Materials and Methods

Similar documents
Analysis of Phenolic Antioxidants in Edible Oil/Shortening Using the PerkinElmer Altus UPLC System with PDA Detection

Selectivity Comparison of Agilent Poroshell 120 Phases in the Separation of Butter Antioxidants

Ultrafast analysis of synthetic antioxidants in vegetable oils using the Agilent 1290 Infinity LC system

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

PHOTOCATALYTIC DECONTAMINATION OF CHLORANTRANILIPROLE RESIDUES IN WATER USING ZnO NANOPARTICLES. DR. A. RAMESH, Ph.D, D.Sc.,

Chromatography Vacuum Ultraviolet Spectroscopy

LC-MS/MS Method for the Determination of Tenofovir from Plasma

High-Resolution Analysis of Intact Triglycerides by Reversed Phase HPLC Using the Agilent 1290 Infinity LC UHPLC System

Supporting information

Uptake and Metabolism of Phthalate Esters by Edible Plants

Determination of Amantadine Residues in Chicken by LCMS-8040

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

SWATH Acquisition Enables the Ultra-Fast and Accurate Determination of Novel Synthetic Opioids

4-Fluoroethamphetamine

Measuring Phytosterols in Health Supplements by LC/MS. Marcus Miller and William Schnute Thermo Fisher Scientific, San Jose, CA, USA

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Analysis of several common. organic acids in tobacco leaf, snus, and moist snuff

Analysis of Antioxidants in Vegetable Oils Using the Agilent 1260 Infinity Hybrid SFC/UHPLC System with MS Detection

Analysis of FAMEs Using Cold EI GC/MS for Enhanced Molecular Ion Selectivity

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine

Rapid Separation of Fatty Acid Methyl Esters

Neosolaniol. [Methods listed in the Feed Analysis Standards]

Analytical Method for 2, 4, 5-T (Targeted to Agricultural, Animal and Fishery Products)

Increased Identification Coverage and Throughput for Complex Lipidomes

Analysis and Quantitation of Cocaine on Currency Using GC-MS/MS. No. GCMS No. SSI-GCMS-1501

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system

Trans Fat Determination in the Industrially Processed Edible Oils By Transmission FT-IR Spectroscopy By

Designer Cannabinoids

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

Results of Using Re-washed Vials and Closures

Designer Fentanyls Drugs that kill and how to detect them. Cyclopropylfentanyl

Current status of MCPD and Glycidol Analysis in Oils

application Natural Food Colorants Analysis of Natural Food Colorants by Electrospray and Atmospheric Pressure Chemical Ionization LC/MS

Robust and Fast Analysis of Tobacco-Specific Nitrosamines by LC-MS/MS

LC/MS/MS Separation of Cholesterol and Related Sterols in Plasma on an Agilent InfinityLab Poroshell 120 EC C18 Column

Screening of Antihistamine Agents (Diphenhydramine) with Blood and Urine Samples by REMEDi-HS System

High Throughput Extraction of Opiates from Urine and Analysis by GC/MS or LC/MS/MS)

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

ANALYTICAL REPORT 1 DPT (C16H24N2) [2-(1H-indol-3-yl)ethyl]dipropylamine.

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research

ANALYTICAL REPORT 1. bk-2c-b ( C10H12BrNO3) 2-amino-1-(4-bromo-2,5-dimethoxyphenyl)ethan-1-one

ANALYTICAL REPORT 1. N-methyl-2AI ( C10H13N) Remark other NPS detected: none. N-methyl-2,3-dihydro-1H-inden-2-amine. Sample ID:

UPLC-MS/MS Analysis of Azole Antifungals in Serum for Clinical Research

Using Software Tools to Improve the Detection of Impurities by LC/MS. Application Note. Christine Miller Agilent Technologies.

MALAYSIAN MALAYSIAN COCOA WORKSHOP ON THE SAFE USE OF PESTICIDES IN COCOA AND HARMONIZED

Toxicology Screening of Whole Blood Extracts Using GC/Triple Quadrupole/MS

ANALYTICAL REPORT 1 3C-P (C14H23NO3) 1-(3,5-dimethoxy-4-propoxylphenyl)propan-2-amine.

