RESEARCH REPOSITORY.

Similar documents
2 1 Liu Chunji 2 Kemal Kazan 2. Studies on Conditions for Sporulation of Pathogen Fusarium pseudograminearum

Fusarium stalk rot of sorghum in the Northern region. By Lisa Keller and Malcolm Ryley, Agri-Science Qld, DEEDI, 203 Tor St Toowoomba

Q U A L I T Y I N N O V A T I O N S E R V I C E

Fusarium root rot of soybean occurrence, impact, and relationship with soybean cyst nematode

Fusarium species and Deoxynivalenol in maize product of Moqan region

GRDC Grains Research Update

Deoxynivalenol: Known Facts and Research Questions. DON (deoxynivalenol) is a damaging toxin produced by the fungus Fusarium

Fusarium thapsinum is the dominant species associated with sorghum stalk rot in Queensland and northern New South Wales

MICROBIOLOGY ECOLOGY. Fitness of three Fusarium pathogens of wheat. Introduction RESEARCH ARTICLE

Detoxification of fusarium toxins in transgenic crop plants

Fusarium cob rot management in sweetcorn

EAR AND KERNEL ROTS. When to look for: Mid-August to October (and during storage)

Fusarium strain identification in complex feeds from Romanian market

DOI: /v

Predicting the Unpredictable: Disease Factors in Small Grain Production. Juliet M. Marshall. Idaho Falls and Aberdeen R&E Centers

MANAGEMENT OF FUSARIUM HEAD BLIGHT OF WHEAT USING ANTAGONISTIC MICROORGANISMS

and biocontrol activity of microorganisms for sustainable agriculture

Occurrence of mycotoxin producing Fusarium species and other fungi on wheat kernels harvested in selected districts of Kenya

Effect of Plant Height on Fusarium Head Blight in Spring Wheat

Geoffrey J. Thomas, Bevan J. Buirchell & Ken G. Adcock

Effect of Soil Temperature on Distribution and Population Dynamics of Fusarium Species

Update on Black Leg Disease of Canola John Damicone, Extension Plant Pathologist

Reduction of mycotoxins in cereals through an Integrated Crop Management approach

2011 McAlpine Memorial Lecture - A Love Affair with Fusarium

mycotoxin-contaminated contaminated food or feed

Can Brachypodium distachyon provide insight into FHB? Paul Nicholson Disease and Stress Biology Department John Innes Centre

FOOD SAFETY, TOXICOLOGY AND UTILIZATION OF MYCOTOXIN-CONTAMINATED GRAIN

PS Occurence of Fusarium species isolated from winter wheat and barley grains in Croatia

Bulgarian Journal of Agricultural Science, 14 (No 4) 2008, Agricultural Academy

Role of Seed Analysts in the Management of Scab Disease

16 th Australian Research Assembly on Brassicas. Ballarat Victoria 2009

Fusaria and Fusarium mycotoxins in leaves and ears of maize plants 2. A time course study made in the Waikato region, New Zealand, in 1997

Minnesota Wheat Research and Promotion Council RESEARCH PROPOSAL GRANT APPLICATION (2-pages maximum)

Fusarium Species Associated with Tall Fescue Seed Production in Oregon

Potential Wheat Disease Issues on Seed, Seedlings, Leaves, and Heads for Wheat in the Central Texas Blacklands and Beyond for the Season

Plant Pathology Fact Sheet

Pyricularia grisea causes blight of buffel grass (Cenchrus ciliaris) in Queensland, Australia

Mycotoxins in Saskatchewan Feed Grains

(Fusarium oxysporum f. sp. radicis-cucumerinum)

Molecular differentiation and diagnosis of the cereal pathogens Fusarium culmorum and F. graminearum

Forest Pest Management SD14 M CI Report 87-12

Fusarium sp. associated with stem diseases on sunflowers

Sexual reproduction of

A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop

Cultural and Physiological Variation Between Isolates of Stemphylium botryosum the Causal of Stemphylium Blight Disease of Lentil (Lens culinaris)

