Chemical Constituents from Annona glabra III

Similar documents
Jour nal of the Chinese Chem i cal So ci ety, 2000, 47,

Substituent Chemical Shift of Rhamnosides from the Stems of Cinnamomum osmophleum

Dis ease trans mis sion is one of se ri ous com pli ca tions of the blood trans fu sion. Stored blood and blood prod ucts may con tain vi rus-in

Behaviour of Some Activated Nitriles Toward Barbituric, Thiobarbituric Acids and 3-Methyl-1-Phenylpyrazol-5-one

De voted to Prof. Pavel Povinec 65-th an ni ver sary. 222 Rn in wa ter are per formed mainly in the con text of po ta ble wa ter,

Jour nal of the Chi nese Chem i cal So ci ety, 2002, 49,

TWO NEW ELLAGIC ACID GLYCOSIDES FROM LEAVES OF DIPLOPANAX STACHYANTHUS

Supporting Information for. Use of the Curtius Rearrangement of Acryloyl Azides in the Synthesis of. 3,5-Disubstituted Pyridines: Mechanistic Studies

Self-Re ported Mem ory for Abuse Depends Upon Victim-Perpetrator Re la tion ship

STILBENOIDS FROM THE LIANAS OF GNETUM PENDULUM

EF FECT OF CHEM I CALS ON SHELF LIFE AND QUAL ITY OF GUAVA (Psidium guajava) FRUITS CV. AP PLE COL OUR

ANAL Y SIS OF -HYDROXYBUTYRATE (GHB) AND -BUTYROLACTONE (GBL) IN LIQ UIDS PER FORMED AT NA TIONAL LAB O RA TORY OF FO REN SIC SCI ENCE (SKL), SWEDEN

Effects of Gamma Ra di a tion on Various Polyimides

CanadianGuidelines fortherestrictionof RadioactivelyContaminated FoodandWater FollowingaNuclearEmergency

Lipid-pro tein in ter ac tions are of a fun da men tal im por tance for un der stand ing both struc - tural in teg rity and func tions of bi o log i

SUPPLEMENTARY MATERIAL

THE JOURNAL OF ANTIBIOTICS. Polyketomycin, a New Antibiotic from Streptomyces sp. MK277-AF1. II. Structure Determination

QUAL I TA TIVE EF FECT OF WRAP PING AND CUSH ION ING MA TE RI - ALS ON GUAVA FRUITS DUR ING STOR AGE

Economic Impacts of Supported Employment for Persons With Severe Mental Illness. Eric A Lati mer, PhD 1

By: Jin-Bo Fang, Wei Jia, Wen-Yuan Gao, Zhi Yao, Jie Teng, Ai-Hua Zhao, and Hong-Quan Duan

Risk Fac tors and Sur gi cal Prog no sis in Pa tients with In fra-re nal Ab dom i nal Aor tic Aneurysms

Adaptive Change in Intra-Winter Distribution of Relatively Cold Events to East Asian Warm ing

Supporting Information. An Efficient Synthesis of Optically Active Physostigmine from Tryptophan via Alkylative Cyclization

ACCESSIBILITY CHAPTER 11

Cytotoxic sesquiterpene lactones from Eupatorium lindleyanum

Preparation of Stable Aziridinium Ions and Their Ring Openings

The Neurobiology of Bipolar Disorder: Focus on Signal Transduction Pathways and the Regulation of Gene Expression

Carbon-13 Nuclear Magnetic Resonance Spectra of Phenolic Glycosides Isolated from Chestnut Galls*

Characteristics of Autoimmune Hepatitis in Taiwan: the 11 Years Experiences of a Medical Center

A Sound Track to Reading

Electronic Supplementary Information

Regioective Halogenation of 2-Substituted-1,2,3-Triazole via sp 2 C-H Activation

Obesity is the Most Important Determinant of Higher Blood Pressure Among Normotensive Chinese

Two New Oleanane Triterpene Glycosides from the Bark of Terminalia arjuna

Divergent Construction of Pyrazoles via Michael Addition of N-Aryl Hydrazones to 1,2-Diaza-1,3-dienes

BEHAVIOUR OF CARBOHYDRATE-BASED MATERIAL IN BLACK LIQUOR DURING HEATING

Ap pli ca tion of Three Scat ter ing Mod els to Char ac ter iza tion of Solid Tu mors in Mice

Ca na dian Drinking Water Guide lines Development Process

Appropriate use of oral drops: perception of health professionals and assessment of package insert information

Naoya Takahashi, Keiya Hirota and Yoshitaka Saga* Supplementary material

For in di vid u als who are both deaf and blind, hav ing both a vi sual and au di tory im pair ment rep re sents a

Risk of hepatitis C virus infection from tattooing and other skin piercing services

Guidelines forthe SafeUseof Diagnostic Ultrasound

Over 8 Hours of Sleep Marker of In creased Mor tal ity in Med i ter ra nean Pop u la tion: Follow-up Population Study

Germline BRCA1 Mu ta tions and G/C Poly mor phism in the 5 -Un trans lated Re gion of the RAD51 Gene in Pol ish Women with Breast Cancer*

As this is sue of Deaf-Blind Per spec tives goes to press, the pro cess of re-authorizing the In di vid uals with Disabil

yellow coloured amorphous powder, which on crystallization from hot acetone resulted in pale

Im por tance of Ax ial Com pres sion Ver i fi ca tion to Cor rect In ter pre ta tion of Ax ial-shear Strain Elastograms In Breast Le sions

In the Spring 2011 edi tion of Deaf-Blind Per spec tives, I penned an ar ti cle en ti tled En hanc ing the

Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of. Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis

Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature

SUPPLEMENTARY ACCESSIBILITY REQUIREMENTS

Supporting Information. as the nitro source

Identification of novel endophenaside antibiotics produced by Kitasatospora sp. MBT66

Waiting Your Turn Wait Times for Health Care in Canada 2010 Report

Ruthenium-Catalyzed C H Oxygenation on Aryl Weinreb Amides

The In Vitro Inhibitory Effect of Flavonoid Astilbin on 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase on Vero Cells

General terms and conditions of purchase

Jour nal of the Chi nese Chem i cal So ci ety, 2001, 48,

Antiandrogens have been used to treat ad vanced. Antiandrogen-associated Hepatotoxicity in the Man age ment of Ad vanced Pros tate Can cer

Specific N-Alkylation of Hydroxypyridines Achieved by a Catalyst- and Base-Free Reaction with Organohalides

Organic Letters. Synthesis of Oxygen-Free [2]Rotaxanes: Recognition of Diarylguanidinium Ions by Tetraazacyclophanes. and Sheng-Hsien Chiu*

Pluronic PE Technical Information. Low-foaming block copolymer for a wide variety of applications.

