PATIENTS WITH UNDERLYING

Similar documents
Case Report Long-Term Outcomes of Balloon Dilation for Acquired Subglottic Stenosis in Children

Endoscopic Posterior Cricoid Split with Costal Cartilage Graft: A Fifteen Year Experience

Pediatric partial cricotracheal resection: A new technique for the posterior cricoid anastomosis

The surgical management of subglottic stenosis (SGS)

Outcomes of Endoscopic Balloon Dilatation for acquired laryngotracheal stenosis in Pediatric Patients: UKMMC Early Experience.

Research Article Balloon Dilatation of Pediatric Subglottic Laryngeal Stenosis during the Artificial Apneic Pause: Experience in 5 Children

Neonatal Airway Disorders, Treatments, and Outcomes. Steven Goudy, MD Pediatric Otolaryngology Emory University Medical Center

Unilateral Supraglottoplasty for Severe Laryngomalacia in Children. Nasser A Fageeh, MD, FRCSC, FACS*

Multilevel airway obstruction including rare tongue base mass presenting as severe croup in an infant. Tara Brennan, MD 2,3

SURGERY FOR PEDIATRIC SUBGLOTTIC STENOSIS: DISEASE-SPECIFIC OUTCOMES

ORIGINAL ARTICLE. Synchronous Airway Lesions and Outcomes in Infants With Severe Laryngomalacia Requiring Supraglottoplasty

Pediatric Endoscopic Airway Management With Posterior Cricoid Rib Grafting

Subglottic stenosis in infants and children

Preliminary Results of Intraoperative Mitomycin-C in the Treatment and Prevention of Glottic and Subglottic Stenosis

4/24/2017. Tracheal Stenosis. Tracheal Stenosis. Tracheal Stenosis. Tracheal Stenosis. Tracheal Stenosis Endoscopic & Surgical Management

ORIGINAL ARTICLE. Open Excision of Subglottic Hemangiomas to Avoid Tracheostomy

James H. Liu, M.D., FAAP Curriculum Vitae

Tracheostomy in pediatric. Tran Quoc Huy, MD ENT department

Subspecialty Rotation: Anesthesia

Basic Science Review Wound Healing

Complex Airway problems - Paediatric Perspective

Tracheal stenosis in infants and children is typically characterized

ORIGINAL ARTICLE. Office-Based Lower Airway Endoscopy in Pediatric Patients. airway symptoms is an integral part of the otolaryngology practice.

External trauma (MVA, surf board, assault, etc.) Internal trauma (Endotracheal intubation, tracheostomy) Other

4/11/2013. & approaches to management. Disclosure. No financial support

I enjoy open airway surgery In 2010: LTRs 28 CTRs 6 Clefts 4 Slides 20

ORIGINAL ARTICLE. Factors Associated With Staged Reconstruction and Successful Stoma Closure in Tracheal Resection and End-to-End Anastomosis

Subglottic stenosis, with involvement of the lower larynx

Idiopathic laryngotracheal stenosis

Airway Management in a Patient with Klippel-Feil Syndrome Using Extracorporeal Membrane Oxygenator

Ovid: Van Den Abbeele: Laryngoscope, Volume 109(8).August

90 th Annual Meeting The American Association for Thoracic Surgery May 1, 2010 Toronto, Ontario, Canada. Slide Tracheoplasty

Audra Fuller MD, Mark Sigler MD, Shrinivas Kambali MD, Raed Alalawi MD

Tracheal Trauma: Management and Treatment. Kosmas Iliadis, MD, PhD, FECTS

Postoperative Assessment of Laryngopharyngeal Dysfunction in Neonates After Norwood Operation

Laryngeal split and rib cartilage interpositional grafting: Treatment option for glottic/subglottic stenosis in adults

Airway Management in the ICU

Surgical treatment for patients with tracheal and subgllotic stenosis

TRACHEOSTOMY. Tracheostomy means creation an artificial opening in the trachea with tracheostomy tube insertion