Co-Chairpersons: Jim Pestka and Paul Schwarz

Table 1 Disease Ratings* May 22 May 30 Tst Treatment and rate/a Inc Sev Fld Sev Inc Sev Fld Sev Bu/A** LSD P=

REPORT TO THE AGRICULTURAL RESEARCH FOUNDATION FOR THE OREGON PROCESSED VEGETABLE COMMISSION December 2010 Project Title: Management of Fusarium

SHORT COMMUNICATION OCCURRENCE AND DISTRIBUTION OF FUSARIUM SPP. ASSOCIATED WITH DURUM WHEAT SEED FROM ARGENTINA

Genetic Diversity and Fumonisin Analyses of Fusarium species in the Philippines

STUDIES ON FUNGAL POPULATION OF CUMIN (NIGELLA SATIVA L.) FROM DIFFERENT PARTS OF MARATHWADA.

Effect of Environmental Factors on the Growth of Aspergillus Species Associated with Stored Millet Grains in Sokoto.

Plant Pathogen Suppression the Synergistic Effect between Biofertilizer and Irradiated Oligochitosan of Tomato

Physiological studies of Sclerotinia sclerotiorum causing stem rot of fennel (Foeniculum vulgare Mill.)

Fusarium species associated with grain sorghum and mungbean in Queensland Lisa Kelly Bachelor of Agriculture (Plant and Soil Science) (Hons Class IIB)

Pulse disease update for Syama Chatterton, Mike Harding, Robyne Bowness, Kan-Fa Chang Agronomy Update January 9-10, 2018, Red Deer, AB

Mycoflora epidemiology in postharvest maize along different actors in Jimma Zone, SW Ethiopia: Implication for Mycotoxins producing fungi management

Fusarium infection and mycotoxins on cereals in reduced tillage

Effect of time of harvest on the incidence of Fusarium spp. in kernels of silage corn

A COMPARISON OF SCREENING TECHNIQUES FOR FUSARIUM HEAD BLIGHT OF WHEAT IN SOUTH AFRICA

Bulgarian Journal of Agricultural Science, 14 (No 3) 2008, Agricultural Academy

Effects of jasmonic acid signalling on the wheat microbiome differ between

Stategic Planning for Mitigation of Fusarium Head Blight in Wheat

Asian Journal of Agriculture and Rural Development. Screening of Mycotoxin Produced by Fusarium Verticillioides and F. Proliferatum in Culture Media

Alternative Methods for the Control of Mycotoxins

A survey of Fusarium species associated with wheat and grass stem bases in northern Turkey

Fusarium Head Scab Management in Alabama Wheat

Preliminary report of Dehulling effect on the occurrence and distribution of Aspergillus flavus in maize grains stored in Mubi market

Exploring myxomycetes for possible applications as antagonists in bio-control of plant pathogens

Maize redness. a serious threat to corn production Disease epidemiology and strategies for control of the insect-vector Reptalus panzeri

The Influence of Fungicide Treatment on the Production and the Quality of Several Autumn Wheat Varieties

Int.J.Curr.Microbiol.App.Sci (2016) 5(8):

In vitro growth characteristics of fusarium langsethiae isolates recovered from oats and wheat grain in the UK

Seasonal and daily variation in the airborne concentration of Gibberella zeae (Schw.) Petch spores in Manitoba

Plant Diseases in Globally Changing Russian Climate

Presowing treatment of seeds of cereals and tubers of potato seeds Spraying of vegetative plants

Mycotoxigenic Fusarium species in animal feed

Plant Disease and Insect Advisory

STUDIES ON CULTURAL, MORPHOLOGICAL AND PATHOGENIC VARIABILITY AMONG THE ISOLATES OF FUSARIUM OXYSPORUM F. SP. CICERI CAUSING WILT OF CHICKPEA