Since 1978, the U. S. De part ment of Ed u ca tion has pro vided con tin u ous sup port for research-and-demonstration

Neuroprotective and Antioxidant Constituents from Curcuma zedoaria Rhizomes

Supplementary data for. First total synthesis of antrocamphin A and its analogs as anti-inflammatory and anti-platelet aggregation agents

Chukvelutins A-C, 16-norphragmalin limonoids with unprecedented skeletons from Chukrasia tabularis var. velutina

Eur. J. Org. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN X SUPPORTING INFORMATION

Warfarin use in hemodialysis patients: what is the risk?

p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of

NHC-catalyzed cleavage of vicinal diketones and. triketones followed by insertion of enones and

Validating the EQ-5D with time trade off for the German population

Waiting Your Turn Hospital Waiting Lists in Canada 2009 Report

Supporting Information for. An approach to hyperolactone C and analogues using late stage conjugate addition on an oxonium ylide-derived spirofuranone

Adequacy of Trephine Bone Marrow Biopsies: The Doc tor and the Pa tient Make a Dif fer ence*

Supporting Information for. A convenient Method for Epoxidation of Alkenes using Aqueous. Hydrogen Peroxide

Pol J Pathol 2005, 56, 3, PL ISSN

Rameshwar Prasad Pandit and Yong Rok Lee * School of Chemical Engineering, Yeungnam University, Gyeongsan , Korea

Constituent of Pollen. XIII. 1) Constituents of Cedrus deodara LOUD. (2)

# Supplementary Material (ESI) for Chemical Communications # This journal is The Royal Society of Chemistry 2005

Chil dren who are deaf-blind need a va ri ety of com mu ni ca tion op tions that fos ter nat u ral so cial in ter ac

Supporting information

Al though it would be pre ma ture to say that the

FLAVANONE AND FLAVONE GLYCOSIDE FROM TAXUS BACCATA

Supporting Information

For over two de cades, the U.S. De part ment of Ed u ca tion's Of fice of Spe cial Ed u ca tion Pro grams (OSEP)

Smoking Ces sa tion with Nic o tine Re place ment Ther apy among Health Care Workers: Randomized Double-blind Study

Imag ine this: In the liv ing room of the Perez

Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice

Six novel steroids from culture of basidiomycete Polyporus ellisii

Bovine colostrum as a biologic in clinical medicine: A review Part II:

Total Syn the sis of Kaempferol and Meth yl ated Kaempferol De riv a tives

Seasonal Affective Disorders: Relevance of Icelandic and Icelandic-Canadian Evidence to Etiologic Hypotheses

Guajavadimer A, a dimeric caryophyllene-derived meroterpenoid with a new carbon skeleton from the leaves of Psidium guajava.

One-pot Synthesis of 1-Alkyl-1H-indazoles. Supporting Information

Em ily is go ing on a cruise to Mex ico with money she earned her self. When she was 19 years old, she

Supporting Information. Copper-catalyzed cascade synthesis of benzimidazoquinazoline derivatives under mild condition

Waiting Your Turn. Wait Times for Health Care in Canada 2012 Report. Studies in HEALTH POLICY. by Bacchus Barua and Nadeem Esmail.

44(2): ,2003. Department of Chemistry and Biochemistry, Zagreb University School of Medicine, Zagreb, Croatia

COMPARISON OF MULTIVARIATE CLASSIFICATION AND RE GRES SION METH ODS FOR THE IN DOOR RA DON MEA SURE MENTS

Transcription:

Jour nal of the Chi nese Chem i cal So ci ety, 2000, 47, 913-920 913 Chemical Constituents from Annona glabra III Fang-Rong Chang ( ), Chung-Yi Chen ( ), Tian-Jye Hsieh ( ), Chun-Ping Cho ( ) and Yang-Chang Wu* ( ) Grad u ate In sti tute of Nat u ral Prod ucts, Kaohsiung Med i cal Uni ver sity, Kaohsiung 807, Tai wan, R.O.C. Twenty com pounds in clud ing a dioxoaporphine, annobraine (1); two oxoaporphines, liriodenine (2) and lysicamine (3); five aporphines, (-)-nornuciferine (4), (-)-anonaine (5), (-)-N-formylanonaine (6), (-)-asimilobine (7) and (+)-nordomesticine (8); one proaporphine, (+)-stepharine (9); two protoberberines, (-)-kikemanine (10) and dehydrocorydalmine (11); one