All bedside percutaneously placed tracheostomies

NIV as an alternative to tracheotomy

Subglottic Stenosis: Current Concepts and Recent Advances

Sohit Paul Kanotra M.D. Director, Pediatric Aerodigestive Center

PANELISTS. Controversial Issues In Common Interventions In ORL 4/10/2014

CASE PRIMERS. Pediatric Anesthesia Fellowship Program. Laryngotracheal Reconstruction (LTR) Tufts Medical Center

ORIGINAL ARTICLE. Correlation of Findings at Direct Laryngoscopy and Bronchoscopy With Gastroesophageal Reflux Disease in Children

Use of the Silicone T-tube to Treat Tracheal Stenosis or Tracheal Injury

Hoarseness. Evidence-based Key points for Approach

Aetiology. Poor tube management. Small cricoid (acquired on congenital) Reflux Poor general status. Size of tube (leak) Duration of intubation

ORIGINAL ARTICLE. Posterior Cricoidotomy Lumen Augmentation for Treatment of Subglottic Stenosis in Children

Laryngotracheal stenosis in children

In 1980, Bex and associates 1 first introduced the initial

Difficult Airway. Department of Anesthesiology University of Colorado Health Sciences Center (prepared by Brenda A. Bucklin, M.D.)

Slide thyrocricotracheoplasty for the treatment of high-grade subglottic stenosis in children

LEVITAN S FIBREOPTIC STYLET: BEYOND BARRIERS. - Our Perspective.

A Randomized Study of Suprastomal Stents in Laryngotracheoplasty Surgery for Grade III Subglottic Stenosis in Children

OTOLARYNGOLOGIC CLINICS ISSUE: PAEDIATRIC LARYNGOTRACHEAL RECONSTRUCTION. Edited by Dr Peter Koltai

University of Florida Department of Surgery. CardioThoracic Surgery VA Learning Objectives

REVERSE LMA INSERTION IN A NEONATE WITH KLIPPEL-FEIL SYNDROME

Risk Factors of Early Complications of Tracheostomy at Kenyatta National Hospital.

ORIGINAL ARTICLE. Unilateral vs Bilateral Supraglottoplasty for Severe Laryngomalacia in Children

Subglottic stenosis in paediatric patients

Eosinophilic Esophagitis: Extraesophageal Manifestations

Contents. Part A Clinical Evaluation of Laryngeal Disorders. 3 Videostroboscopy and Dynamic Voice Evaluation with Flexible Laryngoscopy...

Major Infection After Pediatric Cardiac Surgery: External Validation of Risk Estimation Model

Laryngo-tracheal stenosis is a congenital or. A Multi-Modality Surgical Management in Laryngeal Stenosis. Case Series

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

Options for Airway Management During Complex Resection and Reconstruction

Randall J. Amis *, Deepak Gupta *, Jayme R. Dowdall **, Abstract. Introduction

Emergency Department/Trauma Adult Airway Management Protocol

College Hospital, London, over the last five years.

Partial cricotracheal resection for pediatric subglottic stenosis: Long-term outcome in 57 patients

THE SECOND ASIA PACIFIC PAEDIATRIC AIRWAY COURSE AND WORKSHOP 18 to 19 MARCH 2015 TAIPEI, TAIWAN

ORIGINAL ARTICLE. Chondrolaryngoplasty Under General Anesthesia Using a Flexible Fiberoptic Laryngoscope and Laryngeal Mask Airway

Translaryngeal Tracheostomy - TLT Fantoni Method

Microdebrider. Microdebrider. Mohamed Hesham,MD. The Management of Different Laryngeal Lesions. Dr. Ahmad Yassin 4/11/2013

Adult Subglottic Stenosis: Management With Laser Incisions and Mitomycin-C

Management of Pediatric Tracheostomy

Department of Pediatric Otolarygnology. ENT Specialty Programs

in the Treatment of Re g actory Airway Strictures

Day 2 Pulmonary Breakout Interventional Pulmonology

A case of a neonate with a congenital laryngeal web: management of a difficult airway and intra-operative complications

Surgical Treatment of Benign Subglottic Stenosis. JLKasperbauer MD Mayo Clinic Rochester, MN USA

CARDIOVASCULAR SURGERY

A neonate is any patient less than 45 weeks post conception regardless of chronological age.