FINAL RESULTS REPORT. Survey for Head Blight of Cereals and Stalk Rot of Corn Caused by Fusarium graminearum in Alberta in 2011

THE INFLUENCE OF THE NUMBER OF FUNGICIDE TREATMENTS UPON THE QUANTITY AND QUALITY OF WINTER WHEAT YIELD IN CLIMATIC CONDITIONS OF ARDS TURDA

Canadian Journal of Plant Science

Incidence of Fusarium spp. on several field crops in Estonia and their toxicity towards Bacillus stearothermophilus

MIDHILA PADMAN and JANARDHANA G R*

Evaluation of botanicals and bioagents against chickpea wilt complex pathogens

Single-Kernel Near-Infrared Analysis for Evaluating Wheat Samples for Fusarium Head Blight Resistance

Factors Influencing Deoxynivalenol Accumulation in Small Grain Cereals

Crop Staging guide FungiCideS

AMADEPA Association Martiniquaise pour le Developpement des Plantes Alimentaires

GRDC Grains Research Update

CARIBBEAN FOOD CROPS SOCIETY 44 Forty Fourth Annual Meeting 2008

Enhancing Resistance to Fusarium graminearum in Danish and Iraqi Local Winter Wheat Varieties under Greenhouse Conditions

Fusarium Diseases of Tomato. Hung Doan, Gene Miyao and Mike Davi Department of Plant Pathology University of California, Davis

MYCOTOXINS IN PLANT DISEASE

Fusarium Species Pathogenic to Barley and Their Associated Mycotoxins

TIMELY INFORMATION Agriculture & Natural Resources

Mildew Mania Results 2016

ERGOT. Ergot as a Plant Disease. Symptoms and Signs. PP-551 (revised), May 2002

Journal of Plant Pathology (2009), 91 (2), Edizioni ETS Pisa, AND AFLATOXIN B 1

Field Guide to Maize Diseases in Hawaii Seed Corn Nurseries. By David Case

Transcription:

RESEARCH REPOSITORY This is the author s final version of the work, as accepted for publication following peer review but without the publisher s layout or pagination. The definitive version is available at: http://dx.doi.org/10.1007/s13314-011-0037-3 Wright, D. G., Khangura, R., Loughman, R., Bentley, A. and Fosu- Nyarko, J. (2012) First record of Gibberella zeae and Gibberella coronicola on millet in Western Australia. Australasian Plant Disease Notes, 7 (1). pp. 19-21. http://researchrepository.murdoch.edu.au/id/eprint/16265/ Copyright: 2011 Australasian Plant Pathology Society Inc. It is posted here for your personal use. No further distribution is permitted.

First record of Gibberella zeae and Gibberella coronicola on millet in Western Australia D. G. Wright 1, R. Khangura 1, R. Loughman 1, A. Bentley 2 & J. Fosu-Nyako 3 1.Department of Agriculture and Food, Western Australia, Perth, Australia 2.University of Sydney, Sydney, Australia 3.WA State Agricultural Biotechnology Centre, School of Biological Sciences and Biotechnology, Murdoch University, Perth, Australia Abstract Perithecia carrying asci with mature ascospores were observed on millet stubble ( miliaceum and ) and were identified as Gibberella zeae and Gibberella coronicola for the first time in Western Australia. Morphological identification and molecular assays confirmed the presence of the anamorph Fusarium graminearum and Fusarium respectively. Keywords: Gibberella zeae; Gibberella coronicola; miliaceum; Fusarium head blight; Crown rot

Fusarium graminearum (Schwabe). and (Aoki & O Donnell), the causal agent of Fusarium head blight (FHB) and crown rot (CR) of cereals respectively, have been reported in Queensland, northern New South Wales, including the Liverpool Plains area, on wheat, barley, maize and sorghum (Manning et al. 2000). has also been reported in Victoria and South Australia on wheat, and barley (Akinsanmi et al. 2004; Burgess et al. 1975, 2001; Purss 1969, 1971). graminearum was first detected in Western Australia (WA) in 1959 on sorghum causing a stalk rot (Shivas 1989); and more recently in 2004 on wheat and barley grain (Wright et al. 2010). Gibberalla zeae (Schw.), the teleomorph of graminearum is known to occur abundantly in nature throughout the world (Summerell et al. 2001), causing stalk and cob rot of maize and FHB of cereals. The fungus is homothallic and readily produces fertile perithecia in culture. In contrast, G. coronicola (Aoki and O Donnell 1999), the teleomorph of, is less common (Summerell et al. 2001) and generally does not produce perithecia in culture. G. coronicola has been found on mature wheat crops when the soil is wet or after a rain period. In 1996 and 1999, Summerell et al. (2001) collected G. coronicola perithecia associated with high levels of crown rot in wheat crops from the Moree district of NSW. However, in WA neither of the teleomorph stages had been previously detected on cereal grain crops; although, G. zeae had previously been reported as causing foot and root rot in rice (Oryza sativa L.), in Kununurra, WA (Shivas 1989). With the identification of graminearum on wheat seeds for the first time in WA in June 2004 (Wright et al. 2010), a field survey was conducted to investigate if the anamorph and teleomorph stages survive in paddocks growing summer small grain cereal crops. The survey was conducted by Department of Agriculture and Food, Western Australia (DAFWA) plant pathologists and local District Office staff. Stubble samples were collected in July and August from locations with a history of summer production of millet for grain or forage production; 33 millet paddocks were inspected and samples collected from Mt Barker to Condingup (Fig. 1). The stubble collected was examined visually for the presence or absence of perithecia. The size of the perithecia and associated ascospores were measured. Single ascospore cultures were then grown on

carnation leaf agar (CLA) and on potato dextrose agar (PDA) for 4 weeks as per protocol in Burgess et al. (1994). The anamorph stage of the fungus was then identified morphologically, according to Burgess et al. (1994) and assayed by polymerase chain reaction (PCR) using species-specific primers to verify results. The primer sets used were: (a) Fg 16NF and Fg 16 NR for graminearum (Nicholson et al. 1998); and (b) FPG-F, FPG-R (Williams et al. 2002) and Fp 1 1 and Fp 1 2 (Aoki and O Donnell 1999) for. Based on the morphological characteristics of perithecia, asci and ascospores both G. zeae and G. coronicola were detected on 4 and 2 properties (Table 1) growing millet as a summer grain or forage crop in rotation with winter cereals respectively. The observed perithecia for G. zeae were black/purple in colour and globose/tuberculate in shape (Table 1). The average diameter of the perithecia was 212 μm. The ascospores were ellipsoidal, with an average of 3 septa and with no constriction. The size of the ascospores ranged from 22.5 34.5 5 6.1 μm, (averaging 26 5.4 μm) consistent with those observed by Summerell et al. (2001). For G. coronicola the observed perithecia were globose and dark and the ascospores were ellipsoidal, generally with 3 septa and a slight constriction at the septa. The size of the ascospores ranged from 22 30 4.4 5 μm, (averaging 26.5 4.6 μm) (Table 1) and were found to be consistent with the previously published description of this fungus (Summerell et al. 2001). All single ascospore cultures of G. coronicola were identified as by both morphological and PCR analysis. The PCR analysis on single ascospore cultures of G. zeae were confirmed as graminearum. Three out of four cultures were also confirmed morphologically to be graminearum. Because one of the cultures failed to produce perithecia it was identified as. Samples of both the stubble and cultures have been submitted to the WA Culture Collection (WAC) (Table 1). To our knowledge this is the first report of G. zeae and G. coronicola occurring on millet stubble in Western Australia. These findings have implications in the long distance spread of the pathogens G. zeae and G. coronicola associated with the disease Fusarium head blight and Fusarium crown rot in the wheatbelt, where millet is used as a summer rotation crop.