azaanthraquinone, 1-aza-4-methyl-2- oxo-1,2- dihydro- 9,10-anthracenedione (12); two amides, N-trans-feruloyltyramine (13) and N-p-coumaroyltyramine (14); one ionone, blumenol A (15); and five ste roids, -sitosterol (16), stigmasterol (17), -sitosteryl-dglucoside (18), stigmasteryl-d-glucoside (19) and 6-O-palmitoyl- -sitosteryl-d-glucoside (20), were iso lated from the fruits and stems of Annona glabra. Among them, 1 is a novel dioxoaporphine al ka loid and 12 was ob - tained for the first time from nat u ral sources. These com pounds were char ac ter ized and ident i fied by phys i cal and spec tral ev i dence. IN TRO DUC TION struc ture char ac ter iza tion of com pounds 1 and 12. Annona glabra L. (Annonaceae), com monly known as pond-apple, is a trop i cal tree dis trib uted mainly in the Amer i - cas and south east Asia, and cul tured in the south ern part of Tai wan. It is used in tra di tional med i cines as an in sec ti cide and a parasiticide. 1,2 In pre vi ous stud ies, 3-22 we have in ves - ti gated the chem i cal con stit u ents of the Formosan Annonaceous plants, and have iden ti fied six new kaurane diterpenoids, annoglabasin A-F, along with 19 known kaurane diterpenoids from the fresh fruits and the stems of A. glabra. 10,22 Of these, methyl-16 -hy dro-19-al-ent- kauran- 17-oate ex hib ited mild ac tiv ity against HIV rep li ca tion in H9 lym pho cyte cells, and 16-17-dihydroxy-ent-kauran-19-oic acid showed sig nif i cant in hi bi tion of HIV-1 re verse tran scrip - tase. 10 Con tinuing in ves ti ga tion of these two parts of this plant led to the iso la tion of twenty pure sub stances, one isatinetype 23 dioxoaporphine, annobraine (1); two oxoaporphines, liriodenine (2) 17 and lysicamine (3); 17 five aporphines, (-)- nornuciferine (4), 17 (-)-anonaine (5), 17 (-)-N-formylanonaine (6), 6 (-)-asimilobine (7) 17 and (+)-nordomesticine (8); 24 one proaporphine, (+)-stepharine (9); 17 two protoberberines, (-)-kikemanine (10) 25 and dehydrocorydalmine (11); 26 one azaanthraquinone, 1-aza-4-methyl-2-oxo-1,2-dihydro-9,10- anthracenedi-one (12); 27 two amides, N-trans- feruloyl - tyramine (13) 17 and N-p-coumaroyltyramine (14); 11 one ionone, blumenol A (15); 28 and five ste roids, -sitosterol (16), 6 stigmasterol (17), 6 -sitosteryl-d-glucoside (18), 6 stigmasteryl-d-glucoside (19) 6 and 6-O-palmitoyl- - sitosteryl- D-glucoside (20). 29 The fol low ing de scribes the RE SULTS AND DIS CUS SION Annobraine (1) was ob tained as red nee dles from CHCl 3. HREIMS re vealed a [M] + ion at m/z 317.0690 (calcd 317.0688), cor re spond ing to the mo lec u lar for mula, C 19H 11NO 4. The EIMS re vealed frag ments at m/z 289 [M-28] + and 261 [M-56] +, which sug gested the ex is tence of two car - bonyl groups. The UV spec trum of 1 showed in tense ab sorp - tion bands at 232 (sh), 253, 280, 291, 333, 355 (sh) and 373 nm. The IR spec trum of 1 ex hib ited ab sorp tion bands at max 1727, 1036 and 968 cm -1 in di cat ing car bonyl and methyl - enedioxy groups, re spec tively. 17 1 H NMR spec trum of 1 ex - hib ited for four aryl pro ton sig nals at 8.57 (1H, dd, J = 7.6, 1.6 Hz), 7.62 (1H, td, J = 7.6, 1.6 Hz), 7.49 (1H, td, J = 7.6, 1.6 Hz), 8.83 (1H, dd, J = 7.6, 1.6 Hz), char ac ter is tic for H-8 ~ H-11, re spec tively, of oxoaporphines. A sin glet at 7.10 and a sin glet due to methylenedioxy pro tons at 6.35 were sim i lar to the A-ring sub sti tu tion of 2. 17 The 1 H NMR pat tern sug - gested the sub sti tu tion where the methylenedioxy group was placed at the 1,2-position and a sin glet at 7.10 was as signed to H-3. 17 The above spec tral data in di cated this com pound could be a gen eral oxoaporphine re lated to the known com - pound 2. 17, 25 But, two sig nif i cant two-proton trip lets at 3.95 (J = 6.4 Hz) and 3.31 (J = 6.4 Hz) in the aliphatic re gion over came this sup po si tion. Var i ous 2D NMR spec tra fur ther sup ported the struc ture of 1. Pro ton al lo ca tion of 1 was es tab lished by 1 H- 1 H COSY