DIFFICULT AIRWAY MANAGMENT. Dr.N.SANTHOSH KUMAR MD ANESTHESIA (2 nd Yr)

Unusual presentation of complete tracheal rings in a 15 year old trauma patient

Index. Note: Page numbers of article titles are in boldface type

Outcomes of reduced postoperative stay following outpatient pediatric tonsillectomy

Intravascular Ultrasound (IVUS) and Optical Coherence Tomography (OCT)

Airway Emergencies: Pearls for the Anesthesiologist

Laryngotracheal/Pulmonary Problems and the Mechanically Ventilated Patient: Pediatric Lung Transplantation

Chapter 34: Stenosis of the larynx. J. N. G. Evans

Surgical Management of Subglottic Stenosis

CONGENITAL TRACHEAL STENOSIS PRESENTING IN THE NEONATAL PERIOD

L.J. Hoeve and R.H.M. van Poppelen * (Received 12 July 1989) (Accepted 10 August 1989)

Management Of Acquired Laryngotracheal Stenosis Our Experience.

Wojciech K. Mydlarz, M.D. Pharyngocutaneous Fistulas after Salvage Laryngectomy: Need for Vascularized Tissue

A Tracheostomy Complication Resulting from Acquired Tracheomalacia: A Case report

Transcription:

ORIGINAL ARTICLE The Effects of Balloon Dilation Laryngoplasty in Children With Congenital Heart Disease William O. Collins, MD; Nader Kalantar, MD; Hillary B. Rohrs, ARNP; Rodrigo C. Silva, MD Objective: To determine the utility of performing balloon dilation laryngoplasty of subglottic stenosis (SGS) in children with underlying congenital heart disease (CHD). Design: Retrospective study. Setting: Tertiary care academic health center. Patients: Children with an underlying diagnosis of CHD who subsequently underwent balloon dilation laryngoplasty for SGS from January 1, 2006, through December 31, 2011. Main Outcome Measures: Clinical improvement and avoidance of tracheotomy. Results: We identified 16 children who had a diagnosis of CHD and underwent direct laryngoscopy and bronchoscopy. Five patients (3 girls and 2 boys) underwent a total of 11 balloon dilations for SGS. Their ages at initial dilation ranged from 1 to 4 months. All 5 patients had grade III SGS. Only 1 patient required a salvage tracheotomy for a thick glottic web and associated SGS after her first balloon dilation failed to improve airway patency. The remaining 4 patients have had long-term success in avoiding tracheotomy with symptomatic improvement. Conclusions: Balloon dilation represents a valuable treatment option in patients with CHD and SGS in whom a tracheostomy should be avoided. Arch Otolaryngol Head Neck Surg. 2012;138(12):1136-1140 Author Affiliations: Department of Otolaryngology, University of Florida College of Medicine, Gainesville (Drs Collins and Silva and Ms Rohrs); and Department of Head and Neck Surgery, Southern California Permanente Group, Ontario (Dr Kalantar). PATIENTS WITH UNDERLYING congenital heart disease (CHD) present a multitude of challenges for pediatric subspecialists. With better surgical techniques and improved technological advances, many patients with conditions once considered lethal now survive to greater ages. As a result of the medical complexity encountered in these patients, pediatric otolaryngologists are often consulted owing to a high risk for associated airway abnormalities. Prior studies of children who have undergone cardiac surgery have shown higher incidences of subglottic stenosis (SGS) and vocal fold immobility. 1,2 The anatomic and physiologic nature of these children places them at a greater risk for these complications and, in particular, SGS. Authors have theorized that the hypoperfusion previously documented in the gastrointestinal tract in patients undergoing surgery for CHD could occur in the upper airway mucosa also. This hypoperfusion, in turn, could lead to a reduced vascular supply in the injured laryngeal mucosa, resulting in tissue hypoxia, ulceration, and eventually development of stenosis. 3 Others have speculated that the need for higher airway pressures after cardiac surgery mandates the use of slightly larger endotracheal tubes. 4 These patients medical complexity can often lead to longer periods of intubation and subsequently a higher risk of developing SGS, particularly if larger endotracheal tubes are required. In addition, many of the conditions associated with CHD, such as Down syndrome and velocardiofacial syndrome, also have a known association with laryngeal stenosis. 5,6 One of the historical surgical options for treatment of upper airway obstruction associated with SGS is tracheotomy. Because of increased concerns of postoperative infections in patients who underwent a recent sternotomy, many cardiothoracic surgeons are averse to performing tracheotomies or other open airway procedures in these patients early in their postoperative course. The recent resurgence in airway dilation and, in particular, the increased adoption of endoscopic balloon dilation laryngoplasty (BDL) has provided an improved and less invasive option Author Affil Department University o Medicine, G (Drs Collins Ms Rohrs); a Head and Ne Southern Ca Group, Onta 1136

