Assessment of the antiosteoporotic treatment initiation: A retrospective observational study in Greece

Similar documents
O. Bruyère M. Fossi B. Zegels L. Leonori M. Hiligsmann A. Neuprez J.-Y. Reginster

ASJ. How Many High Risk Korean Patients with Osteopenia Could Overlook Treatment Eligibility? Asian Spine Journal. Introduction

An audit of osteoporotic patients in an Australian general practice

Dr Tuan V NGUYEN. Mapping Translational Research into Individualised Prognosis of Fracture Risk

International Journal of Health Sciences and Research ISSN:

Pharmacy Management Drug Policy

Purpose. Methods and Materials

Development and validation of an osteoporosis treatment questionnaire (OSTREQ) evaluating physicians criteria in the choice of treatment

Pharmacy Management Drug Policy

nogg Guideline for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK

Assessment of Individual Fracture Risk: FRAX and Beyond

Screening for absolute fracture risk using FRAX tool in men and women within years in urban population of Puducherry, India

Skeletal Manifestations

NICE SCOOP OF THE DAY FRAX with NOGG. Eugene McCloskey Professor of Adult Bone Diseases University of Sheffield

A FRAX Experience in Korea: Fracture Risk Probabilities with a Country-specific Versus a Surrogate Model

Discovering prior fractures in your postmenopausal patient may be the LINK to reducing her fragility fracture* risk in the future.

AMERICAN COLLEGE OF RHEUMATOLOGY POSITION STATEMENT. Committee on Rheumatologic Care

Module 5 - Speaking of Bones Osteoporosis For Health Professionals: Fracture Risk Assessment. William D. Leslie, MD MSc FRCPC

Screening points for a peripheral densitometer of the calcaneum for the diagnosis of osteoporosis

Influence of bone densitometry on the anti-osteoporosis treatment after fragility hip fracture

Using the FRAX Tool. Osteoporosis Definition

An audit of bone densitometry practice with reference to ISCD, IOF and NOF guidelines

8/6/2018. Glucocorticoid induced osteoporosis: overlooked and undertreated? Disclosure. Objectives. Overview

Available online at ScienceDirect. Osteoporosis and Sarcopenia 1 (2015) 109e114. Original article

CASE 1 WHY IS IT IMPORTANT TO TREAT? FACTS CONCERNS

Pharmacy Management Drug Policy

Working together Revista de cercetare [i interven]ie social\

Efficacy of risedronate in men with primary and secondary osteoporosis: results of a 1-year study

Learning Objectives. Controversies in Osteoporosis Prevention and Management. Etiology. Presenter Disclosure Information. Epidemiology.

Are glucocorticoid-induced osteoporosis recommendations sufficient to determine antiosteoporotic treatment for patients with rheumatoid arthritis?

Cost-effective osteoporosis treatment thresholds for people living with HIV infection in Greece

Smoking is associated with osteoporosis development in Primary care population

Official Positions on FRAX

Body Mass Index as Predictor of Bone Mineral Density in Postmenopausal Women in India

Case Finding and Risk Assessment for Osteoporosis

Osteoporosis/Fracture Prevention

AETNA BETTER HEALTH Prior Authorization guideline for Injectable Osteoporosis Agents

A JOINT INITIATIVE FOR FRACTURE PREVENTION. Know Your Bones Community Risk Report October 2018

July 2012 CME (35 minutes) 7/12/2016

Choice of osteoporosis guideline has important implications for the treatment decision in elderly women referred to a fall clinic

Osteoporosis Knowledge Assessment among Medical Interns

Comparison of Bone Density of Distal Radius With Hip and Spine Using DXA

Disclosures. Diagnostic Challenges in Osteoporosis: Whom To Treat 9/25/2014

NIH Public Access Author Manuscript Endocr Pract. Author manuscript; available in PMC 2014 May 11.

Download slides:

Case identification of patients at risk for an osteoporotic fracture

SCOPE: a scorecard for osteoporosis in Europe

Coordinator of Post Professional Programs Texas Woman's University 1

Current Issues in Osteoporosis

Osteoporosis Treatment Overview. Colton Larson RFUMS October 26, 2018

Osteoporosis: A Tale of 3 Task Forces!