914 J. Chin. Chem. Soc., Vol. 47, No. 4B, 2000 Chang et al. and 1 H- 1 H NOESY ex per i ments. Sig nif i cant cor re la tions be - tween H-3, H-4 and H-5, as well as H-8, H-9, H-10 and H-11, were ob served in the 1 H- 1 H NOESY spec trum (Fig. 1). Con - trasting with the 4,5-dioxoaporphine at 156.7 and 179.8 in the N-car bonyl and benzyl-carbonyl groups, 30 the sig nals of two car bonyl of 1 showed at 160.3 and 179.8. Three known isatine-type oxoaporphine, 31,32 telisatin A & B and laurodionine, showed char ac ter is tic chem i cal shifts by com - par i son with those of car bon yls of 1. No ob ser va tion of H-6a and H-7 sig nals in the 1 H NMR and the UV ab sorp tion sug - gested 1 as a 6a,7-dehydro aporphine with an ex tended con ju - ga tion, which in cluded a two-carbonyl bridge link be tween

Chem i cal Con stit u ents from Annona glabra III J. Chin. Chem. Soc., Vol. 47, No. 4B, 2000 915 N-6 and C-7. 31 13 C NMR data showed nine teen car bons, in - clud ing three meth y lene car bons at 27.5, 36.7 and 102.3, five methine car bons at 109.2, 123.4, 125.2, 127.5 and 129.1, and eleven qua ter nary car bons at 112.4, 119.8, 124.4, 126.7, 128.7, 129.6, 142.9, 151.5, 153.6, 160.3 (s, C-12), 179.8 (s, C-13), were con sis tent with the struc ture of 1. Due to the lim i ta tion of the sam ple amount, we failed to get its 2D 1 H- 13 C-correlation NMR spec tra. The as sign ments of 13 C NMR spec trum were di rectly com pared with known com - pounds, telisatin A & B, 31 and the re sults are de tailed in the com pound data of the ex per i men tal sec tion. Thus, 1 is a novel isatine-type 33 dioxoaporphine, which we named annobraine. Based on past semi-synthesis stud ies, 33,34 we pro posed that the biosynthetic hy poth e sis of isatine-type dioxoaporphine al ka - loids be pro duced by com bin ing N,6a- (or 6a,7-) dehydro - aporphine and ox alic acid through the en zy matic sys tem of this plant. Com pound 12, was iso lated as yel low nee dles. The UV and IR spec tral ab sorp tions sug gested that 12 should be sim i - lar to an anthraquinone ring sys tem. 17,27 Sig nif i cant peaks at m/z 239 [M] +, 211 [M-28] +, 183 [M-56] +, and 155 [M-84] + in the EIMS sys tem sup ported the three car bonyl groups, which re vealed 12 as an anthraquinone al ka loid by com par i son with data in the lit er a ture. 27 A methyl group at 2.64 (3H, d, J = 1.2 Hz) for C 4-CH 3 and 6.80 (1H, d, J = 1.2 Hz) for H-3 in the 1 H NMR of 12 are in agree ment with the pyridone moi ety. 17 The rel a tive sym me try of the chem i cal shift pat tern of the ar o matic pro tons with two-proton sig nals at 8.23 for pro tons peri to car bonyl group, and a multiplet (2H) at 7.72 could only be sat is fied by the par tial anthraquinoid-type struc ture 12. 17,29 The 13 C NMR spec trum of 12 showed four teen car bons, in - clud ing three iden ti cal car bonyl car bons at 162.2, 179.1 and 181.9. 35 The sub sti tu tions of 12 were con tem plated in an 1 H- 1 H NOESY ex per i ment. Sig nif i cant cor re la tions be tween the methyl group and H-3 as well as H-5, H-6, H-7 and H-8 were ob served in the 1 H- 1 H NOESY spec trum. The se quen tial cor - re la tions of the spec trum were suc cess fully es tab lished as shown in Fig. 2. The above re sults sup ported the struc ture of 12 as an 1-aza-4-methyl-2-oxo-1,2-dihydro-9,10-anthracene - dione. This com pound was pre pared syn thet i cally. 29,35 Com - par i son of the lit er a ture data 35 of nat u ral 12 with those of the syn thetic com pound proved the iden ti fi ca tion. Known com pounds were also iso lated and their struc - tures were es tab lished by spec tral meth ods. 6,17,24-29 EX PER I MEN TAL SEC TION General Methods UV spec tra were ob tained on a Hitachi 220-20 spectro - Fig. 1. NOESY Cor re la tions of 1. Fig. 2. NOESY Cor re la tions of 12.