Acknowledgements We would like to thank all Regional and Metro based staff of DAFWA involved in the collection of samples during the survey. We would also like to thank all technical staff involved in the processing of samples and the laborious work involved in the identification of the cultures. References Akinsanmi OA, Mitter V, Simpfendorfer S, Backhouse D, Chakraborty S (2004) Identity and pathogenicity of Fusarium spp. isolated from wheat fields in Queensland and northern New South Wales. Aust J Agric Res 55:97 107 Aoki T, O Donnell K (1999) Morphological and molecular characterisation of Fusarium nov., formerly recognised as the Group 1 population of graminearum. Mycologia 91:597 609 Burgess LW, Backhouse D, Summerell BA, Swan J (2001) Crown rot of wheat. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Fusarium: Paul E. Neslon memorial symposium. APS Press, St Paul, pp 271 294 Burgess LW, Summerell BA, Bullock S, Gott KP, Backhouse D (1994) Laboratory manual for Fusarium research. Fusarium Research Laboratory, The University of Sydney and The Royal Botanical Gardens, Sydney Burgess LW, Wearing AH, Toussoun TA (1975) Surveys of Fusaria associated with crown rot of wheat in Eastern Australia. Aust J Agric Res 26:791 9 Manning B, Southwell R, Hayman P, Moore K (2000) Fusarium head blight in northern NSW. NSW Agriculture Research Update, AgDex 110/637 Nicholson P, Simpson DR, Weston G, Rezanoor HN, Lees AK, Parry DW, Joyce D (1998) Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol Mol Plant Pathol 53:17 37 Purss GS (1969) The relationship between strains of Fusarium graminearum Schwabe causing crown rot of various gramineous hosts and stalk rot of maize in Queensland. Aust J Agric Res 20:257 264 Purss GS (1971) Pathogenic specialization in Fusarium graminearum. Aust J Agric Res 22:553 561 Shivas R (1989) Fungal and bacterial diseases of plants in Western Australia. J R Soc West Aust 72:1 62 Summerell BA, Burgess LW, Backhouse D, Bullock S, Swan LJ (2001) Natural occurrence of perithecia of Gibberella coronicola on wheat plants with crown rot in Australia. Australas Plant Pathol 30:353 356 Williams KJ, Dennis JI, Smyl C, Wallwork H (2002) The application of species-specific assays based on the polymerase chain reaction to analyse Fusarium crown rot of durum wheat. Australas Plant Pathol 31:119 127 Wright DG, Thomas GJ, Loughman R, Fuso-Nyarko J, Bullock S (2010) Detection of Fusarium graminearum in wheat grains in Western Australia. Australas Plant Dis Notes 5:82 84. doi:10.1071/dn10029

Fig. 1 Map of survey area showing detection of G. zeae and G. coronicola on millet stubble in Western Australia

Table 1 Morphological characteristics of perithecia, asci and ascospores of Gibberella zeae and G. coronicola collected from millet stubble (, and P.miliaceum) occurring naturally in the field WA Culture Collection Number (WAC) Location Host Size of perithecia (Average of 10) μm Colour and Shape of perithecia Size of Asci (Average of >5) μm Size of Ascospores (Average of 10) μm Teleomorph stage detected Morphological results of anamorph stage PCR results 11426 Gibson 262.5 Globose, dark 82 10 30.7 5.1 G. coronicola 11428 Gibson 205 Globose, dark 88 12 26.9 5 G. coronicola 11431 Esperance 316.2 77 13 30.5 4.5 G. coronicola 11431 Esperance 316.2 77 13 34.5 6.1 G. zeae graminearum 11432 Mt Barker miliaceum 286.9 62.5 10 23.5 5.5 G. zeae graminearum graminearum 12340 Wellstead 212 Globose 93.5 10 22.5 5 G. zeae graminearum graminearum 12341 Munglinup miliaceum 207.1 76.6 9.6 25 5 G. zeae graminearum graminearum WA Western Australia, WAC Western Australia Culture Collection Number