Osteoporotic Fracture Risk Assessment Using Bone Mineral Density in Korean: A Community-based Cohort Study

Osteoporosis: fragility fracture risk. Costing report. Implementing NICE guidance

What Is FRAX & How Can I Use It?

A Case Report of a Delayed Diagnosed Femoral Neck Fracture

SCHEDULE 2 THE SERVICES. A. Service Specifications

Can we improve the compliance to prevention treatment after a wrist fracture? Roy Kessous

How can we tell who will fracture? Beyond bone mineral density to the new world of fracture risk assessment

Fragility Fracture Network - FFN

Original Article. Ramesh Keerthi Gadam, MD 1 ; Karen Schlauch, PhD 2 ; Kenneth E. Izuora, MD, MBA 1 ABSTRACT

FRAX Based Guidelines: Is a Universal Model Appropriate?

Interpreting DEXA Scan and. the New Fracture Risk. Assessment. Algorithm

They are updated regularly as new NICE guidance is published. To view the latest version of this NICE Pathway see:

FRAX-based assessment and intervention thresholds an exploration of thresholds in women aged 50 years and older in the UK

Fragile Bones and how to recognise them. Rod Hughes Consultant physician and rheumatologist St Peter s hospital Chertsey

Identification, Diagnosis, and Prevention of Osteoporosis

Factors associated with diagnosis and treatment of osteoporosis in older adults

Controversies in Osteoporosis Management

Submission to the National Institute for Clinical Excellence on

DEVELOPMENT OF A RISK SCORING SYSTEM TO PREDICT A RISK OF OSTEOPOROTIC VERTEBRAL FRACTURES IN POSTMENOPAUSAL WOMEN

Effect of Precision Error on T-scores and the Diagnostic Classification of Bone Status

Bone Density Measurement in Women

Osteoporosis. Open Access. John A. Kanis. Diseases, University of Sheffield, UK

Mild morphometric vertebral fractures predict vertebral fractures but not non-vertebral fractures

Citation for the original published paper (version of record):

Technology appraisal guidance Published: 9 August 2017 nice.org.uk/guidance/ta464

Epidemiology and Consequences of Fractures

TYMLOS (abaloparatide)

Costing statement: Denosumab for the prevention of osteoporotic fractures in postmenopausal women

nice bulletin NICE provided the content for this booklet which is independent of any company or product advertised

Research Article Prevalence of Fracture Risk Factors in Postmenopausal Women Enrolled in the POSSIBLE US Treatment Cohort

Bone mineral density testing: Is a T score enough to determine the screening interval?

Osteoporosis: An Overview. Carolyn J. Crandall, MD, MS

Osteoporosis update. Dr. Claire Vandevelde Consultant Rheumatologist, LTHT

Marshall Digital Scholar. Marshall University. Franklin D. Shuler MD, PhD Marshall University, Kelly Scott MD, MPH

Falls and Bone health in Parkinson s disease

Name of Policy: Boniva (Ibandronate Sodium) Infusion

Increased mortality after fracture of the surgical neck of the humerus: a case-control study of 253 patients with a 12-year follow-up.

Analyses of cost-effective BMD scanning and treatment strategies for generic alendronate, and the costeffectiveness

BAD TO THE BONE. Peter Jones, Rheumatologist QE Health, Rotorua. GP CME Conference Rotorua, June 2008

Misuse of Bisphosphonates. Dr Rukhsana Parvin Associate Professor Department of Medicine Enam Medical College & Hospital

Osteoporosis: A Tale of 3 Task Forces!