916 J. Chin. Chem. Soc., Vol. 47, No. 4B, 2000 Chang et al. photometer in EtOH. IR spec tra were mea sured on a Hitachi 260-30 spectrophotometer. 1 H NMR (400 and 200 MHz) 13 C NMR NOESY and COSY spec tra were ob tained on a Varian NMR spec trom e ter. Low-resolution EIMS were re corded on a JEOL JMS-SX/SX 102A mass spec trom e ter or Quattro GC-MS spec trom e ter hav ing a di rect in let sys tem. High-resolution EIMS were mea sured on a JEOL JMS-HX 110 mass spec trom e ter. Sil ica gel 60 (Merck, 230-400 mesh) was used for col umn chro ma tog ra phy, precoated sil ica gel plates (Merck, Kieselgel 60 F-254, 0.20 mm) were used for an a lyt i cal TLC and precoated sil ica gel plates (Merck, Kieselgel 60 F-254, 0.50 mm) were used for pre para tive TLC. Spots were de tected by spray ing with Dragendorff s re agent or 50% H 2SO 4 and then heated on a hot plate. Plant Ma te rial The spec i men of A. glabra L. (Annonaceae) was col - lected from Pingtung County, Tai wan, Sep tem ber 1997. A voucher spec i men was iden ti fied by Dr. Hsin-Fu Yen and de - pos ited in the Grad u ate In sti tute of Nat u ral Prod ucts, Kaohsiung Med i cal Uni ver sity, Kaohsiung, Tai wan. Ex trac tion and Separation The fresh fruits (6.0 Kg) of A. glabra were ex tracted re - peat edly with MeOH (10 L 5) at room tem per a ture for 24-48 hrs. The com bined MeOH ex tracts were evap o rated and par ti - tioned to yield CHCl 3 and aque ous lay ers. The bases in the CHCl 3 so lu tion were ex tracted with 3% HCl to leave the acidic por tion and CHCl 3 so lu tion. The acidic por tion was basified with NH 4OH and ex tracted with CHCl 3. The CHCl 3 so lu tion was dried and evap o rated to leave a brown ish vis cous res i due (2.0 g). The res i due was fur ther sep a rated by col umn chro ma tog ra phy on Si gel with gra di ent sys tems of n-hex - ane-etoac (n-hex ane-etoac 4:1 to EtOAc) and EtOAc- MeOH (EtOAc to EtOAc-MeOH 4:1) to yield 60 frac tions of 120 ml each, which were fur ther com bined into 10 frac tions ac cord ing to their TLC pat terns. Each frac tion was chro - matographed over Si gel and pu ri fied by fur ther Si gel col umn chro ma tog ra phy, recrystalization, or pre para tive TLC to yield 6 com pounds. The yield amount and TLC data of these com - pounds are shown as fol lows: 2 (10.1 mg; CHCl 3-MeOH 9:0.5, R f 0.39), 4 (39.8 mg; CHCl 3 -MeOH 9:1, R f 0.35), 7 (27.9 mg; CHCl 3-MeOH 10:1, R f 0.29), 8 (4.4 mg; CHCl 3- MeOH 10:1, R f 0.64), 9 (5.0 mg; CHCl 3 -MeOH 9:1, R f 0.35) and 10 (6.7 mg; CHCl 3-MeOH 12:1, R f 0.30). The same pro ce - dures were also used on the stems. The air-dried stems (20.0 Kg) of A. glabra were ex tracted re peat edly with MeOH (10 L 6) at room tem per a ture for 24-48 hrs. The com bined MeOH ex tracts were evap o rated and par ti tioned to yield CHCl 3 and aque ous so lu tions. The bases in the CHCl 3 so lu tion were ex - tracted with 3% HCl to leave the acidic por tion (Part A) and CHCl 3 so lu tion (Part B, 20 g). The acidic por tion (Part A) was al ka lized with NH 4 OH and ex tracted with CHCl 3. The CHCl 3 so lu tion was dried and evap o rated to leave a brown ish vis cous res i due (3.5 g). The res i due was placed on a sil ica gel col umn chro ma tog ra phy and eluted with EtOAc grad u ally en riched with MeOH to af ford twenty frac tions. Each frac tion was rechromatographed over sil ica gel eluting with a gra di ent of CHCl 3/MeOH to ob tain 2 (5.0 mg, CHCl 3-MeOH 15:1, R f 0.45), 3 (3.3 mg; CHCl 3-MeOH 20:1, R f 0.48), 4 (15.0 mg; CHCl 3 -MeOH 10:1, R f 0.51), 5 (12.5 mg; CHCl 3 -MeOH 15:1, R f 0.42), 6 (3.4 mg; CHCl 3-MeOH 15:1, R f 0.40), 10 (23.1 mg; CHCl 3-MeOH 10:1, R f 0.25), and 11 (7.9 mg; CHCl 3-MeOH 6:1, R f 0.28), re spec tively. The CHCl 3 layer (Part B) was con - cen trated and chromatographed over sil ica gel us ing hex - ane/ac e tone as eluent to pro duce twenty-one frac tions. Each frac tion was rechromatographed over sil ica gel eluting with a gra di ent of n-hex ane/ac e tone to ob tain 1 (5.0 mg, CHCl 3 -MeOH 20:1, R f 0.66), 12 (4.2 mg; CHCl 3 -MeOH 10:1, R f 0.35), 13 (35.5 mg; CHCl 3-EtOAc 1:1, R f 0.50), 14 (8.2 mg, CH 2 Cl 2 -MeOH 10:1, R f 0.37), 15 (6.3 mg, CH 2 Cl 2 -MeOH 15:1, R f 0.54), mix ture of 16 and 17 (50.7 mg, CH 2Cl 2, R f 0.34), mix ture 18 and 19 (20.7 mg; CHCl 3-MeOH 10:1, R f 0.55), and 20 (11.1 mg; CHCl 3, R f 0.44), re spec tively. Annonbraine (1) Red nee dles (CHCl 3 ); mp 265-267 C; UV max/nm (EtOH) (log ) 232 (3.97, sh), 253 (4.37), 280 (3.80), 291 (3.84), 333 (3.64), 355 (3.43, sh) and 373 (3.20); IR max (neat) cm -1 1727, 1036 and 968; 1 H NMR (CDCl 3) /ppm 3.31 (2H, t, J = 6.4 Hz, H-4), 3.95 (1H, t, J = 6.4 Hz, H-5), 6.35 (2H, s, -OCH 2 O-), 7.10 (1H, s, H-3), 7.49 (1H, td, J = 7.6, 1.6 Hz, H-10), 7.62 (1H, td, J = 7.6, 1.6 Hz, H-9), 8.83 (1H, dd, J = 7.6, 1.6 Hz, H-11), 8.57 (1H, dd, J = 7.6, 1.6 Hz, H-8); 13 C NMR (CDCl 3) /ppm 27.5 (t, C-4), 36.7 (t, C-5), 102.3 (t, OCH 2O), 103.1 (s, C-7), 109.2 (d, C-3), 112.4 (s, C-1b), 123.4 (d, C-8), 124.4 (s, C-11a), 125.2 (d, C-10), 126.7 (s, C-7a), 127.5 (d, C-11), 128.7 (s, C-1a), 129.1 (d, C-9), 129.6 (s, C-3a), 142.9 (s, C-1), 151.5 (s, C-2), 153.6 (s, C-6a), 160.3 (s, C-12), 179.8 (s, C-13); EI-MS m/z (%) : 317 (100, M + ), 289 (66), 261 (43), 203 (37), 171 (17); HREIMS: m/z [M] + 317.0690 (calcd. for C 19 H 11 NO 4, 317.0688). Liriodenine (2) Yel low nee dles (CHCl 3 ); mp 280-282 C; UV max/nm (EtOH) (log ) 256 (4.21), 280 (3.98), 334 (3.92); IR max

