Binding of Triton X-100 to diphtheria toxin, crossreacting material

Similar documents
TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells

Reconstitution of Neutral Amino Acid Transport From Partially Purified Membrane Components From Ehrlich Ascites Tumor Cells

the mechanism of complement-mediated membrane perturbation The binding of terminal complement components C5b-C9

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY

Relation of Detergent HLB Number to Solubilization and Stabilization of D-Alanine Carboxypeptidase from Bacillus subtilis Membranes

Binding of bile salts to pancreatic colipase and lipase

Problem-solving Test: The Mechanism of Protein Synthesis

Chapter 2 Transport Systems

SUPPLEMENTARY MATERIAL

THE EQUILIBRIUM BETWEEN ACTIVE NATIVE TRYPSIN AND INACTIVE DENATURED TRYPSIN

Case 19 Purification of Rat Kidney Sphingosine Kinase

NOTE: For studying for the final, you only have to worry about those with an asterix (*)

Chapter Three (Biochemistry)

Comparative Toxicities of Diphtherial Toxin and Pseudomonas aeruginosa Exotoxin A : Evidence for Different Cell Receptors

Structural Characterization of Prion-like Conformational Changes of the Neuronal Isoform of Aplysia CPEB

Biochemical Techniques 06 Salt Fractionation of Proteins. Biochemistry

The Cell Membrane (Ch. 7)

Self-association of α-chymotrypsin: Effect of amino acids

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

10 mm KCl in a Ti-15 zonal rotor at 35,000 rpm for 16 hr at

Biology 2180 Laboratory #3. Enzyme Kinetics and Quantitative Analysis

Prerequisites Protein purification techniques and protein analytical methods. Basic enzyme kinetics.

Nature Methods: doi: /nmeth Supplementary Figure 1. Salipro lipid particles.

Review of Biochemistry

5-Aminolevulinic-Acid Synthetase of Rhodopseudomonas sp heroides Y

inhibitor from heme-deficient lysates and its relationship to the

High Binding Ratios. Possible Implications for the State

CALCIUM CASEINATE. What Is Casein?

Physical Pharmacy. Interfacial phenomena. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department

130327SCH4U_biochem April 09, 2013

Biochemistry Macromolecules and Enzymes. Unit 02

ISOLATION AND PROTEIN PATTERN OF EYE LENS FIBER JUNCTIONS

The effect of calcium upon the reaggregation of bovine alpha crystallin. Abraham Spector and Carl Rothschild

Proteins. Amino acids, structure and function. The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka

Interactions of pancreatic lipase with bile salts and dodecyl sulfate

Extracting DNA from cheek cells: a classroom experiment for Year 7 upwards

Ribosome-bound 3~ ADP-ribosyl-Tl? I1 (pmoles A 260 units) GTP I +GTP - GTP

tution with total solubilized protein from essentially intact In this paper, we discuss the reconstitution of excitable

Hydrophobic Interaction Chromatography

note on methodology I

Identification of NADPH-thioredoxin reductase system

Methods of studying membrane structure

Acetyl CoA Carboxylase: The Purified Transcarboxylase Component

Chapter PURIFICATION OF ALKALINE PROTEASES

The incorporation of labeled amino acids into lens protein. Abraham Speclor and Jin H. Kinoshita

<Supplemental information>

Biosci., Vol. 5, Number 4, December 1983, pp

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

Mammalian Membrane Protein Extraction Kit

Chapter 7: Membranes

IMMUNOLOGIC REACTIVITY IN HUMAN BREAST CANCER AGAINST CULTURED HUMAN BREAST TUMOR CELLS

Supplementary Materials for

Proteins. (b) Protein Structure and Conformational Change

FIRST MIDTERM EXAMINATION

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol

EXPERIMENT 13: Isolation and Characterization of Erythrocyte

2. Which of the following amino acids is most likely to be found on the outer surface of a properly folded protein?

OF LIGHT CHAINS OF CARDIAC MYOSIN ISOZYMES: ATRIAL AND VENTRICULAR MYOSINS

Tyr. Gly Cys. Pro. Pro Glu. Ala. Arg. Leu. Arg. Cys. Gly. Asn. Phe. Arg. Ser Met. Cys. Lys Gly. Phe 30. Thr. Ala. Asp Phe.

Chapter 2 The Chemistry of Life Part 2

MBB 694:407, 115:511. Please use BLOCK CAPITAL letters like this --- A, B, C, D, E. Not lowercase!

THE SEPARATION OF THE SOLUBILIZED PROTEINS OF THE SARCOPLASMIC RETICULUM ON DEAE-CELLULOSE AND ITS MODIFICATION. W. HASSELBACH and A.

Proteins. AP Biology. Proteins. Proteins. Proteins. Effect of different R groups: Nonpolar amino acids. Amino acids H C OH H R. Structure.