Assessment of the risk of osteoporotic fractures in Prof. J.J. Body, MD, PhD CHU Brugmann Univ. Libre de Bruxelles

BMD: A Continuum of Risk WHO Bone Density Criteria

Disclosures Fractures: A. Schwartz Epidemiology and Risk Factors Consulting: Merck

Evaluation of FRAX to characterise fracture risk in Poland

Guidelines for the Pharmaceutical Management of Osteoporosis in Adult WA Public Hospitals

Bone Mass Measurement BONE MASS MEASUREMENT HS-042. Policy Number: HS-042. Original Effective Date: 8/25/2008

Treatments for Osteoporosis Expected Benefits, Potential Harms and Drug Holidays. Suzanne Morin MD FRCP FACP McGill University May 2014

Transcription:

Journal of Frailty, Sarcopenia and Falls Original Article Assessment of the antiosteoporotic treatment initiation: A retrospective observational study in Greece Stavroula Rizou 1, Leon Aravantinos 2, Aristofanis Paganas 3, Michael Ballas 4, George P. Lyritis 1 1 Hellenic Osteoporosis Foundation, Athens, Greece; 2 2 nd Department of Obstetrics and Gynecology, University of Athens, Aretaieion Hospital, Athens, Greece; 3 Health center of Litochoro, Pieria, Greece; 4 Department of Rheumatology, Evangelismos General Hospital, Athens, Greece Abstract Objective: A study to retrospectively assess the decision to implement treatment for osteoporosis based on Greek version of FRAX tool. Methods: The study population was 1000 postmenopausal women aged 45 or above, excluding those with medical conditions demanding specific osteoporosis management. Data were collected regarding their medical history and additionally, risk factors incorporated in FRAX questionnaire. FRAX score was estimated at the time of the anti-osteoporotic treatment initiation. Results: The mean age of the study sample was 58.5±8.79 years. 46.8% of the participating osteopenic women had initiated treatment for osteoporosis at their first consultation while the 80.6% met the current national intervention threshold of FRAX tool. Conclusion: Stemming from our results there is an indication that women who are borderline eligible for treatment and seek consultation for osteoporosis are likely to be given treatment regardless of the potential benefit. One cannot ignore the fact that a clinician s good clinical judgment is of the utmost importance and under no circumstances can be replaced by any prognostic assessment tool. Keywords: FRAX, Osteoporosis, Postmenopausal women, Fracture risk Introduction Osteoporosis not only constitutes a major health problem but also a social and economic burden. The only clinical consequence of osteoporosis is fragility fractures, which occur at a relatively advanced stage of the disease. They have severe effects on patients such as persistent pain, limited function and disability resulting in low life quality. Osteoporotic fractures have also been associated with higher morbidity and mortality rates in the elderly 1,2. Based on the overall incidence rate of osteoporosis-related fractures, Greece is among the high risk countries 3. According to the International Osteoporosis Foundation (IOF) report, it was estimated that for 2010 the total cost stemming from the osteoporotic fractures for Greece was 680 million, and it is forecast that this burden will increase dramatically as the population ages 4,5. The primary aim of the therapeutic management of osteoporosis is to minimize the fracture risk. A comprehensive strategy should include both prevention and pharmacological interventions. The main concern initially of any therapeutic approach to osteoporosis is the estimation of absolute fracture risk. Following that and depending on the patient s individual needs treatment must be administered accordingly. Currently, the definitive goal of any antiosteoporotic treatment is to decrease the possibility of fracture. This is due to the fact that not only osteoporotic patients (T-score -2.5) are likely to incur a fracture but also those who are within the osteopenic range (-2.5<T-score<-1). Specifically, almost half of vertebral fractures in postmenopausal women appear in those with a BMD measurement consistent with osteopenia 6,7. The authors have no conflict of interest. Corresponding author: Stavroula Rizou, Hellenic Osteoporosis Foundation, 5 Ag. Varvaras str. 145 62 Kifissia, Athens, Greece E-mail: st.rizou@heliost.gr Edited by: Yannis Dionyssiotis Accepted 24 October 2017 http://www.jfsf.eu doi: 10.22540/-02-078 December 2017 Vol. 2, No. 4 78-82 78