Interested in conducting your own webinar?

LC-MS/MS Method for the Determination of 21 Opiates and Opiate Derivatives in Urine

Determination of red blood cell fatty acid profiles in clinical research

Supporting Information

Eszopiclone (Lunesta ): An Analytical Profile

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Fast Separation of Triacylglycerols in Oils using UltraPerformance Convergence Chromatography (UPC 2 )

Mass-Based Purification of Natural Product Impurities Using an Agilent 1260 Infinity II Preparative LC/MSD System

Probing for Packaging Migrants in a Pharmaceutical Impurities Assay Using UHPLC with UV and Mass Detection INTRODUCTION

ANALYTICAL REPORT 1, 2

LC/MS Method for Comprehensive Analysis of Plasma Lipids

Proficiency testing performance of Turkish laboratories on determination of relative composition of fatty acids in sunflower oil

ANALYTICAL REPORT 5F-MDMB-PINACA (C20H28FN3O3) methyl 2-{[1-(5-fluoropentyl)-1H-indazol-3-yl]formamido}-3,3-dimethylbutanoate

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection

Analysis of Cannabinoids in Cannabis by UHPLC Using PDA Detection

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS.

Meeting Challenging Requirements for the Quantitation of Regulated Growth Promoters Dexamethasone and Betamethasone in Liver and Milk

Summary Chapter 8 CHAPTER 8. Summary. Page 173

A RAPID AND SENSITIVE ANALYSIS METHOD OF SUDAN RED I, II, III & IV IN TOMATO SAUCE USING ULTRA PERFORMANCE LC MS/MS

Sample Concentration and Analysis of Human Hormones in Drinking Water

U.S.-Grown HIGH OLEIC SOYBEAN OIL

DIRECT EXTRACTION OF BENZODIAZEPINE METABOLITE WITH SUPERCRITICAL FLUID FROM WHOLE BLOOD

Analysis of Isoflavones with the PerkinElmer Flexar FX-15 UHPLC System Equipped with a PDA Detector

Rapid and Robust Detection of THC and Its Metabolites in Blood

Determination of 6-Chloropicolinic Acid (6-CPA) in Crops by Liquid Chromatography with Tandem Mass Spectrometry Detection. EPL-BAS Method No.

ANALYSIS OF -HYDROXYBUTYRATE (GHB) AND -BUTYROLACTONE (GBL) IN LIQUIDS PERFORMED AT NATIONAL LABORATORY OF FORENSIC SCIENCE (SKL), SWEDEN

[application note] Simultaneous detection and quantification of D 9 THC, 11-OH-D 9 T H C and D 9 THC-COOH in whole blood by GC tandem quadrupole MS

Glycerolipid Analysis. LC/MS/MS Analytical Services

Journal of Chemical and Pharmaceutical Research

Rapid Analysis of 37 FAMEs with the Agilent 8860 Gas Chromatograph

Application Note. Abstract. Authors. Pharmaceutical

Key Advantages of Comprehensive Cannabis Analysis

PAPRIKA EXTRACT SYNONYMS DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS

ANALYTICAL REPORT 1, 2

Supporting information

Ultra Performance Liquid Chromatography Coupled to Orthogonal Quadrupole TOF MS(MS) for Metabolite Identification

Identification of Steroids in Water by Ion Trap LC/MS/MS Application

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Quantitative Analysis of Drugs of Abuse in Urine using UHPLC Coupled to Accurate Mass AxION 2 TOF Mass Spectrometer

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

Quantification of lovastatin in human plasma by LC/ESI/MS/MS using the Agilent 6410 Triple Quadrupole LC/MS system

GC-MS/MS Analysis of Benzodiazepines Using Analyte Protectants

Fast determination of residual glycerol and glycerides in biodiesel by SFC/MS using the Agilent 1260 Infinity Analytical SFC System

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

Analysis of the fatty acids from Periploca sepium by GC-MS and GC-FID

Rapid Gradient and Elevated Temperature UHPLC of Flavonoids in Citrus Fruit

S.C. Moldoveanu, A.G. Hudson, A. Harrison. R.J. Reynolds Tobacco Co.