Chem i cal Con stit u ents from Annona glabra III J. Chin. Chem. Soc., Vol. 47, No. 4B, 2000 917 (neat) cm -1 1650, 1050, 950; 1 H NMR (CDCl 3) /ppm 6.36 (2H, s, -OCH 2O-), 7.15 (1H, s, H-3), 7.56 (1H, td, J = 8.0, 0.7 Hz, H-9), 7.71 (1H, td, J = 8.0, 1.5 Hz, H-10), 7.74 (1H, d, J = 5.2 Hz, H-4), 8.57 (1H, dd, J = 8.0, 1.5 Hz, H-8), 8.60 (1H, dd, J = 8.0, 0.7 Hz, H-11), 8.87 (1H, d, J = 5.2 Hz, H-5); EI-MS m/z (%) 275 (100, M + ), 246 (18), 217 (7), 188 (39), 161 (16). Lysicamine (3) Yel low nee dles (CHCl 3); mp 185-187 C; UV max/nm (EtOH) (log ) 250 (4.60), 283 (4.50), 335 (3.82); IR max (neat) cm -1 1650; 1 H NMR (CDCl 3) /ppm 4.03 (3H, s, C 1- OCH 3), 4.11 (3H, s, C 2-OCH 3), 7.24 (1H, s, H-3), 7.58 (1H, td, J = 8.0, 1.1 Hz, H-9), 7.78 (1H, td, J = 8.0, 1.4 Hz, H-10), 7.82 (1H, d, J = 5.2 Hz, H-4), 8.59 (1H, dd, J = 8.0, 1.4 Hz, H-8), 8.93 (1H, d, J = 5.2 Hz, H-5), 9.19 (1H, dd, J = 8.0, 1.1 Hz, H-11); EI-MS m/z (%) 291 (99, M + ), 248 (100), 233 (17), 219 (5), 188 (14), 177 (30), 163 (9), 150 (16). (-)-Nornuciferine (4) Brown pow der (MeOH); mp 127-129 C; [ ] 24 D -58.8 (c = 0.18, CHCl 3 ); UV max/nm (EtOH) (log ) 230 (4.50), 272 (4.21), 310 (3.62); IR max (neat) cm -1 2900, 1590, 1440; 1 H NMR (CDCl 3 ) /ppm 2.72 (1H, t, J = 13.1 Hz, H-7 ), 2.88 (1H, dd, J = 13.1, 5.4 Hz, H-7 ), 2.93-3.15 (4H, m, H-4,5), 3.67 (3H, s, C 1-OCH 3), 3.46 (1H, dd, J = 13.1, 5.4 Hz, H-6a), 3.89 (3H, s, C 2 -OCH 3 ), 6.65 (1H, s, H-3), 7.20-7.33 (3H, m, H-8,9,10), 8.40 (1H, d, J = 7.6 Hz, H-11); EI-MS m/z (%) 281 (32, M + ), 266 (100), 250 (38), 238 (80), 223 (55), 206 (36), 194 (43). (-)-Anonaine (5) Pale yel low pow der (MeOH); mp 121-123 C; [ ] 24 D -53.0 (c = 0.54, CHCl 3); UV max/nm (EtOH) (log ) 230 (4.32), 272 (4.08), 310 (3.60); IR max (KBr) cm -1 1040, 950; 1 H NMR (CDCl 3) /ppm 2.64 (1H, t, J = 13.4 Hz, H-7 ), 2.85 (1H, dd, J = 13.4, 5.2 Hz, H-7 ), 2.73-3.38 (4H, m, H-4,5), 3.98 (1H, dd, J = 13.4, 5.2 Hz, H-6a), 5.93 and 6.08 (each 1H, d, J = 1.4 Hz, -OCH 2O-), 6.57 (1H, s, H-3), 7.23-7.26 (3H, m, H-8,9,10), 8.05 (1H, d, J = 7.4 Hz, H-11); EI-MS m/z (%) 265 (70, M + ), 264 (100), 248 (5), 236 (35), 235 (46). (-)-N-formylanonaine (6) (E-form : Z-form 2 : 1) Brown pow der (CHCl 3); mp 231-232 C; [ ] 24 D -106 (c = 0.2, CHCl 3 ); UV max/nm (EtOH) (log ) 223 (4.70), 268 (4.64), 290 (3.80), 316 (3.68); IR max (KBr) cm -1 2870, 1655, 1565, 1490, 1420, 1390, 1280, 1225, 1220, 1200, 1180, 1145, 1070, 1040, 935, 910, 850, 780, 740, 730, 640; 1 H NMR (CDCl 3) /ppm E-from: 2.74 (1H, dd, J = 10.8, 2.4 Hz, H-4 ), 2.84 (1H, dd, J = 14.0, 4.4 Hz, H-7 ), 2.89 (1H, m, H-4 ), 3.24 (1H, dd, J = 14.0, 4.4 Hz, H-7 ), 3.41 (1H, td, J = 12.0, 2.4 Hz, H-5 ), 3.82 (1H, ddd, J = 12.8, 4.8, 3.6 Hz, H-5 ), 5.06 (1H, dd, J = 13.6, 4.4 Hz, H-6a), 5.99 and 6.11 (each 1H, d, J = 1.2 Hz, -OCH 2O-), 6.59 (1H, s, H-3), 7.25-7.35 (3H, m, H- 8,9,10), 8.10 (1H, d, J = 7.6 Hz, H-11), 8.27 (1H, s, N=CHO - ); Z-from: 2.70-2.80 (2H, m, H-4,4 ), 2.90 (1H, dd, J = 14.0, 4.8 Hz, H-7 ), 3.11 (1H, m, H-5 ), 3.41 (1H, m, H-7 ), 4.36 (1H, dd, J = 13.6, 4.0 Hz, H-6a), 4.48 (1H, ddd, J = 12.8, 4.4, 3.6 Hz, H-5 ), 6.00 and 6.12 (each 1H, d, J = 1.2 Hz, -OCH 2O-), 6.62 (1H, s, H-3), 7.20-7.30 (3H, m, H-8,9,10), 8.12 (1H, d, J = 7.6 Hz, H-11), 8.40 (1H, s, N=CHO - ); EI-MS m/z (%) 293 (50, M + ), 263 (3), 262 (3), 249 (2), 248 (6), 237 (3), 236 (20), 235 (100), 205 (1), 204 (2), 179 (5), 178 (6), 177 (4), 176 (5), 152 (2), 151 (2). (-)-Asimilobine (7) Brown pow der (MeOH); mp 121-123 C; [ ] 24 D -49.0 (c = 0.56, CHCl 3); UV max/nm (EtOH) (log ) 222 (4.80), 274 (4.26), 308 (3.90); IR max (neat) cm -1 3500; 1 H NMR (CDCl 3) /ppm 2.69 (1H, t, J = 13.0 Hz, H-7 ), 2.86 (1H, dd, J = 13.0, 5.4 Hz, H-7 ), 2.90-3.00 (4H, m, H-4,5), 3.59 (3H, s, C 1-OCH 3), 3.83 (1H, dd, J = 13.0, 5.4 Hz, H-6a), 4.41 (1H, br s, C 2-OH), 6.69 (1H, s, H-3), 7.20-7.34 (3H, m, H-8,9,10), 8.29 (1H, d, J = 7.5 Hz, H-11); EI-MS m/z (%) 267 (78, M + ), 266 (100), 250 (38), 238 (80), 223 (55), 206 (36), 194 (43). (+)-Nordomesticine (8) Brown pow der (CHCl 3); mp 121-123 C; [ ] 24 D +17.1 (c = 0.07, CHCl 3 ); UV max/nm (EtOH) (log ) 216 (4.48), 282 (4.40), 309 (3.90); IR max (KBr) cm -1 3500, 1035, 965; 1 H NMR (CDCl 3) /ppm 3.90 (3H, s, C 2-OCH 3), 5.94 (1H, d, J = 1.4 Hz, -OCH 2 O-), 5.96 (1H, d, J = 1.4 Hz, -OCH 2 O-), 6.55 (1H, s, H-3), 6.72 (1H, s, H-8), 7.79 (1H, s, H-11); EI-MS m/z (%) 311 (59, M + ), 294 (26), 266 (19), 152 (18). (+)-Stepharine (9) Brown pow der (CHCl 3 ); mp 152-154 C; [ ] 24 D +110.0 (c = 0.10, CHCl 3); UV max/nm (EtOH) (log ) 217 (4.90), 233 (4.65), 290 (3.52); IR max (neat) cm -1 1705; 1 H NMR (CDCl 3 ) /ppm 3.60 (3H, s, C 1 -OCH 3 ), 3.81 (3H, s, C 2 - OCH 3), 6.29 (1H, dd, J = 10.0, 2.0 Hz, H-9), 6.40 (1H, dd, J = 10.0, 2.0 Hz, H-11), 6.65 (1H, s, H-3), 6.89 (1H, dd, J = 10.0, 2.8 Hz, H-8), 7.03 (1H, dd, J = 10.0, 2.8 Hz, H-12); EI-MS m/z (%) 297 (100, M + ), 296 (68), 282 (11), 268 (89), 253 (24), 237 (19), 225 (25), 209 (19).

