 μl PCR mixture contained about 100 ng of DNA, 12.5 pmol of each primer, 0.2 mmol/l of dntps, 2 mmol/l of MgCl 2,and 1 U of Taq DNA polymerase (TaKaRa, Japan). PCR products were electrophoresed in a 2% agarose gel and visualised by ethidium bromide staining. All PCR was carried out in a DNA Thermal Cycler PTC-100 TM (MJ Research, Inc., Waltham, MA, USA). After an initial denaturation at 95 Cfor 5 min, 35 cycles of amplification with denaturation at 95 C for 30 s, annealing at 62 C for 30 s, and extension at 72 C for 30 s were performed, followed by a final extension step of 7 min at 72 C. The PCR product was digested overnight with 1 U of PstI (Fermentas, Vilnius, Lithuania) at 37 C. The cleavage with PstIproducedfragmentsof161, 161/120/41, and 120/41 bp corresponding to the Lys/Lys, Lys/Gln, and Gln/Gln genotypes of the ERCC2 gene, respectively. 2.4. Statistical Analysis. The observed numbers of each ERCC2 genotype were compared with those expected for a population in Hardy-Weinberg equilibrium by using the Chisquare (χ 2 ) test. Genotype and allele frequencies in cases and controls were compared by χ 2 test. Logistic regression analysis was used to compute odds ratio (OR) and associated 95% confidence interval (95% CI) relating Lys751Gln SNP as well as combinations of Lys751Gln SNP and other analysed factors presented in Table 1 to the risk of ovarian cancer. p values <0.05 were considered significant. All the statistical analyses were performed, using the STATISTICA 6.0 software (StatSoft, Tulsa, Oklahoma, USA). 3. Results The distribution of genotypes and the frequency of alleles of ERCC2 gene in patients and controls are presented in Table 2. An association (OR 5.01; 95% CI 3.37 7.43; p < 0.0001) was found between the Gln/Gln genotype of the Lys751Gln polymorphism of ERCC2 gene and ovarian cancer occurrence. Variant 751Gln allele of ERCC2 increased cancer risk (OR 3.61; 95% CI 2.92 4.45; p < 0.0001). The observed genotype frequencies of ERCC2 Lys751Gln SNP in the controls were in agreement with Hardy-Weinberg equilibrium (p > 0.05), but the observed genotype frequencies of ERCC2 Lys751Gln SNP in patients were not in agreement with Hardy-Weinberg equilibrium (p < 0.05). It is caused by the very low abundance of the Lys/Lys genotype in the examined Polish population. Histological grading was related to ERCC2 polymorphism. Histological grades were evaluated in all the cases (n = 430). Grades 2 and 3 were accounted for together for statisticalanalysis(seetable3).anincreasewasobserved,regarding Gln/Gln homozygote frequency (OR 6.96; 95% CI 3.41 14.21; p < 0.0001) in grade 1 patients, according to FIGO criteria. Moreover, ovarian cancer patients in G1 had an overrepresentation of Gln allele (OR 4.98; 95% CI 3.37 7.40; p < 0.0001). Clinical FIGO staging was also related to ERCC2 Lys751Gln polymorphism (Table 4). An increase was observed, regarding Gln/Gln homozygotes frequency (OR 9.96; 95% CI 4.40 22.60; p < 0.0001) instageipatients, according to FIGO classification. A tendency for an increased risk of ovarian cancer progression was observed with the occurrence of Gln allele (OR 6.59; 95% CI 4.27 10.19; p < 0.0001)ofERCC2 polymorphism. Our data did not demonstrate any statistically significant correlation between ERCC2 polymorphisms and the risk factors for ovarian cancer, such as BMI (body mass index), smoking status, alcohol consumption, family history of cancer, pregnancy, ascites, HRT, size of tumour, menarche, and the women with ovarian cancer data not shown. 4. Discussion An attempt was undertaken in the presented study to determine whether single nucleotide polymorphism in the DNA repair pathway (ERCC2-Lys751Gln) was associated with the risk of ovarian cancer in Polish women. DNA is regularly damaged by endogenous and exogenous mutagens.