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ

Automated Analysis and Quantitation of Fish Oil Supplements using the MIDI Sherlock Marine Oil Analysis Package

Transcription:

J Am Oil Chem Soc (2017) 94:1323 1328 DOI 10.1007/s11746-017-3039-2 SHORT COMMUNICATION Identification of a TBHQ Interfering Peak in Crude Canola Oil Using AOCS Official Method Ce 6 86 and its Chromatographic Resolution Michael R. Blumhorst 1 Travis Mahan 1 Kathryn Stanley 1 Aaron Griffith 1 Mark W. Collison 1 Received: 25 April 2017 / Revised: 2 August 2017 / Accepted: 21 August 2017 / Published online: 30 August 2017 The Author(s) 2017. This article is an open access publication Abstract AOCS Official Method Ce 6-86 Antioxidants, Liquid Chromatographic Method was originally developed to confirm the correct antioxidant was added at the specified concentration to refined oils. Today, this method is increasingly utilized to validate that antioxidants are absent from oil products. False positive results can have a significant impact on the ability to sell products in specific markets and can impart additional business expenditures for conclusive secondary analyses. In the current work, quantification of tert-butylhydroquinone (TBHQ) in crude canola/rapeseed oil using liquid chromatography (LC) with ultraviolet (UV) detection was compromised by an interfering peak. Analyses using liquid chromatography-mass spectrometry (GC MS) and high-resolution accurate mass LC MS identified the interferent as 2,6-dimethoxy-4-vinylphenol (canolol), an endogenous compound present in crude canola/rapeseed oil. Resolution of canolol and TBHQ using LC-UV can be achieved via minor modification of the chromatographic conditions. Keywords Canolol TBHQ Canola Rapeseed Introduction Vegetable oils with unsaturated fatty acids are subject to oxidation reactions upon storage with the degree of oxidizability directly related to the level of unsaturation [1]. This * Michael R. Blumhorst Michael.Blumhorst@adm.com 1 Research Division, Archer Daniels Midland Company, James R. Randall Research Center, 1001 N. Brush College Road, Decatur, IL 62521, USA oxidation reaction results in oils becoming rancid and unpalatable. Antioxidants have been added to oils as one means of ensuring oxidative stability. Common antioxidants used in vegetable oils include tert-butylhydroquinone (TBHQ), 2- and 3-tert-butyl-4-hydroxyanisole (BHA), and 3,5-di-tertbutyl-4-hydroxytoluene (BHT). Recently, regulatory guidelines have been implemented in some countries banning the use of synthetic antioxidants due to reported adverse health effects on humans exposed to them [2, 3]. Canola oil is produced from the seed of any of several cultivars of rapeseed bred to be low in erucic acid [4]. Canola was originally a trademark, but is now a generic term for edible varieties of rapeseed oil in North America and Australia. In Canada, an official definition of canola is codified in Canadian law [4]. Canola/rapeseed oil made from low glucosinolate-low erucic acid rapeseed is produced for food consumption and biodiesel production. It is the third most produced oil in the world after palm and soybean oil. Archer Daniels Midland Company (ADM) is a global supplier of canola oil and routinely tests its products to ensure compliance with applicable regulations. To prove the absence of TBHQ in canola oil, several customers have required the assay to be performed in accordance with AOCS Official Method Ce 6-86 Antioxidants, Liquid Chromatographic Method [5]. This method, however, was developed to confirm the correct antioxidant was added at the specified concentration to refined oils, not to validate the absence of antioxidants in oil products. Using this method, a third-party contract laboratory recently reported positive results for TBHQ in crude canola oil samples. Although these samples were known to be free of any synthetic antioxidants, similar results were obtained in our laboratory using liquid chromatography with ultraviolet detection (LC-UV). In order to evaluate the extent of this issue, crude canola samples were collected from five major growing areas in North America Vol.:(0123456789)