918 J. Chin. Chem. Soc., Vol. 47, No. 4B, 2000 Chang et al. (-)-Kikemanine (10) Yel low pow der (CHCl 3); mp 83-85 C; [ ] 24 D -86.0 (c = 0.10, CHCl 3 ); UV max/nm (EtOH) (log ) 237 (4.04), 283 (3.78); IR max (neat) cm -1 3550, 2900, 1600; 1 H NMR (CDCl 3 ) /ppm 3.82 (3H, s, C 10 -OCH 3 ), 3.87 (3H, s, C 2 - OCH 3), 3.89 (3H, s, C 3-OCH 3), 6.62 (1H, s, H-1), 6.73 (1H, s, H-4), 6.80 (1H, d, J = 8.8 Hz, H-11), 6.84 (1H, d, J = 8.8 Hz, H-12); EI-MS m/z (%) 341 (53, M + ), 192 (100), 190 (49), 150 (29), 149 (38). Dehydrocorydalmine (11) Yel low pow der (CHCl 3); mp 85-88 C; UV max/nm (EtOH) (log ) 228 (4.90), 278 (4.74), 350 (4.10); IR max (neat) cm -1 3500, 2925, 1610; 1 H NMR (CDCl 3) /ppm 3.27 (2H, t, J = 6.4 Hz, H-5), 3.94 (3H, s, C 3-OCH 3), 3.99 (3H, s, C 2 -OCH 3 ), 4.15 (3H, s, C 9 -OCH 3 ), 4.92 (2H, t, J = 6.4 Hz, H-6), 7.05 (1H, s, H-4), 7.65 (1H, s, H-1), 7.78 (1H, d, J = 8.8 Hz, H-11), 7.90 (1H, d, J = 8.8 Hz, H-12), 8.73 (1H, s, H-13), 9.95 (1H, s, H-8); EI-MS m/z (%) 300 (5), 287(5), 259 (5), 241 (4), 187 (44), 148 (29), 147 (36). 1-Aza-4-methyl-2-oxo-1,2-dihydro-9,10-anthracenedione (12) 25 Yel low pow der; mp 249-251 C; [ ] D : 0 (c = 0.02, MeOH); UV max/nm (EtOH) (log ) : 258 (4.10), 294 (3.90); IR max (neat) cm -1 3026, 1710, 1664, 1598, 1523, 1477; 1 H NMR (C 5D 5N) /ppm 2.64 (3H, d, J = 1.2 Hz, C 4-CH 3), 6.80 (1H, d, J = 1.2 Hz, H-3), 7.72 (2H, m, H-6 and H-7), 8.23 (2H, m, H-5 and H-8); 13 C NMR (DMSO-D 6 ) /ppm 181.9 and 179.1 (CO-9 & CO-10), 162.2 (CO-2), 151.2 (C-3), 151.0 (C-4), 135.4 (C-6), 133.9 (C-7), 132.9 (C-10a), 130.7 (C-8a), 126.7 (C-8), 126.2 (C-5), 121.0 and 120.0 (C-4a and C-9a), 22.1 (CH 3); 35 EI-MS m/z (%) : 239 (100, M + ), 211 (55), 183 (24), 155 (27), 77 (69). N-trans-feruloyltyramine (13) Col or less crys tals (CHCl 3); mp 122-123 C; UV max/nm (EtOH) (log ) 220 (3.96), 293 (3.06), 319 (3.80); IR max (neat) cm -1 3300, 1650; 1 H NMR (CDCl 3 +CD 3 OD) /ppm feruloyl moi ety : 3.87 (3H, s, C 6-OCH 3), 6.15 (1H, d, J = 15.6 Hz, H-2), 6.83 (1H, d, J = 8.0 Hz, H-8), 7.00 (1H, dd, J = 8.0, 2.0 Hz, H-9), 6.95 (1H, d, J = 2.0 Hz, H-5), 7.46 (1H, d, J = 15.6 Hz, H-3); tyramine moi ety : 2.75 (2H, t, J = 6.8 Hz, H-2 ), 3.54 (2H, t, J = 6.8 Hz, H-1 ), 6.75 (2H, d, J = 8.8 Hz, H-5 and H-7 ), 7.02 (2H, d, J = 8.8 Hz, H-4 and H-8 ); EI-MS m/z (%) 313 (10, M + ), 192 (87), 177 (100), 145 (63), 120 (70), 107 (64). N-p-coumaroyltyramine (14) White pow der (CHCl 3); mp 235-238 C; UV max/nm (EtOH) (log ) 225 (4.12), 290 (3.50), 315 (4.16); IR max (neat) cm -1 3450, 1650, 1600, 1510; 1 H NMR (CD 3OD) /ppm coumaroyl moi ety : 6.36 (1H, d, J = 15.6 Hz, H-2), 6.79 (2H, d, J = 8.8 Hz, H-3 and H-5 ), 7.39 (2H, d, J = 8.8 Hz, H-2 and H-6 ), 7.43 (1H, d, J = 15.6 Hz, H-3); tyramine moi ety : 2.75 (2H, t, J = 7.2 Hz, H-2), 3.51 (2H, t, J = 7.2 Hz, H-1), 6.72 (2H, d, J = 8.8 Hz, H-3 and H-5 ), 7.02 (2H, d, J = 8.8 Hz, H-2 and H-6 ); EI-MS m/z (%) 283 (8, M + ), 164 (76), 147 (100), 120 (69), 107(90). Blumenol A (15) White pow der (CHCl 3); mp 114-116 C; [ ] 25 D +124.2 (c = 0.18, CHCl 3); IR (KBr) max 3400, 1760, 1670 cm -1 ; 1 H NMR (CDCl 3 ) /ppm 1.01 (3H, s, H-11), 1.07 (3H, s, H-12), 1.30 (3H, d, J = 6.4 Hz, H-10), 1.90 (3H, d, J = 1.4 Hz, H-13), 2.27 (1H, d, J = 17.1 Hz, H-2a), 2.49 (1H, d, J = 17.1 Hz, H-2b), 4.41 (1H, dq, J = 6.4, 6.4 Hz, H-8a), 5.80 (1H, d, J = 15.6 Hz, H-7), 5.90 (1H, dd, J = 15.6, 6.4 Hz, H-8b), 5.83 (1H, t, J = 2.5 Hz, H-4); 13 C NMR (CDCl 3 ) 41.2 (C-1, s), 49.7 (C-2, t), 198.0 (C-3, s), 126.8 (C-4, d), 162.8 (C-5, s), 79.0 (C-6, s), 129.0 (C-7, d), 135.8 (C-8, d), 68.0 (C-9, d), 18.9 (C-10, q), 24.0 (C-11, q), 23.7 (C-12, q), 22.9 (C-13, q); EIMS m/z (%) 224 ([M] +, 3), 206 (5), 168 (24), 150 (21), 135 (21), 125 (45), 124 (100). -Sitosterol (16) & Stigmasterol (17) White nee dles (MeOH); mp 138-140 C; [ ] 24 D -35 (c = 0.2, CHCl 3); IR max (neat) cm -1 3400, 2910, 1625, 1450; 1 H NMR (CDCl 3 ) /ppm 0.68 (3H, s, H-18), 0.81 (3H, d, J = 6.8 Hz, H-26), 0.84 (3H, d, J = 6.8 Hz, H-27), 0.86 (3H, t, J = 7.0 Hz, H-29), 0.92 (3H, d, J = 6.4 Hz, H-21), 1.01 (3H, s, H-19), 3.53 (1H, m, H-3), 5.02 (1H, dd, J = 16.1, 8.3 Hz, H-22), 5.12 (1H, dd, J = 16.1, 8.3 Hz, H-23), 5.36 (1H, br s, H-6); EI-MS m/z (%) 414 (80, M + ), 412 (30, M + ), 396 (45), 381 (27), 239 (33), 303 (33), 273 (23), 255 (33), 213 (29), 159 (25), 145 (29). -Sitosterol-D-glucoside (18) & Stigmasterol-D-glucoside (19) White pow der (MeOH); mp 198-200 C; [ ] 24 D -50 (c = 0.1, pyridine); IR max (KBr) cm -1 3400, 2910, 1625, 1450, 1360; 1 H NMR (CDCl 3 ) /ppm 0.68 (3H, s, H-18), 0.84 (3H, s, H-27), 0.86 (3H, t, J = 7.1 Hz, H-29), 0.94 (3H, d, J = 6.5 Hz, H-21), 1.01 (3H, s, H-19), 3.10-3-90 (5H, m, sugar moi ety H), 3.45 (1H, m, H-3), 4.35 (1H, d, J = 7.6 Hz, anomeric H), 5.02