4 Advances in Medicine Table 2: Genotypes and alleles distributions of SNP Lys751Gln in ERCC2 in ovarian cancer cases versus lean controls. ERCC2-Lys751Gln Patients (n = 430) Controls(n = 430) Number (%) Number (%) OR (95% CI) a p b Lys/Lys 62 14.4 96 22.3 1.00 Ref. Lys/Gln 64 14.9 240 55.8 0.41 (0.27 0.62) <0.0001 Gln/Gln 304 70.7 94 21.8 5.01 (3.37 7.43) <0.0001 Lys 188 21.8 432 50.2 1.00 Ref. Gln 672 78.2 428 49.8 3.61 (2.92 4.45) <0.0001 a Crude odds ratio (OR); 95% CI: confidence interval at 95%; b Chi square. Table 3: Dependence of ERCC2 gene polymorphism genotypes and allele frequency on tumour grade in patients with ovarian cancer a. Grade b Ovarian cancer patients G1 (n = 200) G2+G3(n = 230) OR(95%CI) c p d ERCC2-Lys751Gln Number (%) Number (%) Lys/Lys 10 (5%) 52 (22.6%) 1.00 Ref. Lys/Gln 16 (8%) 48 (20.9%) 1.73 (0.71 4.18) 0.312 Gln/Gln 174 (87%) 130 (56.5%) 6.96 (3.41 14.21) <0.0001 Lys 36 (9%) 152 (33%) 1.00 Ref. Gln 364 (91%) 308 (67%) 4.98 (3.37 7.40) <0.0001 a n = 430; b according to FIGO criteria; c crude odds ratio (OR); 95% CI: confidence interval at 95%; d Chi square. Table 4: Dependence of genotypes and frequencies of ERCC2 gene polymorphism alleles on tumor stage in ovarian cancer patients a. Stage SI (n = 190) SII + SIII (n = 240) OR (95% CI) b ERCC2-Lys751Gln Number (%) Number (%) OR (95% CI) Lys/Lys 7 (3.7%) 55 (23%) 1.00 Ref. Lys/Gln 13 (6.8%) 51 (21.2%) 2.00 (0.74 5.42) 0.254 Gln/Gln 170 (89.5%) 134 (55.8%) 9.96 (4.40 22.60) <0.0001 Lys 27 (7.1%) 161 (33.5%) 1.00 Ref. Gln 353 (92.9%) 319 (66.5%) 6.59 (4.27 10.19) <0.0001 a n = 430; b crude odds ratio (OR); 95% CI: confidence interval at 95%; c Chi square. p c The genes involved in DNA repair and in the maintenance of genome integrity play a crucial role in providing protection against mutations that may lead to cancer [15 19]. The DNArepairpathwaysplayavitalroleinprotectingagainst gene mutation caused by carcinogenesis, among which the nucleotide excision repair (NER) pathway is one of the important DNA repair systems. The nucleotide excision repair system removes short DNA, damaged base-containing oligonucleotides [2]. NER is a multistep process, involving numerous proteins, and is classified into global genome repair (GG-NER), which occurs in the genome, and transcription-coupled repair (TCR), which removes lesions in the transcribed strand of active genes. The ERCC1 gene is important in repairing DNA damage and genomic instability and is involved in the nucleotide excision repair pathway. Single nucleotide polymorphism Lys751Gln (rs13181) is one of the most widely studied genetic markers in ERCC2 and its role in various cancers development is evident [20]. Exchange of 751 Lys for Gln in the ERCC2 genecanleadtoa conformational change in the encoded protein at the domain of the interaction between ERCC2 and its helicase activator, p44, inside the TFIIH Complex [21]. The Gln/Gln genotype hasbeenassociatedwithanincreasedriskoflungcarcinoma [5] and correlated with higher risk of breast, bladder, and skin cancer [8, 9, 22, 23]. Single nucleotide polymorphisms, as important genetic biomarkers, have been reported to be related to altered gene expression and protein activity. ERCC2 Lys751Gln SNP is associated with suboptimal DNA repair capacity [24, 25]. From the current point of view, it seems to be more important to analyze the studies focusing on the effect of ERCC2 Lys751Gln polymorphisms in ovarian cancer. Some studies have suggested that low ERCC2 expression is associated with