1324 J Am Oil Chem Soc (2017) 94:1323 1328 Fig. 1 LC-UV trace at 280 nm of crude canola oil extract (top) and 200 ppm TBHQ calibration standard (bottom) and analyzed using AOCS Official Method Ce 6-86. All of the samples yielded a peak that co-eluted with TBHQ. This work was conducted to identify the TBHQ-interfering peak in crude canola oil, and to develop a chromatographic resolution to separate these analytes. Materials and Methods AOCS Official Method Ce 6-86 can be used to quantify antioxidants in oils including propyl gallate, 2,4,5-trihydroxybutyrophenone (THBP), TBHQ, nordihydroguaiaraetic acid (NDGA), BHA, 2,6-di-tert-butyl-4-hydroxymethylphenol (Ionox-100), and BHT. Briefly, 20 g of oil are diluted to 100 ml with hexane. A 25-mL aliquot of this solution is partitioned with three 50-mL aliquots of acetonitrile. The acetonitrile extracts are combined and concentrated to 3 4 ml using flash evaporation and then brought to a final volume of 10 ml with 2-propanol. Sample analysis is performed via reversed phase chromatography with mobile phase A = 5% acetic acid in water and mobile phase B = 5% acetic acid in acetonitrile. The mobile phase gradient is linear from 30% (B) to 100% (B) over 10 min followed by a 4-min hold at 100% (B). In our laboratory, a YMC-Pack ODS-AM, 150 3.0 mm column with a 3-µm particle size has been substituted for the older Lichrosorb 250 4.6 mm column with mobile phase flow rate reduced from 2.0 to 0.65 ml/min. In order to resolve TBHQ and canolol, the mobile phase gradient was modified to 30% (B) to 40% (B) from 0 to 5.5 min, 40% (B) to 100% (B) from 5.5 to 6 min, followed by a 1.5-min hold at 100% (B). High Resolution Accurate Mass LC MS (HRAM LC MS) The same column was used as noted above but the mobile phases were modified to A = 0.1% formic acid in water and B = acetonitrile in order to avoid ion suppression with the high acetic acid concentrations. A UV detector was set up in series with a QExactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). An APCI source was used in positive ion mode. Mass spectrometer settings were: sheath gas flow rate = 60; auxiliary gas flow rate = 20; sweep gas flow rate = 5 (all arbitrary units); discharge current = 4.0 µa; capillary temperature = 350 C; S-lens RF level = 50; and vaporizer temperature = 350 C.

J Am Oil Chem Soc (2017) 94:1323 1328 Gas Chromatography Mass Spectrometry Crude canola oil extracts were analyzed using a GC-2010 with a GCMS-QP2020 (Shimadzu Scientific Instruments, Inc. Columbia, MD, USA). Injection was conducted in split mode (1 µl, 5:1 split ratio, inlet temperature 340 C), and components were chromatographed through a 5% diphenylmodified polydimethylsiloxane capillary column (Agilent DB-5MS; 30-m length, 0.25-mm inner diameter, 0.25-µm film thickness) with helium as the carrier gas maintained at a constant linear velocity of 31.8 cm/s. The oven temperature profile was 75 345 C with a ramp of 15 C/min followed by a 15-min hold at 345 C. The ion source temperature was 200 C, and the transfer line was maintained at 1325 345 C. Electron ionization spectra were collected from 15 to 250 m/z at an ionization voltage of 70 ev. Results and Discussion Initial analyses of crude canola oil using AOCS Method Ce 6-86 showed the presence of an apparent TBHQ peak at concentrations greater than 450 mg/kg despite the fact that no TBHQ had been added to this product (Fig. 1). These results were in agreement with a third-party contract laboratory using AOCS Official Method Ce 6-86 (data not shown). Samples were then assayed using HRAM LC-MS to confirm TBHQ levels after modification of the mobile phases. Fig. 2 LC-UV trace at 280 nm of crude canola oil extract (a); LC MS total ion chromatogram of canola oil extract (b); full scan, positive ion spectra of peak at 4.4 min (c); and MS/MS, positive ion spectra of peak at 4.4 min (d)