Assessment of the antiosteoporotic treatment initiation: A retrospective observational study in Greece Age (Years) Total (n=1000) 45-54 (n=382) 55-64 (n=396) 65 (n=222) Weight (Kg) 65.02±10.45 64.45±10.27 65.68±10.6 64.83±10.44 Height (cm) 158.5±6.16 160.1±5.58 157.9±6.32 156.9±6.27 Previous Fracture [n(%)] 263 (26.3%) 64 (16.7%) 97 (24.5%) 102 (45.9%) Parent Fractured Hip [n(%)] 212 (21.2%) 92 (24.1%) 93 (23.5%) 27 (12.2%) Current Smoking [n (%)] 248 (24.8%) 151 (39.5%) 74 (18.7%) 23 (10.4%) Rheumatoid arthritis [n (%)] 70 (7%) 23 (6%) 43 (10.8%) 4 (1.8%) Secondary osteoporosis [n (%)] 326 (32.6%) 114 (29.8%) 129 (32.6%) 83 (37.4%) Alcohol 3 or more units/day [n (%)] 14 (1.4%) 6 (1.6%) 7 (1.8%) 1 (0.4%) FRAX-Major osteoporotic 9.3 (9.1) 5.65 (4.4) 10 (7.8) 17 (11.2) FRAX-Hip Fracture 2.8 (3.8) 1.4 (1.9) 3.1 (3) 6.25 (7.4) Table 1. Main clinical characteristics on the study sample based on FRAX. Values are expressed as mean ± Standard Deviation, N are the number of subject, percentage (%) or median (interquartile range). Each patient s fracture risk profile should be taken into account before determining the initiation of an osteoporosis treatment along with BMD measurements. Numerous clinical risk factors have been identified to associate with an increase in fracture risk. FRAX is a ubiquitous fracture risk assessment tool 8. The FRAX model has been available for Greece since 2012 and is included in the national diagnostic and therapeutic guidelines 9. Moreover, costeffective intervention thresholds have also been determined for Greece. Namely, these are set at 2.5% and 10% for the 10-year probability of hip and major osteoporotic fractures respectively, for individuals up to age of 75. For older subjects the intervention thresholds are raised to 5% and 15% 10. Nonetheless, these thresholds are not yet in implementation in our national guidelines where the US-adapted intervention cut-off points (probability for major osteoporotic fracture 20 or hip fracture 3) are in place. The advances in the diagnostic techniques give the opportunity to detect osteoporosis before fracture occurs and to identify those at high risk. The therapeutic strategy should be planned individually for each patient depending on their needs, medical history and other patient related circumstances. This is due to the fact that the treating physician should account for osteoporosis being a chronic condition requiring chronic management. Suitable treatment for osteoporosis should reflect medical history, fracture risk and previously received antiosteoporotic treatment. Furthermore, the balance between potential risks and benefits is an issue that should always be addressed in the therapeutic decisions 9,11. In determining patients treatment initiation, it is important to assess the fracture risk. FRAX offers the ability to clinicians to distinguish between patients at elevated fracture risk and those who are not and consequently offer treatment to those most likely to benefit from it. The purpose of this study was to assess the initiation of antiosteoporotic treatment retrospectively based on Greek version of FRAX score. Methods This is a cross-sectional, observational, retrospective study of 1000 postmenopausal women from the age of 45 and over who have had a consultation for osteoporosis evaluation. Patients were selected by osteoporosis experts (primarily orthopedics the specialty which mainly treat osteoporosis in Greece, but also rheumatologist, endocrinologist and general practitioners). The accumulated data covered a 15-year period (1999-2014). There were five participating centres in Greece: two large Public Hospitals in Athens, one health centre serving in rural area and two private osteoporosis practices, one in Athens and one in Thessaloniki, the second largest city in Greece. The inclusion criteria encompassed sex (female), age (45 to 90) and postmenopausal state. Whereas, the exclusion criteria were: malignancy, transplantation, chronic kidney disease and bone disease other than osteoporosis such as osteomalacia, since these patients require specific management. The study was conducted in accordance with the World Medical Association Declaration of Helsinki-Ethical Principles for Medical Research Involving Human Subjects and the ethical approval for the study was granted by the Ethics Committee of Aretaieion Hospital, University of Athens. Based on the protocol we retrieved the following data for each participant: age, year of first osteoporosis diagnosis, height and weight, current smoking, alcohol consumption, first degree relatives with hip fracture, personal history, rheumatoid arthritis, secondary osteoporosis, previous osteoporotic fracture, T-score values of hip femur neck or/and lumbar spine (L2- L4), wherever available. We calculated FRAX retrospectively at the time of the anti-osteoporotic treatment initiation so 79