Figure 1. Photograph of Myer-Cotton grade III subglottic stenosis in patient 2. for treating SGS, allowing patients to avoid open airway surgery and its potentially increased risk for sternal wound infection or mediastinitis. We sought to review our initial experiences with BDL in patients with SGS and CHD, in anticipation of avoiding tracheotomies in these patients in the future. Figure 2. A typical balloon catheter and insufflator used during balloon dilation laryngoplasty. METHODS We obtained approval from our institutional review board to perform a retrospective review of patients with SGS and CHD. Patients were initially identified by a review of intradepartmental records. Patients considered candidates for inclusion then underwent more extensive review of their electronic medical records. Those patients 18 years or younger who had diagnoses of SGS and some type of CHD and who had undergone endoscopic BDL during the study period (January 1, 2006, through December 31, 2011) were included for further review. We reviewed their records in detail, and data collection was performed to capture other pertinent data. General demographic information, CHD diagnoses, airway diagnoses (including SGS Myer-Cotton grade 7 ), the date and type of cardiac surgery, the date and outcome of BDL, and the length of otolaryngology follow-up were recorded. SURGICAL TECHNIQUE Patients underwent induction of general anesthesia via mask ventilation in conjunction with pediatric anesthesiologists. Intravenous access was obtained, then direct laryngoscopy was performed using an age- and size-appropriate laryngoscope. Topical lidocaine hydrochloride was applied to the bilateral true vocal folds at a concentration of less than 3 mg/kg to decrease intraoperative coughing and laryngospasm. After several minutes of repeated oxygenation via mask ventilation, direct laryngoscopy was again performed. Endoscopic examination of the airway was achieved with the use of rod telescopes (Hopkins; Karl Storz). Once the SGS was visualized, the laryngoscope was placed into operative suspension to allow bimanual instrumentation of the airway (Figure 1). Balloon dilation catheters from several different manufacturers have been used at our institution, with the most common being an Admiral XTreme balloon catheter (Invatec Innovative Technologies AG) (Figure 2). While in operative suspension, the distal tip of the balloon catheter was guided into a position traversing the stenotic region of the subglottis using telescopic visual assistance. While the SGS was under Figure 3. Intraoperative photograph of the balloon dilator in place during laryngoplasty in patient 2. direct visualization, an experienced surgical assistant (most often an otolaryngology resident physician) performed balloon inflation to a maximum pressure of approximately 4 atm using a manufacturer-approved insufflation device (Encore 26 inflation device; Boston Scientific). Balloon inflation was performed and maintained until the patient demonstrated oxygen desaturation levels of less than 90%, at which time the balloon was deflated and the patient was intubated with a smaller-than-predicted endotracheal tube. In many cases, this sequence was repeated 2 or 3 times while the patient was under the same anesthesia (Figure 3 and Figure 4). Postoperative management included aggressive medical management of gastroesophageal reflux disease. Postoperative surveillance was performed via bedside transnasal fiberoptic nasopharyngoscopy, and repeated direct laryngoscopy and rigid bronchoscopy were performed for any deterioration of respiratory status or for findings on fiberoptic endoscopy that suggested recurrent stenosis of the subglottic airway. STATISTICAL ANALYSIS Data were collected and stored in a commercially available spreadsheet program (Excel; Microsoft Corp) on a passwordencrypted computer. Basic descriptive statistics were obtained 1137