Chem i cal Con stit u ents from Annona glabra III J. Chin. Chem. Soc., Vol. 47, No. 4B, 2000 919 (1H, dd, J = 12.3, 8.3 Hz, H-22), 5.12 (1H, dd, J = 12.3, 8.3 Hz, H-23), 5.25 (1H, d, J = 4.5 Hz, H-6); EI-MS m/z (%) 414 (100, M-glc), 397 (43), 396 (45), 382 (31), 354 (38), 329 (72), 303 (9), 275 (82), 255 (85). 6-O-Palmitoyl- -D-glucosyl- -sitosterol (20) Com pound 20 was pu ri fied by acetylation to yield tri - ace tate. The fol low ing is the phys i cal data of this tri ace tate. Tri ace tate: IR max (KBr) cm -1 1735, 1220, 1160, 1040, 900; 1 H NMR (CDCl 3) /ppm 0.67 (3H, s), 0.82 (3H, d, J = 5.6 Hz), 0.84 (3H, d, J = 6.1 Hz), 0.86 (3H, d, J = 6.1 Hz), 0.93 (3H, d, J = 6.1 Hz), 1.00 (3H, s), 1.26 (br s), 1.61 (2H, m), 2.01, 2.02, 2.04 (each 3H, s), 2.32 (2H, t, J = 7.3 Hz), 3.50 (1H, m), 3.65 (1H, m), 4.15 (1H, dd, J = 12.0, 2.8 Hz), 4.20 (1H, dd, J = 12.0, 5.0 Hz), 4.58 (1H, d, J = 8.0 Hz), 4.97 (1H, dd, J = 9.2, 8.0 Hz), 5.10, 5.17 (each 1H, t, J = 9.2 Hz), 5.36 (1H, d, J = 5.0 Hz). Hy dro lyzed tri ace tate of com pound 20 with NaOH in the mix - ture of MeOH and H 2 O to yield -sitosterol-d-glucoside (18) and fatty acid. The fatty acid was iden ti fied as palmitic acid by spec tral meth ods. By the EI-MS m/z (%) 284 (7, M + ), 85 (75), 71 (52), 57 (100). AC KNOWL EDG MENT This in ves ti ga tion was sup ported by a grant from the Na tional Sci ence Coun cil of the Re pub lic of China. We thank Pro fes sors Kuo-Hsiung Lee and Hui-Kang Wang (School of Phar macy, Uni ver sity of North Carolina at Cha pel Hill) for the mea sure ment of 13 C NMR spec trum of 1. Re ceived Feb ru ary 9, 2000. Key Words Annona glabra; Annonaceae; Al ka loids; 4-Methyl-1H-benzo<g> quinoline-2,5,10-trione; Annobraine. REF ER ENCES 1. Padmaja, V.; Thankamary, V.; Hara, N.; Fujimoto, Y.; Hisham, A. J. Ethnopharmacol. 1995, 48, 21. 2. Yang, T. H.; Chen, C. M. J. Chin. Chem. Soc.1995, 61, 146. 3. Chen, Y. Y.; Chang, F. R.; Wu, Y. C. J. Nat. Prod. 1996, 56, 904. 4. Chen, Y. Y.; Chang, F. R.; Yen, H. F.; Wu, Y. C. Phytochemistry 1996, 42, 1081. 5. Wu, Y. C.; Hung, Y. C.; Chang, F. R.; Cosentino, M.; Wang, H. K.; Lee, K. H. J. Nat. Prod. 1996, 59, 635. 6. Chen, C. Y.; Chang, F. R.; Wu, Y. C. J. Chin. Chem. Soc. 1997, 44, 313. 7. Chen, C. Y.; Chang, F. R.; Wu, Y. C. Tet ra he dron Lett. 1997, 38, 6247. 8. Chen, C. Y.; Chang, F. R.; Wu, Y. C. Tet ra he dron Lett. 1998, 39, 407. 9. Chang, F. R.; Chen, J. L.; Chen, Y. Y.; Chiu, F. F.; Wu, M. J.; Wu, Y. C. Phytochemistry 1998, 47, 1057. 10. Chang, F. R.; Yang, P. Y.; Lin, J. Y.; Lee, K. H.; Wu, Y. C. J. Nat. Prod. 1998, 61, 437. 11. Chen, C. Y.; Chang, F. R.; Yen, H. F.; Wu, Y. C. Phytochemistry 1998, 49, 1443. 12. Chang, F. R.; Wei, J. L.; Teng, C. M.; Wu, Y. C. Phytochemistry 1998, 49, 2015. 13. Chen, C. Y.; Wu, T. Y.; Chang, F. R.; Wu, Y. C. J. Chin. Chem. Soc. 1998, 45, 629. 14. Chang, F. R.; Wei, J. L.; Teng, C. M.; Wu, Y. C. J. Nat. Prod. 1998, 61, 1457. 15. Chen, C. Y.; Chang, F. R.; Chiu, F. F.; Wu, M. J.; Wu, Y. C. Phytochemistry 1999, 51, 429. 16. Chen, C. Y.; Chang, F. R.; Wu, Y. C. J. Chin. Chem. Soc. 1999, 46, 77. 17. Hsieh, T. J.; Chang, F. R.; Wu, Y. C. J. Chin. Chem. Soc. 1999, 46, 607. 18. Chang, F. R.; Chen, J. L.; Chiu, F. F.; Wu, M. J.; Wu, Y. C. Phytochemistry 1999, 51, 883. 19. Hsieh, T. J.; Chen, C. Y.; Kuo, R. Y.; Chang, F. R.; Wu, Y. C. J. Nat. Prod. 1999, 62, 1192. 20. Liaw, C. C.; Chang, F. R.; Wu, Y. C. J. Nat. Prod. 1999, 62, 1613. 21. Chang, F. R.; Chen, C. Y.; Wu, P. H.; Kuo, R. Y.; Chang, Y. C.; Wu, Y. C. J. Nat. Prod. 2000, 63, 746. 22. Chen, C. Y.; Chang, F. R.; Cho, C. P.; Wu, Y. C. J. Nat. Prod. 2000, 63, 1000. 23. Castedo, L.; Iglesias, T.; Puga, A.; Saá, J. M.; Suau, R. Heterocycles 1981, 15, 915. 24. Guinaudeau, H.; Leboeuf, M.; Cave, A. J. Nat. Prod. 1988, 51, 389. 25. Shama, M. The Isoquinoline Al ka loids; Ac a demic Press: New York, 1972; pp 269. 26. Suau, R.; Silva, M. V.; Valpuesta, M. Tet ra he dron 1991, 47, 5841. 27. Perez, J. M.; Vidal, L.; Grande, M. T.; Menendez, J. C.; Avendano, C. Tet ra he dron 1994, 50, 7923.

920 J. Chin. Chem. Soc., Vol. 47, No. 4B, 2000 Chang et al. 28. Chen, K. S.; Chang, F. R.; Chia, Y. C.; Wu, T. S.; Wu, Y. C. J. Chin. Chem. Soc. 1998, 45, 103. 29. Goulart, M. O. F.; Santana, A. E. G.; Oliveira, A. B. D.; Oliveira, G. G. D.; Maia, J. G. S. Phytochemistry 1986, 25, 1691. 30. Achenbach, H.; Frey, D.; Waibei, R. J. Nat. Prod. 1991, 54, 1331. 31. Menachery, M. D.; Blake, G. W.; Gourley, R. C. J. Nat. Prod. 1995, 58, 1945. 32. Chen, C. C.; Huang, Y. L.; Lee, S. S.; Ou, J. C. J. Nat. Prod. 1997, 60, 826. 33. Saá, J. M.; Cava, M. P. J. Org. Chem. 1978, 43, 1096. 34. Castedo, L.; Saá, C.; Saá, J. M.; Suau, R. J. Org. Chem. 1982, 47, 513. 35. Marcos, A; Pedregal, C; Avendano, C. Tet ra he dron 1994, 50, 12941.