S. Rizou et al. as to evaluate the percentage of patients that did or did not received treatment because of the doctors overestimation or underestimation of actual fracture risk. Statistical Analysis Descriptive statistics are presented as mean ± standard deviation (SD) and range, median and interquartile range (IQR, in case of violation of normality) for quantitative parameters, and as percentage for qualitative parameters. All analyses were performed using the statistical package SPSS v.17.00 (Statistical Package for the Social Sciences, SPSS Inc., Chicago, Ill., USA). Results The mean age of the study sample was 58.5±8.79 years. According to diagnostic criteria based on the T-score for BMD, the study sample was 50.2% osteoporotic, 48.8% osteopenic and only 1% had normal BMD. The baseline characteristics of the participants are summarized in the Table 1. A total of 26.3% had suffered at least one osteoporotic fracture before the initiation of any treatment and 21.2% had family history of osteoporotic fracture. The median risk of major osteoporotic fracture (%) was 5.65 (4.4) in women younger than 55 years, 10 (7.8) in women aged between 55 and 64 and 17 (11.2) in women older than 65 years; the median risk of hip fracture (%) was 1.4 (1.9), 3.1(3) and 6.25 (7.24) respectively (Table 1). In our study, all the women (50.2%) with T-score equal or above -2.5 SD received antiosteoporotic treatment. From the 48.8% of osteopenic participants, the 95.9% (N=468) had already initiated treatment for osteoporosis at their first consultation. The 19.9% of those participants had a verterbral or/and hip fracture. According to the US-adapted therapeutic intervention thresholds, since Greek ones are even today not incorporated in our clinical guidelines, the 80.6% of those osteopenic patients should have initiated treatment. Thus, the remaining 19.4% are not well indicated cases. If we were to take into consideration the Greek thresholds, only 9.3% did not met the criteria for treatment. Discussion The decision to initiate antiosteoporotic treatment, especially for patients who are borderline eligible for treatment, to a certain extent remains an ambiguous topic. Undeniably, there are clear benefits to osteoporotic treatment for patients at high risk for fracture. It is obvious that clinical guidelines contribute to better patient care. Each country releases its recommendations providing more precise clinical guidance for physicians treating patients who are at risk for fractures 9,12-14. Through these, clinicians are assisted to treat high-risk patients for an appropriate duration and not treat low risk patients unless absolutely necessary. Having said that, ambivalent cases remain present. A specific cut-off point of fracture risk below which fracture will occur or above which it will not, is difficult to establish, thus the diagnostic thresholds could be considered to some level arbitrary. Therefore, the necessity for better communication on the controversial nature of certain disease thresholds exists 15. Each country bases its costeffective cut-off points for intervention on epidemiological studies and they are subject to ongoing observation and fluctuation. The cut-off points are only indicative and should be only used supplementary in the clinicians decision based on the specific clinical characteristics of the patient. Where fracture risk estimations regarding eligible for treatment patients is reached with uncertainty, therapeutic management of osteoporosis has extended variability, as a result, high fracture risk patients may be undertreated while low fracture risk patients may be overtreated 16. The results of our study show that approximately 20% of the treatments were not clearly indicated. The same pattern has been reported in a study carried out in Spain which concluded that 48% of patients prescribed antiosteoporotic treatment did not meet the criteria for treatment 17. Another study conducted in a Spanish regional health care system revealed that two-thirds of new prescriptions in the population were inappropriate 18. Sanfélix-Gimeno G. et al. (2015) concluded that the medicinal management of osteoporosis in women aged 50 and above embodies to a notable extent overuse and to a secondary extent, underuse, nonetheless the degree of ineligibility is contingent upon which clinical guidelines were used. combines significant overuse and to a lesser grade, underuse, although the level of inappropriateness differentiate depending on the clinical guidelines used 19. The unnecessary management of overdiagnosed diseases seems to be an increasingly significant issue in clinical practice especially in developed countries 20,21, with financial and personal effects 22,23. Research has shown that excessive use of osteoporosis screening in women at low fracture risk may be a pivotal reason that leads to overdiagnosis 24. Moreover, inadequate patient perception in regards to the benefits and harms of pharmacological intervention can affect decision making and play a contributory factor to increased treatment intake 25. In addition, there is a possibility for clinicians to over or underestimate harms and benefits, resulting in substandard clinical decisions. Taking into account the above factors, effective interventions may be underused and low value interventions overused 26 as also shown by our results. Patient factors, including patient preferences, physician s clinical judgment, doctor-patient relationship, communication and agreement on the severity of the case are factors of important relevance that it should be taken into consideration when discussing the issue of treatment initiation 16,27. Another factor to consider regarding the less well indicated cases based on FRAX thresholds, is throughout the years the various criteria for the initiation of osteoporosis 80