1326 J Am Oil Chem Soc (2017) 94:1323 1328 Fig. 3 Expanded GC MS total ion chromatogram overlay comparing an acetonitrile extract of crude canola oil (black trace) with a standard of TBHQ in acetonitrile (red trace) Fig. 4 LC MS/MS fragmentation of crude canola oil unknown (top) and canolol (bottom) using a normalized collision energy of 20

J Am Oil Chem Soc (2017) 94:1323 1328 1327 Fig. 5 GC MS/MS fragmentation of crude canola oil unknown (top) and canolol (bottom) Retention time of the UV peak with absorption at 280 nm increased from 3.5 to 4.4 min with the weaker acid mobile phase (Fig. 2), but mass spectrometry showed this peak was not TBHQ. Full scan LC MS analysis of this peak yielded a m/z of 181.0858 and best-fit formula of C 10 H 12 O 3 (Fig. 2). The fragmentation pattern of this ion is shown in Fig. 2d, but a search of METLIN and mzcloud databases 1 yielded no conclusive identification of this compound. Analysis of the crude canola oil sample using GC MS produced a total ion chromatogram with an unknown peak eluting close to TBHQ (Fig. 3). This compound also had an apparent molecular formula of C 10 H 12 O 3, and its fragmentation pattern was a close match to that of canolol, although some of the lower-intensity peaks detected in the unknown compound were missing in the library spectrum. Based on this information, a canolol reference standard was purchased (Ryan Scientific, Inc. Mt. Pleasant, SC, USA) and assayed using the same LC MS/MS and GC MS/MS 1 METLIN is a registered trademark of the Scripps Research Institute, La Jolla, CA. mzcloud is a registered trademark of HighChem LLC, Slovakia. conditions used for the canola oil unknown. The fragmentation patterns of canolol and the unknown peak in canola oil yielded exact matches using both LC MS/MS (Fig. 4) and GC MS/MS (Fig. 5), confirming its identity. Canolol is an endogenous component of rapeseed oil [6], but its effect on antioxidant analyses in canola oil has not been documented. Conclusions This data confirmed that TBHQ quantification in crude canola oil is subject to interference from canolol when using AOCS Official Method Ce 6-86 as written. Modification of the gradient method to a shallower slope improves resolution of TBHQ and canolol. The gradient used to generate chromatograms in Fig. 6 was 30% (B) to 40% (B) from 0 to 5.5 min, 40% (B) to 100% (B) from 5.5 to 6 min, followed by a 1.5-min hold at 100% (B). This method provides adequate resolution of TBHQ and canolol using an overall analysis time similar to that described in AOCS Official Method Ce 6-86.

1328 J Am Oil Chem Soc (2017) 94:1323 1328 Fig. 6 LC-UV (280 nm) of crude canola extract (a); canolol calibration standard (b); TBHQ calibration standard (c); and crude canola extract spiked with TBHQ (d) using a modified mobile phase gradient Compliance with Ethical Standards Conflict of interest The authors declare that they have no conflicts of interest. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References 2. Khanahmadi M, Janfeshan K (2006) Study on antioxidation property of Ferulago angulata plant. Asian J Plant Sci 5(3):521 526 3. Morteza-Semnani K, Saeedi M, Shahani S (2006) Antioxidant activity of the methanolic extracts of some species of phlomis and stachys on sunflower oil. Afr J Biotechnol 5(24):2428 2432 4. Canola Council of Canada. Where does canola oil come from? http://www.canolainfo.org. Accessed 24 Mar 2017 5. AOCS Official Method Ce 6-86 Antioxidants Liquid Chromatographic Method Reapproved 2009 6. Siger A, Michalak M, Rudzinska M (2016) Canolol, tocopherols, plastochromanol-8, and phytosterols content in residual oil extracted from rapeseed expeller cake obtained from roasted seed. Eur J Lipid Sci Technol 118(9):1358 1367. Database: CAPLUS, doi:10.1002/ejlt.201500314 1. Aluyor EO, Ori-Jesu M (2008) The use of antioxidants in vegetable oils a review. Afr J Biotechnol 7(25):4836 4842