increased chemotherapeutic sensitivity and thus considered a predictive marker for patients with ovarian cancer receiving combination gemcitabine and cisplatin chemotherapy [13]. The researchers found also the association between ERCC2 Lys751Gln polymorphism and lower DNA repair capacity. The time to ovarian cancer progression was significantly higher in gemcitabine/cisplatin-treated patients with the Lys751Gln genotype than in those with the Lys751Lys genotype [13]. Vella et al. reported that the combination of ERCC1 and ERCC2 genotype is associated with risk of ovarian carcinoma [13]. The Chinese researchers found also the association between ovarian cancer and

Advances in Medicine 5 ERCC2 Lys751Gln polymorphism [11]. Yet, to our knowledge, there are no reports that assess the effect of this genetic alteration on the risk of ovarian cancer in Polish population. Our results indicate that the Lys751Gln polymorphism of ERCC2 gene deserves particular attention. In the studies on a series of 430 DNA samples from patients with ovarian cancer, originating from an ethnically homogenous population, we found a relationship of the studied polymorphisms with endometrial cancer occurrence. We demonstrated that 751Gln allele was associated with risk for the neoplasm. The ERCC2-Gln/Gln genotype increased 5 times the risk of ovarian cancer formation. Additionally, some important connections with grading (G1) and staging (SI) of ovarian carcinoma were presented. Our study was performed on an ethnically homogenous population, which may improve our knowledge, regarding to what extent the genotype-phenotype relationship variations are population related. Our results are in line with the data from other reports, introducing an important role of ERCC2 Lys751Gln polymorphism in ovarian carcinoma occurrence. Similar to our observation, the recent reports demonstrate that ERCC2 Lys751Gln genotype seems to be associated with an elevated ovarian cancer risk [11]. In conclusion, our results indicate that the ERCC2 Lys751Gln SNP may be involved in the susceptibility of ovarian cancer in the Polish population. Further research on SNP in ovarian carcinoma is warranted to obtain more conclusive outcomes. Conflict of Interests The authors declare no conflict of interests. References [1] R.D.Wood,M.Mitchell,J.Sgouros,andT.Lindahl, Human DNA repair genes, Science, vol. 291, no. 5507, pp. 1284 1289, 2001. [2] P. C. Hanawalt, Subpathways of nucleotide excision repair and their regulation, Oncogene,vol.21,no.58,pp.8949 8956,2002. [3]X.Tan,L.Xian,X.Chenetal., AssociationbetweenERCC2 Lys751Gln polymorphism and lung cancer risk: a meta-analysis involving 23,370 subjects, Twin Research and Human Genetics, vol. 17, no. 2, pp. 99 107, 2014. [4]J.Yin,U.Vogel,Y.Ma,L.Guo,H.Wang,andR.Qi, Polymorphism of the DNA repair gene ERCC2 Lys751Gln and risk of lung cancer in a northeastern Chinese population, Cancer Genetics and Cytogenetics,vol.169,no.1,pp.27 32,2006. [5] K. De Ruyck, M. Szaumkessel, I. De Rudder et al., Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk, Mutation Research Genetic Toxicology and Environmental Mutagenesis,vol.631,no. 2,pp.101 110,2007. [6]L.Hui,S.Yue,G.Gao,H.Chang,andX.Li, Associationof single-nucleotide polymorphisms in ERCC1 and ERCC2 with glioma risk, Tumour Biology,vol.35,no.8,pp.7451 7457,2014. [7] M.Ni,W.-Z.Zhang,J.