We initially identified 16 patients with CHD who had undergone direct laryngoscopy and bronchoscopy. Further review of their medical records identified 5 patients (3 girls and 2 boys) who underwent a total of 11 BDL procedures for SGS. Their mean age at the time of the initial dilation was 2 (range, 1-4) months. Initial SGS severity was assigned Myer-Cotton grade III in all 5 patients. Associated CHD diagnoses are included in the Table. Patient 3 required a salvage tracheotomy for a thick congenital glottic web with a significant SGS component that did not respond to initial dilation attempts. This patient also had DiGeorge syndrome. Her glottic web and associated SGS were discovered incidentally during intubation for her cardiac procedure. Therefore, the risk of immediately performing a tracheotomy or laryngotracheal reconstruction (LTR) at the time of initial diagnosis was deemed unacceptable by the cardiothoracic surgery service. Every attempt was made to improve the airway using BDL until her sternotomy had healed and her risk of mediastinitis was judged to be sufficiently low. She subsequently underwent an LTR with anterior and posterior costal cartilage grafts at the age of 19 months. She underwent a total of 5 BDL procedures and eventually developed recurrent stenosis, skewing our analysis of the overall number of procedures. Although her airway patency is improved, it is not adequate enough to allow decannulation, and she is currently awaiting revision LTR. The remaining 4 patients underwent a total of 6 procedures, and none required tracheotomy. One patient underwent a single-stage LTR with an anterior thyroid alar cartilage graft at the age of 3 months, with the hope of improving his airway patency in anticipation of eventual surgical repair of his ventricular septal defect. A tracheotomy was never required, and BDL successfully provided controlled postoperative dilation of his subglottis, as described by Bent et al. 8 The remaining 3 patients required only 1 BDL procedure each and have remained symptom free, with follow-up times with the Pediatric Otolaryngology service ranging from 2 to 3 months. All patients have continued to be observed by the Pediatric Cardiology clinic at our institution to the present and have not required additional consultation with the Pediatric Otolaryngology service. COMMENT Figure 4. Photograph of the subglottis in patient 2 immediately after balloon dilation. by one of us (W.O.C.). Owing to the limited sample size, tests of statistical significance were not possible. RESULTS Subglottic stenosis is estimated to have an incidence of only 0.24% in the neonatal population. 9 Although this number may seem low, the condition is common enough that pediatric otolaryngologists must be familiar with its definitive management. Children with underlying CHD are hypothesized to be at an even higher risk for SGS for a number of different reasons. Small series of children with CHD have estimated the coexisting incidence of SGS in this patient population to range from 1.08% 10 to 2.3%, 3 with 1 group estimating slightly higher incidences in children younger than 1 year. 10 Several reasons for the increased risk for SGS development in patients with CHD have been reported. In utero, the embryologic development of the respiratory and cardiac systems is temporally and spatially related, thus resulting in a higher incidence of coexisting anatomic abnormalities if normal development is perturbed in any way. 1 The associated medical complexities in these patients can in many cases require periods of endotracheal intubation, a well-described risk factor for the development of acquired SGS. Because of the need for higher airway pressures after cardiac surgery, larger and/or cuffed endotracheal tubes are sometimes required. 4 Finally, poor tissue oxygenation and hypoperfusion likely affect laryngeal mucosal wound healing, 3 with a correlate drawn to gastrointestinal tract hypoperfusion after cardiopulmonary bypass. Treatment options for SGS include open and endoscopic approaches, with the traditional management paradigm favoring open approaches in more severe cases. Tracheotomy has been recognized for a long time as a criterion standard for managing the airway obstruction caused by SGS, although it does not treat the underlying cause. However, a tracheotomy in any patient and certainly in a small child carries a high risk for morbidity in addition to the risk for mortality. Cardiothoracic surgeons traditionally avoid the early placement of tracheotomies in their patients who have undergone recent median sternotomy because of a higher risk for sternal wound infection and mediastinitis. Balloon dilation laryngoplasty appears to offer a less invasive option to treat severe SGS definitively in children and thereby avoid complications associated with open surgical procedures such as tracheotomy-associated sternal wound infections. Laryngeal dilation with fixed dilators or bougies was performed for many years before falling out of favor owing to an increased risk of causing more tissue damage and for lack of success in treating the underlying stenosis. With the advent of balloon dilation catheters used in interventional cardiology and radiology, the technique has been revived. 1138

Table. Demographic, Clinical, and Operative Characteristics of 5 Patients With CHD and SGS Patient No./ Age, mo Other Diagnosis Cardiac Diagnosis SGS Description a No. of BDL Procedures Adjuvant Therapy Follow-up Length 1/4 Trisomy 18 Atrioventricular canal Thin circumferential SGS 1 Mitomycin 2 mo with clinic FFL 2/1 None Truncus arteriosus Thin circumferential SGS 1 Mitomycin 23 mo with clinic FFL 3/1 DiGeorge syndrome Aortic arch repair Thick congenital glottic web with subglottic component 5 None 25 mo with rigid bronchoscopy 4/1 None Hypoplastic aortic arch Thin circumferential SGS 1 Topical triamcinolone acetonide (Kenalog) 1 mo with clinic FFL 5/3 None Ventricular septal defect Thick anterior shelf of SGS 3 Mitomycin 21 mo with rigid bronchoscopy Abbreviations: BDL, balloon dilation laryngoplasty; CHD, congenital heart disease; FFL, flexible fiberoptic laryngoscopy; SGS, subglottic stenosis. a The SGS Myer-Cotton grade was III in all 5 patients. The first reports of balloon dilation in the pediatric airway were published in 1991 and included several reports of subglottic dilation. 11 Durden and Sobol 12 published their experience of using BDL in 10 patients with SGS and demonstrated a 70% success rate in adequately treating the underlying SGS so that no further procedures were required. The authors advocated the use of BDL as a viable treatment option in evolving SGS. Over time, more clinicians have adopted the technique. The largest series to date involved 52 balloon dilation procedures in 44 children, with an overall success rate of 71%. 13 The authors further classified their success rates in primary and secondary procedures (ie, after a prior LTR) but did not find a statistically significant difference in success rates between the groups. Bent et al 8 also described their use of balloon dilation as an adjunct procedure for recurrent stenosis after LTR in 10 patients. Although our series is small, we believe that it constitutes the first description of BDL use in the specific patient population with concomitant CHD and SGS. Others have identified this population as being at increased risk for SGS compared with the general pediatric patient population. In addition, although the existing literature contains some contradictory findings, 14-17 enough data suggest concern for an increased risk for sternal wound infection in the presence of an indwelling tracheotomy tube. Thus, we believe that BDL provides an efficacious and safe alternative for treating SGS in children with underlying CHD, in whom pediatric cardiothoracic surgeons want to avoid a tracheotomy or any other type of open airway procedure. Some of these patients may also be too sick to undergo definitive airway reconstruction, such as LTR, immediately. Balloon dilation laryngoplasty may be used in primary cases as the initial treatment option for SGS or as an adjunct treatment after LTR (as in patient 5). We also agree with other authors that repeated balloon dilation without early improvement in airway patency is likely a predictor of ultimate treatment failure, as in patient 3. 13 Our study, however, has some limitations. Owing to the small patient sample, statistical analysis was not possible. Because of our initial success in using these techniques, we anticipate an increase in patient numbers over time, possibly allowing for reanalysis at a later date. We also use BDL extensively in patients with SGS who do not have CHD, thus possibly allowing a future comparison of success rates in CHD and non-chd patient populations. As with any retrospective studies, some limitations are inherent. The only data available for review are contained within the medical record. An unknown population of patients in whom SGS developed may exist but, because clinical symptoms did not develop, the need for bronchoscopy never materialized. However, we believe that BDL represents a safe and efficacious option when using minimally invasive techniques to treat SGS definitively in children with CHD. Thus, we can avoid open airway procedures and their associated risks. Submitted for Publication: June 26, 2012; final revision received August 14, 2012; accepted September 7, 2012. Correspondence: William O. Collins, MD, Department of Otolaryngology, University of Florida College of Medicine, PO Box 100264, Gainesville, FL 32610 (William.collins@ent.ufl.edu). Author Contributions: Drs Collins, Kalantar, and Silva had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Collins and Kalantar. Acquisition of data: Kalantar and Rohrs. Analysis and interpretation of data: Kalantar and Silva. Drafting of the manuscript: Collins. Critical revision of the manuscript for important intellectual content: Kalantar, Rohrs, and Silva. Statistical analysis: Collins. Administrative, technical, and material support: Rohrs. Conflict of Interest Disclosures: None reported. Previous Presentation: This study was presented as a poster at the Spring Meeting of the American Society of Pediatric Otolaryngology; April 28, 2012; San Diego, California. REFERENCES 1. Khariwala SS, Lee WT, Koltai PJ. Laryngotracheal consequences of pediatric cardiac surgery. Arch Otolaryngol Head Neck Surg. 2005;131(4):336-339. 2. Guillemaud JP, El-Hakim H, Richards S, Chauhan N. Airway pathologic abnormalities in symptomatic children with congenital cardiac and vascular disease. Arch Otolaryngol Head Neck Surg. 2007;133(7):672-676. 3. Pereira KD, Mitchell RB, Younis RT, Lazar RH. Subglottic stenosis complicating cardiac surgery in children. Chest. 1997;111(6):1769-1772. 4. Zestos MM, Hoppen CN, Belenky WM, Virupannavar V, Stricker LJ. Subglottic 1139