Assessment of the antiosteoporotic treatment initiation: A retrospective observational study in Greece treatment undergo changes. Specifically, up to 2011 the therapeutic intervention in osteoporosis in Greece was mainly based on the T-score of individuals, preceding that rapid bone loss was a main reason to initiate treatment. Despite indications of overtreatment, the existence of treatment gap remains undisputed. According to IOF, the treatment gap in Greece was estimated at 25 % and 31 % for women and men respectively 28. Furthermore, various studies have shown that of the patients who have had a low trauma fracture just about 20% receive treatment for osteoporosis 29,30. Patients being unaware and having limited knowledge regarding osteoporosis, its consequences and the benefit of treatment is a significant reason for osteoporosis undertreatment 31,32. A limitation of this study is that the main source of data was clinical files but since at the time in Greece public hospitals and medical centres held no electronic records and faced lack of staff, there is a possibility that the patients medical history was not fully recorded. That is to say, that significant data, which would have explained the decision for treatment, were possibly not included thus our results should be interpreted with caution. Another issue we had to take into consideration is that the attending physicians alternated. Thus, years of experience, training, specialty and time working in current position affect the approach taken and the evaluation of each patient case especially in ambiguous ones. Conclusion Focusing solely on the results there is an indication that women who consult a clinician for osteoporosis but are not well defined cases will receive treatment regardless of whether or not there is an absolute necessity for it. In juxtaposition to those in actual need of treatment but who fail to seek consultation and are, therefore, undertreated. All treatment decisions require clinical judgment and consideration of individual patient factors, including risk factors not captured in the FRAX model. We have to underline that any prognostic assessment tool does not replace good clinical judgment. Decisions to treat must be made on a case-by-case basis. References 1. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA CJ. Mortality Risk Associated With Low-Trauma Osteoporotic Fracture and Subsequent Fracture in Men and Women. Jama 2009;301(5):513. 2. Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B, Oglesby AK. The components of excess mortality after hip fracture. Bone 2003;32(5):468-73. 3. Kanis JA, Odén A, McCloskey E V, Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 2012;23(9):2239-56. 4. Hernlund E, Svedbom A, Ivergard M, et al. No TitleOsteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations. Arch Osteoporos 2013;8:136. 5. Svedbom A, Hernlund E, Ivergard M, et al. Epidemiology and economic burden of osteoporosis in Greece. Arch Osteoporos 2013;8:83-90. 6. Rosen CJ. Primer on the Metabolic Bone Diseases and disorders of Mineral Metabolism. Prim Metab Bone Dis Disord Miner Metab 2013; i-xxvi. 7. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, et al. Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 2001;286(22):2815-22. 8. WHO Fracture Risk Assessment Tool. Available from: http://www. shef.ac.uk/frax/?lang=en. [cited 2017 Aug 24]. 9. Makras P, Vaiopoulos G, Lyritis GP. 2011 guidelines for the diagnosis and treatment of osteoporosis in Greece. J Musculoskelet Neuronal Interactn 2012;12(1):38-42. 10. Makras P, Athanasakis K, Boubouchairopoulou N, Rizou S, Anastasilakis AD, Kyriopoulos J, et al. Cost-effective osteoporosis treatment thresholds in Greece. Osteoporos Int 2015;26(7):1949-57. 11. Lecart M-P, Reginster J-Y. Current options for the management of postmenopausal osteoporosis. Expert Opin Pharmacother 2011;12(16):2533-52. 12. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2013; 24(1):23-57. 13. Compston J, Cooper A, Cooper C, et al. Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas 2009;62(2):105-8. 14. Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 2017;12(1):43. 15. Moynihan R, Sims R, Hersch J, Thomas R, Glasziou P, McCaffery K. Communicating about overdiagnosis: Learning from community focus groups on osteoporosis. PLoS One 2017;12(2): e1001655. 16. Eisenberg JM. Physician utilization: the state of research about physicians practice patterns. Med Care 2002;40(11):1016-35. 17. de Felipe R, Caceres C, Cimas M, Davila G, Fernandez S, Ruiz T. [Clinical characteristics of patients under treatment for osteoporosis in a Primary Care Centre. Who do we treat?]. Aten Primaria 2010; 42(11):559-63. 18. Joshua J. Fenton, John A. Robbins,Anna Lee D. Amarnath et al. Osteoporosis Overtreatment in a Regional Health Care System. JAMA Intern Med 2016;176(3):391-3. 19. Sanfélix-Gimeno G, Hurtado I, Sanfélix-Genovés J, Baixauli- Pérez C, Rodríguez-Bernal CL, Peiró S. Overuse and underuse of antiosteoporotic treatments according to highly influential osteoporosis guidelines: A population-based cross-sectional study in Spain. PLoS One 2015;10(8): e0135475. 20. Hoffman JR, Cooper RJ. Overdiagnosis of disease: A modern epidemic. Arch Intern Med 2012;172(15):1123-4. 21. Lyu H, Xu T, Brotman D, Mayer-Blackwell B, Cooper M, Daniel M, et al. Overtreatment in the United States. PLoS One 2017;12(9):e0181970. 22. Mechanic D. Barriers to eliminating waste in US health care. J Health Serv Res Policy 2008;13(2):57-8. 23. Berlin L. Overdiagnosed: Making People Sick in Pursuit of Health. Vol. 305, JAMA: The Journal of the American Medical Association 2011;1357-1357. 24. de las Nieves Caniele M, Terrasa SA, Kopitowski KS. Excessive 81