-R.Qiuetal., AssociationofERCC1and ERCC2 polymorphisms with colorectal cancer risk in a Chinese population, Scientific Reports,vol.4,article4112,2014. [8] B. Smolarz, M. Makowska, D. Samulak et al., Single nucleotide polymorphisms (SNPs) of ERCC2, hogg1, and XRCC1 DNA repair genes and the risk of triple-negative breast cancer in Polish women, Tumor Biology, vol. 35, no. 4, pp. 3495 3502, 2014. [9] A. M. Brewster, T. J. Jorgensen, I. Ruczinski et al., Polymorphisms of the DNA repair genes XPD (Lys751Gln) and XRCC1 (Arg399Gln and Arg194Trp): relationship to breast cancer risk and familial predisposition to breast cancer, Breast Cancer Research and Treatment,vol.95,no.1,pp.73 80,2006. [10] Y. Zhang, L. Wang, P. Wang et al., Association of single nucleotide polymorphisms in ERCC2 gene and their haplotypes with esophageal squamous cell carcinoma, Tumor Biology, vol. 35,no.5,pp.4225 4231,2014. [11] K.-G. Wu, X.-F. He, Y.-H. Li, W.-B. Xie, and X. Huang, Association between the XPD/ERCC2 Lys751Gln polymorphism and risk of cancer: evidence from 224 case-control studies, Tumor Biology, vol. 35, no. 11, pp. 11243 11259, 2014. [12]S.Kang,H.-Y.Sun,R.-M.Zhou,N.Wang,P.Hu,andY.Li, DNA repair gene associated with clinical outcome of epithelial ovariancancertreatedwithplatinum-basedchemotherapy, Asian Pacific Cancer Prevention,vol.14,no.2,pp.941 946, 2013. [13] N. Vella, M. Aiello, A. E. Russo et al., Genetic profiling and ovarian cancer therapy, Molecular Medicine Reports,vol.4,no. 5,pp.771 777,2011. [14] A. Sobczuk, T. Poplawski, and J. Blasiak, Polymorphisms of DNA repair genes in endometrial cancer, Pathology and Oncology Research,vol.18,no.4,pp.1015 1020,2012. [15] S. P. Jackson, Sensing and repairing DNA double-strand breaks, Carcinogenesis,vol.23,no.5,pp. 687 696, 2002. [16] T. Helleday, Pathways for mitotic homologous recombination in mammalian cells, Mutation Research: Fundamental and Molecular Mechanisms of Mutagenesis,vol.532,no.1-2,pp.103 115, 2003. [17] K. K. Khanna and S. P. Jackson, DNA double-strand breaks: signaling, repair and the cancer connection, Nature Genetics, vol. 27, no. 3, pp. 247 254, 2001. [18] D. M. Wilson III and V. A. Bohr, The mechanics of base excision repair, and its relationship to aging and disease, DNA Repair,vol.6,no.4,pp.544 559,2007. [19] J. Jiricny and M. Nyström-Lahti, Mismatch repair defects in cancer, Current Opinion in Genetics and Development, vol. 10, no. 2, pp. 157 161, 2000. [20] K.-G. Wu, X.-F. He, Y.-H. Li, W.-B. Xie, and X. Huang, Association between the XPD/ERCC2 Lys751Gln polymorphism and risk of cancer: evidence from 224 case control studies, Tumor Biology, vol. 35, no. 11, pp. 11243 11259, 2014. [21] L. Fan, J. O. Fuss, Q. J. Cheng et al., XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations, Cell,vol.133,no.5,pp.789 800,2008. [22] M.C.Stern,K.Conway,Y.Li,K.Mistry,andJ.A.Taylor, DNA repair gene polymorphisms and probability of p53 mutation in bladder cancer, Molecular Carcinogenesis,vol.45,no.9,pp.715 719, 2006. [23] K. M. Appelbaum, M. R. Karagas, D. J. Hunter et al., Polymorphisms in nucleotide excision repair genes, arsenic exposure, and non-melanoma skin cancer in New Hampshire, Environmental Health Perspectives,vol.115,no.8,pp.1231 1236,2007.

6 Advances in Medicine [24] R. M. Lunn, K. J. Helzlsouer, R. Parshad et al., XPD polymorphisms: effects on DNA repair proficiency, Carcinogenesis,vol. 21, no. 4, pp. 551 555, 2000. [25] E. J. Duell, J. K. Wiencke, T.-J. Cheng et al., Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNAdamageinhumanbloodmononuclearcells, Carcinogenesis,vol.21,no.5,pp.965 971,2000.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity