Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition

Similar documents
Statistical analysis of epileptic activities based on histogram and wavelet-spectral entropy

Classification of EEG signals using Hyperbolic Tangent - Tangent Plot

Epileptic seizure detection using linear prediction filter

Epileptic Seizure Detection using Spike Information of Intrinsic Mode Functions with Neural Network

Selection of Feature for Epilepsy Seizer Detection Using EEG

EPILEPTIC SEIZURE DETECTION USING WAVELET TRANSFORM

Automatic Seizure Detection using Inter Quartile Range

Automatic Detection of Epileptic Seizures in EEG Using Machine Learning Methods

Minimum Feature Selection for Epileptic Seizure Classification using Wavelet-based Feature Extraction and a Fuzzy Neural Network

Epileptic Seizure Classification using Statistical Features of EEG Signal

EEG signal classification using Bayes and Naïve Bayes Classifiers and extracted features of Continuous Wavelet Transform

Discrimination between ictal and seizure free EEG signals using empirical mode decomposition

Applying Data Mining for Epileptic Seizure Detection

Detection of Epileptic Seizure

Epileptic Seizure Classification of EEG Image Using ANN

DISCRETE WAVELET PACKET TRANSFORM FOR ELECTROENCEPHALOGRAM- BASED EMOTION RECOGNITION IN THE VALENCE-AROUSAL SPACE

Reliable Epileptic Seizure Detection Using an Improved Wavelet Neural Network

Performance Analysis of Epileptic EEG Expert System Using Scaled Conjugate Back Propagation Based ANN Classifier

Classification of Epileptic EEG Using Wavelet Transform & Artificial Neural Network

Epileptic Seizure Classification Using Neural Networks With 14 Features

Research Paper: A Hybrid Approach Based on Higher Order Spectra for Clinical Recognition of Seizure and Epilepsy Using Brain Activity

Epilepsy Seizure Detection in EEG Signals Using Wavelet Transforms and Neural Networks

TOWARDS AUTOMATIC EPILEPTIC SEIZURE DETECTION IN EEGS BASED ON NEURAL NETWORKS AND LARGEST LYAPUNOV EXPONENT

Australian Journal of Basic and Applied Sciences

MULTICLASS SUPPORT VECTOR MACHINE WITH NEW KERNEL FOR EEG CLASSIFICATION

Automatic Epileptic Seizure Detection in EEG Signals Using Multi-Domain Feature Extraction and Nonlinear Analysis

Empirical Mode Decomposition based Feature Extraction Method for the Classification of EEG Signal

EEG Analysis Using Neural Networks for Seizure Detection

Research Article A Fuzzy Logic System for Seizure Onset Detection in Intracranial EEG

Research Article Detection of Epileptic Seizure Event and Onset Using EEG

An Edge-Device for Accurate Seizure Detection in the IoT

CHAPTER 2 LITERATURE REVIEW

Development of 2-Channel Eeg Device And Analysis Of Brain Wave For Depressed Persons

Implementation of Probabilistic Neural Network using Approximate Entropy to Detect Epileptic Seizures

A moving window approximate entropy in wavelet framework for automatic detection of the onset of epileptic seizures.

Epileptic seizure detection using EEG signals by means of stationary wavelet transforms

NEURAL NETWORK CLASSIFICATION OF EEG SIGNAL FOR THE DETECTION OF SEIZURE

Research Article A New Approach to Detect Epileptic Seizures in Electroencephalograms Using Teager Energy

EEG Signal Classification using Fusion of DWT, SWT and PCA Features

EEG Signal Classification Using Wavelet Feature Extraction and Neural Networks

Epileptic Seizure Detection in Electroencephalograms using Time-Frequency Analysis

arxiv: v1 [cs.lg] 4 Feb 2019

CLASSIFICATION AND MEDICAL DIAGNOSIS OF SCALP EEG USING ARTIFICIAL NEURAL NETWORKS. Received August 2010; revised December 2010

Patient-Specific Epileptic Seizure Onset Detection Algorithm Based on Spectral Features and IPSONN Classifier

Epilepsy Disorder Detection from EEG Signal

Keywords: Adaptive Neuro-Fuzzy Interface System (ANFIS), Electrocardiogram (ECG), Fuzzy logic, MIT-BHI database.

ANALYSIS OF BRAIN SIGNAL FOR THE DETECTION OF EPILEPTIC SEIZURE

Analysis of EEG Signal for the Detection of Brain Abnormalities

Feature Extraction of Epilepsy Seizure Using Neural Network

Feature Parameter Optimization for Seizure Detection/Prediction

Selecting Statistical Characteristics of Brain Signals to Detect Epileptic Seizures using Discrete Wavelet Transform and Perceptron Neural Network

Automated Detection of Epileptic Seizures in the EEG

Optimal preictal period in seizure prediction

CHAPTER 1 INTRODUCTION

Examination of Multiple Spectral Exponents of Epileptic ECoG Signal

A micropower support vector machine based seizure detection architecture for embedded medical devices

Research Article Automated Epileptic Seizure Detection in Scalp EEG Based on Spatial-Temporal Complexity

Epilepsy is assessed easily with the help of Electroencephalogram (EEG). Due to the non-stationary and non-linear nature

A Novel Feature Extraction Method for Epileptic EEG Based on Degree Distribution of Complex Network

Epilepsy is the fourth most common neurological disorder

Automated Epileptic Seizure Prediction for Brain Disorder People

DIMENSIONALITY REDUCTION FOR EEG CLASSIFICATION USING MUTUAL INFORMATION AND SVM

Diagnosis of Epilepsy from EEG signals using Hilbert Huang transform

CHAPTER 6 INTERFERENCE CANCELLATION IN EEG SIGNAL

Implementation of Epileptic EEG using Recurrent Neural Network

EEG Signal Processing for Epileptic Seizure Prediction by Using MLPNN and SVM Classifiers

Combining complexity measures of EEG data: multiplying measures reveal previously hidden information

Feature Extraction Method for Epileptic Seizure Detection Based on Cluster Coefficient Distribution of Complex Network

An IoT-based Drug Delivery System for Refractory Epilepsy

Spectral Analysis of EEG Patterns in Normal Adults

Automated Epileptic Seizure Detection in EEG Signals Using FastICA and Neural Network

Separation Of,, & Activities In EEG To Measure The Depth Of Sleep And Mental Status

Automatic Seizure Detection Based on Wavelet-Chaos Methodology from EEG and its Sub-bands

Classification of Frontal EEG Signals of Normal Subjects to Differentiate Gender by Using Artificial Neural Network

Swarm Negative Selection Algorithm for Electroencephalogram Signals Classification

Seizure Prediction Through Clustering and Temporal Analysis of Micro Electrocorticographic Data

Comparison of Mamdani and Sugeno Fuzzy Interference Systems for the Breast Cancer Risk

ON THE USE OF TIME-FREQUENCY FEATURES FOR DETECTING AND CLASSIFYING EPILEPTIC SEIZURE ACTIVITIES IN NON-STATIONARY EEG SIGNALS

Advanced method of Epileptic detection Using EEG by Wavelet Decomposition

Performance Analysis of Epileptic Seizure Detection Using DWT & ICA with Neural Networks

Database of paroxysmal iceeg signals

Linear Features, Principal Component Analysis, and Support Vector Machine for Epileptic Seizure Prediction Progress

Phase Average Waveform Analysis of Different Leads in Epileptic EEG Signals

DETECTION OF EPILEPTIC SEIZURE SIGNALS USING FUZZY RULES BASED ON SELECTED FEATURES

Emotion Detection from EEG signals with Continuous Wavelet Analyzing

Daubechies Wavelet Neural Network Classifier for the Diagnosis of Epilepsy

Research Article Comparison of Baseline Cepstral Vector and Composite Vectors in the Automatic Seizure Detection Using Probabilistic Neural Networks

A Brain Computer Interface System For Auto Piloting Wheelchair

t(s) FIGURE 1 a) t(s) FIGURE 1 b)

Online Seizure Prediction Using An Adaptive Learning Approach

A New Approach to Automated Epileptic Diagnosis Using EEG and Probabilistic Neural Network

Performance Analysis of Human Brain Waves for the Detection of Concentration Level

1. Introduction

EPILEPSY is the most common neurological disorder,

Spatial and Temporal Analysis of Interictal Activity in the Epileptic Brain

Est-ce que l'eeg a toujours sa place en 2019?

A Machine Learning System for Automated Whole-Brain Seizure Detection

Classification of EEG signals in an Object Recognition task

ELECTROENCEPHALOGRAPHIC SLOWING: A PRIMARY SOURCE OF ERROR IN AUTOMATIC SEIZURE DETECTION

Review: A Survey of Performance and Techniques for Automatic Epilepsy Detection

Transcription:

I.J. Intelligent Systems and Applications, 2013, 06, 41-46 Published Online May 2013 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijisa.2013.06.05 Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition S. A. Hosseini Dept. of Electrical Engineering, Center of Excellence on Soft Computing and Intelligent Information Processing, Ferdowsi University of Mashhad, Mashhad, Iran E-mail: hosseyni@kiaeee.org M-R. Akbarzadeh-T Dept. of Electrical and Computer Engineering, Center of Excellence on Soft Computing and Intelligent Information Processing, Ferdowsi University of Mashhad, Mashhad, Iran M-B. Naghibi-Sistani Dept. of Electrical and Biomedical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran Abstract A chaos-anfis approach is presented for analysis of EEG signals for epileptic seizure recognition. The non-linear dynamics of the original EEGs are quantified in the form of the hurst exponent (H) and largest lyapunov exponent (λ). The process of EEG analysis consists of two phases, namely the qualitative and quantitative analysis. The classification ability of the H and λ measures is tested using ANFIS classifier. This method is evaluated with using a benchmark EEG dataset, and qualitative and quantitative results are presented. Our inter-ictal EEG based diagnostic approach achieves 97.4% accuracy with using 4-fold cross validation. Diagnosis based on ictal data is also tested in ANFIS classifier, reaching 96.9% accuracy. Therefore, our method can be successfully applied to both inter-ictal and ictal data. Index Terms ANFIS, EEG, Hurst Exponent, Lyapunov Exponent I. Introduction Epilepsy is a brain disorder that is characterized by sudden and recurrent seizures. Epilepsy can cause abnormal electrical activity in the brain and may alter consciousness, perception, sensation, behavior and body movement. Patients experience varied symptoms during seizures depending on the location and extent of the affected brain tissue. Most seizures are very brief and is rarely life threatening. Depending on the extent of the involvement of brain areas during the epilepsy, it can be divided into two main types that according to the International League Against Epilepsy (ILAE), in 1981, includes: 1- Generalized seizures that involve almost the entire brain, 2- Partial (or focal) seizures that originate from a circumscribed area of the brain and remain restricted to that area [1]. Generalized seizures can be divided into several main types, such as Absence, Atypical Absence, Myoclonic, Clonic, Tonic, Tonicclonic, and Atonic seizures. In addition, Partial seizures can be divided into three main types such as Simple partial, Complex partial, and Secondarily generalized seizures. Due to a large number of patients in intensive care units (ICU) and the need for continuous observation of such conditions, several methods for epileptic seizure recognition have been developed in the past. Several quantitative system approaches incorporating statistical techniques, dynamical systems and optimization for brain disorders [2]. In assessment of epilepsy, brain activity plays a central role. Electroencephalography (EEG) is a technique, which contains much information about the patient s psycho-physiological state [3]. Therefore, EEG has become the premier diagnostic method for epilepsy recognition. EEG can be recorded in two essential ways: The first and most common is non-invasive recording known as scalp recording. The second is invasive recording that often is known as inter-cranial EEG. Frequency bands of EEG signals are interesting to be interpreted such as delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (> 30 Hz). In principle, there are two different scenarios of how a seizure could evolve. It could be caused by a sudden and abrupt transition, in which case it would not be preceded by detectable dynamical changes in the EEG. Such a scenario would be conceivable for the initiation of seizures in primary generalized epilepsy. Alternatively, this transition could be a gradual change in dynamics, which could in theory, is detectable. This type of transition could be more likely in focal epilepsies. About dynamical states of epileptic EEG signals, there are some main classic states of inter-ictal, pre-ictal, ictal, and post-ictal; but clinical and laboratory experiments leave little doubt that a pre-seizure period

42 Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition exists in temporal lobe and perhaps other forms of epilepsy. Its existence, however, raises fundamental questions about what constitutes a seizure, what brain regions are involved in seizure generation, and whether discrete inter-ictal, pre-ictal, ictal, and post-ictal physiologies exist, or blend together in a continuous process [4]. Feature extraction process plays a very important role on the classification performance. In this research, Nonlinear measures like Correlation dimension, Fractal dimension, Hurst exponent and Lyapunov exponent, quantify the degree of complexity in a time series. Features are selected so that they capture the differences between the epileptic and normal EEG. Fuzzy set theory plays an important role in dealing with uncertainty when making decisions in medical applications. Fuzzy sets have attracted the growing attention and interest in modern information technology, production technique, decision making, pattern recognition, diagnostics, and data analysis. Neuro-fuzzy systems are fuzzy systems, which use Artificial Neural Networks (ANNs) theory in order to determine their properties (fuzzy sets & fuzzy rules) by processing data. A lot of research has been undertaken in assessment of epilepsy over the last few years. Gotman [5] presented a computerized system for recognizing a variety of seizures, in year 1982. Murro et al. [6] developed a seizure recognition system based on the discriminant analysis of the EEG signal recorded from the intracranial electrodes. Choosing suitable features is important for seizure recognition. Many features have been investigated based on time domain and frequency domain [7,8], wavelet transformation [9,10], Fourier Transformat ion [11], energy distribution in t imefrequency plane [12], and chaotic features [13-17]. Subasi [9] used a method for analysis of EEG signals using discrete wavelet transform (DWT) and classification using an ANFIS. Non-linear features of EEG signals have also often explained complex structure of epilepsy [18,19]. Kannathal et al. [16] have shown the importance of various entropies for recognition of epilepsy. Adeli et al. [20] presented a wavelet-chaos methodology for analysis of EEGs and delta, theta, alpha, beta, and gamma sub-bands of EEGs for recognition of seizure. Ghosh-Dastidar et al. [21] presented a wavelet-chaos-neural network methodology for classification of EEGs into healthy, ictal, and interictal EEGs. From studies reported in the literature, EEG signals can be considered chaotic. In this research, an approach based on Adaptive Neuro-Fuzzy Inference System (ANFIS) was presented for the seizure recognition. The main aim of this research is to produce a multi-aspect combination of chaos and ANFIS for epileptic seizure recognition using EEG signals. II. Methods and Materials 2.1 Database For studying epilepsy, the subjects that are used are either human o animal. EEG signals used for this research are obtained from Bonn University, Germany, which is available in public domain [22]. The complete datasets consists of five sets of data (denoted A E), each containing 100 single-channel EEG segments. Each segment has N=4096 sampling points over 23.6 seconds. All EEG signals were recorded with the same 128-channel amplifier system and 12 bit A/D resolution, which the sampling rate of the data was 173.61 Hz, which it have the spectral bandwidth of the acquisition system is between 0.5 to 85 Hz. These segments were selected and cut out from continuous multi-channel EEG recordings after visual inspection for artifacts such as muscle activity, eye movements etc. Sets A and B have been recorded from external surface EEG recordings of five healthy volunteers in the wake state with eyes open and eyes closed, respectively. Sets C, D and E have been recorded from depth electrodes EEG recordings from five patients. Sets A and B have been recorded during normal state. Set D were recorded from within the epileptogenic zone (Inter-ictal period), and those in set C from the hippocampal formation of the opposite hemisphere of the brain (Inter-ictal period). Set E has been recorded during seizure activity (Ictal). Figure 1 shows the sample recordings of EEG signals obtained from five sets A-E. For a more detailed description of the data, please refer to the [22]. Fig. 1: Sample recordings of A, B, C, D and E dataset from top to bottom 2.2 Features Extraction Choice of the methods and measures for discriminating dynamical changes of epileptic signals highly depends on the characteristics of epileptic EEG signals, on the other hand, regarding type of seizure, specifications of individuals who data are recorded from them etc, are important parameters that have significant effect on results of recognition and classifying of epileptic EEG signals.

Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition 43 In this research to concentrate on the recognition of dynamic changes of EEG signals recording, a short epoch of data is selected. The time series of data are divided into 2 seconds epochs with an overlap of 1 second. Non-linear and chaotic measures have received the most attention in comparison with the measures mentioned before such as time domain, frequency domain, time-frequency etc. 1) Hurst exponent The name Hurst exponent (H) derives from Harold Edwin Hurst in 1951 [23]. The Hurst exponent is directly related to the Fractal dimension. a s mall Hurst exponent has a higher fractal dimension and vice versa. Brownian walks can be generated from a defined Hurst exponent. H has a value between 0 and 1 (0 H 1). If a value H in the range 0.5 < H < 1, the random walk will be a long-term memory process (or positive correlated time series or persistent). A value H in the range 0 < H < 0.5 can indicate anti-correlated time series (anti-persistent). A value of H = 0.5 can indicate a completely uncorrelated time series. Hurst exponent are shown in Figures 2, 3 and 4 corresponding to the A, C and E data, respectively. Fig. 4: Hurst exponent of the EEG signal corresponding to ictal time series (E). From the above Figures 2, 3 and 4 it is clear that the value of Hurst exponent for non-epileptic signal sets A, B is less than epileptic signal set E. 2) Lyapunov exponent The lyapunov exponents have been proven the useful dynamical quantity for the chaotic system analysis [25]. Lyapunov exponents define the average exponential rates of divergence or convergence of the nearby orbits in the phase space and can be estimated using largest lyapunov exponent (λ). A negative lyapunov exponent indicates that, the orbit attracts to a stable fixed point (or stable periodic orbit). A lyapunov exponent of zero indicates that, the orbit is a neutral fixed point (or an eventually fixed point). A positive lyapunov exponent indicates that, the orbit is unstable and chaotic. Lyapunov exponent is shown in Figure 5 corresponding to the A, C and E data, respectively. Fig. 2: Hurst exponent of the EEG signal corresponding to normal time series (A). Fig. 5: Plot of λ values for EEG signals between three different classes. Fig. 3: Hurst exponent of the EEG signal corresponding to inter-ictal time series (C). From the above Figure, it is clear that the value of Lyapunov exponent for epileptic signal set E, is less than non-epileptic signal sets A, B.

44 Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition 2.3 Classification The Adaptive Neuro-Fuzzy Inference System, first introduced by Jang in 1993 [24,25]. The ANFIS is a fuzzy Sugeno model put in the framework of adaptive systems to facilitate learning and adaptation [24]. Jang showed that even if human expertise is not available it is possible to intuitively set up practical membership function and employs the neural training process to generate a set of fuzzy IF-THEN rules that Approximate a desired data set [24]. In this structure, there are five layers in the overall network framework, including the fuzzification layer, product layer, normalization layer, defuzzification layer and the total output layer. III. Computation Results and Analysis The process of EEG analysis consists of two states: first the qualitative analysis and second the quantitative analysis of EEG signals. The qualitative results are presented in this section. The value of Hurst exponent for non-epileptic signal sets A, B is less than epileptic signal set E. In addition, the value of Lyapunov exponent for epileptic signal set E, is less than non-epileptic signal sets A, B. The reduce in λ value, and the increase in H value to mean the reduction in brain system complexity for subjects with seizure state, therefore the number of the necessary dynamic equations for the description of the brain state in the seizure state decreases. The quantitative results and comparison with the other researchers presented in this section. As shown in Table. 1, we designed three experiments to test the ability of our classifier to separate: 1- Normal EEG (sets A and B) vs. inter-ictal EEG (sets C and D) 2- Normal EEG (sets A and B) vs. ictal EEG (set E) 3- Inter-ictal EEG (sets C and D) vs. ictal EEG (set E) Table 1: The classification accuracy for three experiments Number Experiment Classification accuracy (%) 1 Normal vs. inter-ictal 97.4 2 Normal vs. ictal 96.9 3 Inter-ictal vs. ictal 96.5 The classifier is validated using 4-fold cross validation on 400, 300 and 300 samples, respectively, in experiments 1, 2 and 3. In experiment 1, the accuracy using inter-ictal EEG for epileptic recognition reaches 97.4%. In experiment 2, the accuracy using ictal data reaches 96.9%. In experiment 3, 96.5% accuracy shows our system can distinguish ictal vs. inter-ictal EEG. For A E or A, B E classification, the result obtained from our method is better than [16] and [9] researches with 7.4% and 3.4% difference to discriminate EEGs, respectively. For A, B, C, D E classification, the accuracy obtained from [1] is better than [12] with 0.04% difference. IV. Conclusion This research has presented the analysis of the EEG signals for the characterization of the epileptic behavior of the brain activity. We investigated the chaotic dynamics underlying the EEG in patients with Epilepsy s disease by non-linear analysis to understand the role of chaos in brain function. Therefore, presents a novel method for epileptic seizure recognition using chaotic features and ANFIS classifier. We calculated the hurst exponent and largest lyapunov exponent for non-linear analysis of EEG signals. The process of EEG analysis consists of two states: first the qualitative analysis and second the quantitative analysis of EEG signals. The reduce in λ value and the increase in H value to mean the reduction in brain system complexity for subjects with seizure state, therefore the number of the necessary dynamic equations for the description of the brain state in the seizure state decreases. Therefore, chaotic features could be helpful to distinguishing between epileptic EEG and normal EEG. This method is evaluated using a benchmark EEG dataset, and qualitative and quantitative results are presented. Our inter-ictal EEG based diagnostic approach achieves 97.4% accuracy in 4-fold cross validation. Diagnosis based on ictal data is also tested in ANFIS classifier, reaching 96.9% accuracy. Therefore, our method can be successfully applied to both inter-ictal and ictal data. We show that non-linear analysis can provide a promising tool for detecting relative changes in the complexity of brain dynamics, which may not be detected by conventional linear analysis. The testing performance of the model diagnostic system is found to be satisfactory and we think that this system can be used in clinical studies in the future after it is developed. Acknowledgments The authors would like to acknowledge Dr. R.G. Andrzejak of Bonn University, Germany, for providing permission to use the EEG signals available in the public domain. References [1] L. Guo, D. Rivero, J. Dorado, J. R. Rabu nal, and A. Pazos, Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks, Journal of Neuroscience Methods, vol. 191, no. 1, pp. 101-109, 2010. [2] W. Chaovalitwongse, P. Pardalos, L. D. Iasemidis, D. S. Shiau, and J. C. Sackellares, Dynamical

Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition 45 approaches and multi-quadratic integer programming for seizure prediction, Optimization methods and Software, vol. 20, no. 2-3, pp. 389-400, 2005. [3] Y. Kumar, and M. L. Dewal, Complexity Measures for Normal and Epileptic EEG Signals using ApEn, SampEn and SEN, International Journal of Computer & Communication Technology (IJCCT), vol. 2, Issue 7, pp. 6-12, 2011. [4] B. Litt, and K. Lehnertz, Seizure prediction and the preseizure period, Current Opinion in Neurology, vol. 15, no. 2, pp. 173-177, 2002. [5] J. Gotman, Automatic recognition of epileptic seizures in the EEG, Electroencephalogr Clin Neurophysiol, vol. 54, pp. 530 540, 1982. [6] A. M. Murro, D. W. King, J. R. Smith, B. B. Gallagher, H. F. Flanigin, and K. Meador, Computerized seizure detection of complex partial seizures, Electroencephalogr Clin Neurophysiol, vol. 79, pp. 330 333, 1991. [7] V. Srinivasan, C. Eswaran, and N. Sriraam, Artificial Neural Network Based Epileptic Detection Using Time-Do main and Frequency- Domain Features, Journal of Medical Systems, vol. 29, no. 6, pp. 647-660, 2005. [8] V. P. Nigam, and D. Graupe, A neural-networkbased detection of epilepsy, Neurol Res, vol. 26, no. 1, pp. 55-60, 2004. [9] A. Subasi, Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction, International Journal of Computers in Biology and Medicine, vol. 37, pp. 227 244, 2007. [10] I. Gu ler, and E. D. U beyli, Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction, International Journal of Expert Systems with Applications, vol. 27, pp. 323 330, 2004. [11] P. Y. Ktonas, Automated spike and sharp wave (SSW) detection, In: Gevins A.S., & Remond, A., (Ed.), Methods of analysis of brain electrical and magnetic signals, A msterdam: Elsevier, pp. 211 241, 1987. [12] A. Tzallas, M. Tsipouras, and D. Fotiadis, Automatic seizure detection based on time frequency analysis and artificial neural networks, Computational Intelligence and Neuroscience, pp. 1-13, 2007. [13] D. E. Lerner, Monitoring changing dynamics with correlation integrals: Case study of an epileptic seizure, Physica D, vol. 97, no. 4, pp. 563-576, 1996. [14] M. Tito, M. Cabrerizo, M. Ayala, A. Barreto, I. Miller, P. Jayakar, and M. Adjouadi Classification of electroencephalographic seizure recordings into ictal and interictal files using correlation sum, International Journal of Computers in Biology and Medicine, vol. 39, pp. 604-614, 2009. [15] V. Srinivasan, C. Eswaran, and N. Sriraam, Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks, IEEE Transactions on information Technology in Biomedicine, vol. 11, no. 3, 2007. [16] N. Kannathal, C. M. Lim, U. Rajendra Acharya, and P. K. Sadasivan, Entropies for detection of epilepsy in EEG, International Journal of Computer Methods and Programs in Biomedicine, vol. 80, no. 3, pp. 187 194, 2005. [17] S. Pravin-Kumar, N. Sriraam, P. G. Benakop, and B. C. Jinaga, Entropies Based Detection of Epileptic Seizures with Artificial Neural Network Classifiers, International Journal of Expert systems with application, vol. 37, pp. 3284-3291, 2010. [18] H. Ocak, Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy, International Journal of Expert Systems with Applications, vol. 36, pp. 2027 2036, 2009. [19] D. L. Iasemidis and J. C. Sackellares, Chaos Theory and Epilepsy, The NeuroScientist, vol. 2, no. 2, pp. 118-126, 1996. [20] H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, A Wavelet-Chaos Methodology for Analysis of EEGs and EEG Subbands to Detect Seizure and Epilepsy, IEEE Transactions on Biomedical Engineering, vol. 54, no. 2, 2007. [21] S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr, Mixed-Band Wavelet-Chaos-Neural Network Methodology for Epilepsy and Epileptic Seizure Detection, IEEE Transactions on Biomedical Engineering, vol. 54, no. 9, 2007. [22] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger. (2001). Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, vol. 64, Available: http://epileptologie-bonn.de [23] H. E. Hurst, Long-term storage of reservoirs: an experimental study, Transactions of the American society of civil engineers, vol. 116, pp. 770-799, 1951. [24] J.-S.R., Jang, and C. T. Sun, Neuro Fuzzy Modeling and Control, Proceedings of the IEEE Transactions, vol. 83, no. 3, pp. 378-406, 1995.

46 Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition [25] Jang, J.-S.R., ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transactions Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665 685, 1993. Authors Profiles Seyyed Abed Hosseini He is currently Ph.D. candidate at the Control Engineering of the Ferdowsi University of Mashhad, Iran. He currently holds as instructor in the dept. of electrical engineering at Islamic Azad University Shahrood Branch. He is a member of the Iranian Society for Biomedical Engineering, Tehran, Iran. He has published over 30 journal and conference papers. He is currently a Reviewer for international journals and conferences. He participated in international conferences as a session chair. His research interests include recognition of emotional stress states based on the analysis of EEG and psychophysiological signals in order to improve human computer interaction, functional brain modeling, non-linear and chaotic analysis, fuzzy-neural networks, and digital design with FPGA and CPLD. Mohammad-R. Akbarzadeh-T. (Senior Member, IEEE) received his Ph.D. on Evolutionary Optimization and Fuzzy Control of Complex Systems from the department of electrical and computer engineering at the University of New Mexico in 1998. He currently holds dual appointment as professor in the departments of electrical engineering and computer engineering at Ferdowsi University of Mashhad. In 2006-2007, he completed a one-year visiting scholar position at Berkeley Initiative on Soft Computing (BISC), UC Berkeley. From 1996-2002, he was affiliated with the NASA Center for Autonomous Control Engineering at University of New Mexico (UNM). Dr. Akbarzadeh is the founding president of the Intelligent Systems Scientific Society of Iran, the founding councilor representing the Iranian Coalition on Soft Computing in IFSA, and a council member of the Iranian Fuzzy Systems Society. He has received several awards including: the IDB Excellent Leadership Award in 2010, The IDB Excellent Performance Award in 2009, the Outstanding Faculty Award in 2008 and 2002, the IDB Merit Scholarship for High Technology in 2006, the Outstanding Faculty Award in Support of Student Scientific Activities in 2004, Outstanding Graduate Student Award in 1998, and Service Award from the Mathematics Honor Society in 1989. His research interests are in the areas of evolutionary algorithms, fuzzy logic and control, soft computing, multi-agent systems, complex systems, robotics, and biomedical engineering systems. He has published over 250 peer-reviewed articles in these and related research fields. Mohammad-Bagher Naghi bi- Sistani He received the B.S. degree in electronics from the University of Tehran, Tehran, Iran, in 1991, the M.S. degree at control engineering from the University of Tehran, Tehran, Iran, in 1995, and the Ph.D. degree in control engineering from the Ferdowsi University of Mashhad, Iran, in 2005. He currently is Assistant Professor at the Department of Electrical Engineering and Biomedical Engineering, Ferdowsi University of Mashhad. His research interests include reinforcement learning, soft computing, optimal control, and Machine learning. He has published over 50 journal and conference papers. How to cite this paper: S. A. Hosseini, M-R. Akbarzadeh-T, M-B. Naghibi-Sistani,"Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition", International Journal of Intelligent Systems and Applications(IJISA), vol.5, no.6, pp.41-46, 2013.DOI: 10.5815/ijisa.2013.06.05