S. Rizou et al. osteoporosis screening in women under 65 years: A cross-sectional study. Salud Colect 2016;12(3). 25. Hoffmann TC, Del Mar C. Patients expectations of the benefits and harms of treatments, screening, and tests: a systematic review. JAMA Intern Med 2017;175(2):274-86. 26. Hoffmann TC, Del Mar C. Clinicians Expectations of the Benefits and Harms of Treatments, Screening, and Tests. JAMA Intern Med 2017; 177(3):407. 27. Yood RA, Mazor KM, Andrade SE, Emani S, Chan W, Kahler KH. Patient decision to initiate therapy for osteoporosis: The influence of knowledge and beliefs. J Gen Intern Med 2008;23(11):1815-21. 28. Kanis JA, Svedbom A, Harvey N, McCloskey EV. The osteoporosis treatment gap. J Bone Miner Res 2014;29(9):1926-8. 29. Dell RM, Greene D, Anderson D WK. Osteoporosis disease management: What every orthopaedic surgeon should know. J Bone Jt Surg Am 2009;91(Suppl 6):79-86. 30. Andrade SE, Majumdar SR, Chan KA, Buist DS, Go AS, Goodman M, et al. Low frequency of treatment of osteoporosis among postmenopausal women following a fracture. Arch Intern Med 2003;163(17):2052-7. 31. Solomon DH, Johnston SS, Boytsov NN, McMorrow D, Lane JM, Krohn KD. Osteoporosis medication use after hip fracture in U.S. patients between 2002 and 2011. J Bone Miner Res 2014; 29(9):1929-37. 32. Chevalley T, Chevalley T, Hoffmeyer P, Bonjour JP, Rizzoli R. An osteoporosis clinical pathway for the medical management of patients with low-trauma fracture. Osteoporos Int 2002; 13(6):450-5. 82