stenosis after surgery for congenital heart disease: a spectrum of severity. J Cardiothorac Vasc Anesth. 2005;19(3):367-369. 5. Jacobs IN, Gray RF, Todd NW. Upper airway obstruction in children with Down syndrome. Arch Otolaryngol Head Neck Surg. 1996;122(9):945-950. 6. Miyamoto RC, Cotton RT, Rope AF, et al. Association of anterior glottic webs with velocardiofacial syndrome (chromosome 22q11.2 deletion). Otolaryngol Head Neck Surg. 2004;130(4):415-417. 7. Myer CM III, O Connor DM, Cotton RT. Proposed grading system for subglottic stenosis based on endotracheal tube sizes. Ann Otol Rhinol Laryngol. 1994; 103(4, pt 1):319-323. 8. Bent JP, Shah MB, Nord R, Parikh SR. Balloon dilation for recurrent stenosis after pediatric laryngotracheoplasty. Ann Otol Rhinol Laryngol. 2010;119(9): 619-627. 9. Choi SS, Zalzal GH. Changing trends in neonatal subglottic stenosis. Otolaryngol Head Neck Surg. 2000;122(1):61-63. 10. Mossad E, Youssef G. Subglottic stenosis in children undergoing repair of congenital heart defects. J Cardiothorac Vasc Anesth. 2009;23(5):658-662. 11. Hebra A, Powell DD, Smith CD, Othersen HB Jr. Balloon tracheoplasty in children: results of a 15-year experience. J Pediatr Surg. 1991;26(8):957-961. 12. Durden F, Sobol SE. Balloon laryngoplasty as a primary treatment for subglottic stenosis. Arch Otolaryngol Head Neck Surg. 2007;133(8):772-775. 13. Hautefort C, Teissier N, Viala P, Van Den Abbeele T. Balloon dilation laryngoplasty for subglottic stenosis in children: eight years experience. Arch Otolaryngol Head Neck Surg. 2012;138(3):235-240. 14. Curtis JJ, Clark NC, McKenney CA, et al. Tracheostomy: a risk factor for mediastinitis after cardiac operation. Ann Thorac Surg. 2001;72(3):731-734. 15. Friberg O, Svedjeholm R. Post-sternotomy percutaneous tracheostomy and risky multivariable analyses. Eur J Cardiothorac Surg. 2008;34(4):930-931. 16. Stamenkovic SA, Morgan IS, Pontefract DR, Campanella C. Is early tracheostomy safe in cardiac patients with median sternotomy incisions? Ann Thorac Surg. 2000;69(4):1152-1154. 17. Gaudino M, Losasso G, Anselmi A, Zamparelli R, Schiavello R, Possati G. Is early tracheostomy a risk factor for mediastinitis after median sternotomy? J Card Surg. 2009;24(6):632-636. 1140