STORE AT 4 o C Version 3

Qualitative chemical reaction of functional group in protein

Europium Labeling Kit

Incorporation of porin channels into miniaturized bilayers

3150:112 SAMPLE TEST 2. Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck!

Collagenase Assay Kit

Collagenase Assay Kit

Work-flow: protein sample preparation Precipitation methods Removal of interfering substances Specific examples:

Phospholipid Assay Kit

Nucleic Acids Research

Improve Protein Analysis with the New, Mass Spectrometry- Compatible ProteasMAX Surfactant

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis

AP Biology. Proteins. Proteins. Proteins. Amino acids H C OH H R. Effect of different R groups: Polar amino acids polar or charged & hydrophilic

A Homogeneous Phosphoinositide 3-Kinase Assay on Phospholipid FlashPlate Platforms. Busi Maswoswe, Hao Xie, Pat Kasila and Li-an Yeh

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds.

Deterioration of Rat -Liver Mitochondria during Isopycnic Centrifugation in an Isoosmotic Medium

Supplementary Information

Understand how protein is formed by amino acids

ON THE DIFFERENCE IN ADSORPTION ON SEPHADEX GEL OF THE DEXTRANSUCRASE OF STREPTOCOCCUS BOVIS GROWN ON SUCROSE AND GLUCOSE MEDIA

Purification of Glucagon3 Interleukin-2 Fusion Protein Derived from E. coli

Screening Conditions for NMR of Integral Membrane Proteins Updated 1/2015

Qualitative test of protein-lab2

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

BIOCHEMISTRY & MEDICINE:

FEBS 1138 January Paul R. Buckland and Bernard Rees Smith

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Ribosomal Proteins of Escherichia coli*

Hydrolysis of Irradiated Ovalbumin by Pepsin

Antigenic Analysis of Isolated Polypeptides from Visna Virus

Supporting information

Differential acetylcholinesterase activity in rat cerebrum, cerebellum and hypothalamus

On the interactions between pancreatic lipase and colipase and the substrate, and the importance of bile salts

Blocking by Histones of Accessibility to DNA in Chromatin (DNase/RNA polymerase/dna polymerase)

Serrata) Alkaline Phosphatase

Transcription:

Proc. Nati. Acad. Sci. USA Vol. 73, No. 12, pp. 4449-4453, December 1976 Biochemistry Binding of Triton X-1 to diphtheria toin, crossreacting material 45, and their fragments (hydrophobicity/plasma membrane) PATRCE BOQUET*, MTCHELL S. SLVERMAN, A. M. PAPPENHEMER, JR.t, AND WALTER B. VERNON Biological Laboritories, Harvard University, Cambridge, Massachusetts 2138 Contributed by A. M. Pappenheimer, Jr., September 24, 1976 ABSTRACT Binding of the nonionic detergent [3HrTriton X-1 by diphtheria toin, by the nontoic serologically related protein crossreacting material (CRM) 45, and by their respective A and B fragments has been studied. f first denatured in.1% sodium dodecyl sulfate, all of the proteins with the eception of fragment A bind increasing amounts of Triton X-1, reaching a maimum of more than 4 mol bound per mol of protein when the detergent concentration eceeds its critical micelle concentration. No measurable amount of Triton X-1 is bound by native toin or its A fragment at any concentration of the detergent. Undenatured CRM45 or its B45 fragment, on the other hand, readily become inserted into Triton X-1 micelles when the detergent reaches its critical micelle concentration. The results show that the toin molecule contains a hydrophobic domain located on the portion of the B fragment that is linked to A. This region is masked in native toin. Based on these findings, a model is proposed to describe how fragment B facilitates the transport of the enzymically active hydrophilic fragment A across the plasma membrane to reach the cytoplasm. Diphtheria toin eerts its lethal effect on sensitive mammalian cells by inhibition of protein synthesis. n order to intoicate a cell, the 62, dalton toin molecule must first interact with a plasma membrane surface receptor and then an NH-terminal 21,15 dalton polypeptide (fragment A) must be split off and transported across the lipid bilayer to reach the cytoplasm. Fragment A then catalyzes the transfer of the ADP-ribosyl group from NAD+ to elongation factor 2 (EF-2), thereby causing its inactivation (1, 2). Previous studies (3, 4) with mammalian cell cultures have shown that each sensitive cell carries about 4 specific surface membrane receptors that initially react reversibly with groups located near the COOH-terminus of the toin B fragment. This initial rapid reaction is followed by a slow irreversible process involving a major conformational change, during which the molecule enters the plasma membrane. Finally, fragment A is split off to reach the cytoplasm while B apparently remains behind in the membrane. f this model is indeed correct, we would epect that fragment B should behave like other membrane proteins and should contain a hydrophobic "domain" (5) which becomes inserted into the lipid bilayer during the entry process. Membrane proteins may be etracted into aqueous solvents that contain a nonionic detergent such as Lubrol or Triton X- 1. During this process, protein-bound phospholipid molecules are replaced by molecules of the detergent. By measuring the quantity of detergent that it can bind, it is possible to estimate the fraction of a protein molecule's surface capable of hydrophobic interaction (6, 7). We are now reporting studies on the Abbreviations: CRM, crossreacting material; CMC, critical micelle concentration; NaDodSO4, sodium dodecyl sulfate. * Present address: Pasteur nstitute, Paris, France. t To whom reprint requests should be addressed. 4449 binding-of Triton X-1 to diphtheria toin, to its A and B fragments, and to the nontoic, serologically related to gene product, crossreacting material (CRM) 45, which lacks the 17, dalton COOH-terminal amino acid sequence of the intact toin molecule (8). Based on our findings, we are proposing a model to describe the process by which the diphtheria toin A fragment is transported across the plasma membrane. MATERALS AND METHODS Detergent Preparation. Triton X-1 (polyoyethylene octyl phenol, averaging 9.6 ethylene oide units per monomer) was obtained from Rohm & Haas Co., Philadelphia. An aqueous solution of ring-labeled [3H]Triton X-1 (.93 mg/ml) was a gift from Steven Clarke. The concentration of this stock solution was calculated from the absorbance at 274 nm of dilutions in 1 mm Tris-HC buffer containing.1 M Na2SO4 at ph 7.5, assuming A (1%) = 23.2. The specific activity was 125 cpm/,gg of [3H]Triton X-1 as determined in 3 ml of Aquasol (New England Nuclear) in a Beckman LS23 liquid scintillation counter. The critical micelle concentration (CMG) of Triton X-1 was determined using methyl orange by the method of Benzonana (9) to be.13 mg/ml in the 1mM phosphate buffer at ph 7.2 used for binding studies. Labile tritium was estimated by passing a small volume of the stock [3H]Triton X-1 solution through a Sephade G-column. Almost 99% of the radioactivity emerged in the void volume. Proteins. Partially purified diphtheria toin (3-5% nicked) was obtained from Connaught Laboratories, Toronto, and was purified further by DE52 DEAE-cellulose chromatography (1). After treatment with trypsin in the presence of thiol (11), fragments A and B were separated from one another by gel filtration through a Sephade G-1 column equilibrated with 1 mm sodium phosphate buffer containing.1% sodium dodecyl sulfate (NaDodSO4) and.1% 2-mercaptoethanol at ph 7.2. Pooled fractions containing fragment B were maintained in the.1% NaDodSO4-containing buffer in order to prevent precipitation of the protein. The NaDodSO4 was removed from the pooled fragment A fractions by dialysis. The CRM45 protein was isolated from culture filtrates of Corynebacterium diphtheriae C7(#45). The details of its purification by salt fractionation and DE52 chromatography will be described elsewhere. After treatment with trypsin under reducing conditions, fragment B45 was separated from fragment A by two or more precipitations at ph 4.4 and resolution in 1 mm sodium phosphate buffer, ph 7.2. Fig. 1 shows the patterns obtained on NaDodSO4/1% polyacrylamide gel electrophoresis of the various proteins used in the binding studies to be described. Triton X-1 Binding. The method described by Clarke (7) was followed. Sucrose gradients (5-2%, wt/vol) were prepared

445 Biochemistry: Boquet et al. Proc. Natl. Acad. Sci. USA 73 (1976) AS.-M_.M _._w A BC D E F Fi(t. 1. NaDodSO4/1% polyacrylamide gel electrophoresis of proteins used in [:H]Triton X-1 binding studies. All gels ecept A contained.1% 2-mercaptoethanol. A, toin; B, toin + 2-mercaptoethanol; C, fragment B; D, fragment A; E, CRM45; F, CRM45 B fragment (B45). LO~ CN en E a. o ) c *1 L.. in 1 mm sodium phosphate buffer, ph 7.2, containing increasing concentrations of [3H]Triton X-1. Gradients were poured into thin-walled polyallomer tubes of 4 ml capacity and stored for at least 4 hr at 4 before use. Samples of 1-2 A (3 mg of protein per ml in 1 mm phosphate buffer, ph 7.2, containing an ecess of [3H]Triton X-1) were layered on top of the gradients, which were then centrifuged in a SB45 rotor using an E6B ultracentrifuge. Speed, temperature, and duration of each run are given in the legend accompanying each figure. n each eperiment, a control gradient containing no protein was run to determine the radioactivity of the base line. After centrifugation, 25 to 3 fractions of three to five drops each were collected from the bottom of the tubes and 25 p aliquots were counted by liquid scintillation. Protein was determined by the Lowry et al. method (12) using 4,.d aliquots diluted to 2 Al in the phosphate buffer to avoid precipitation of detergent. Binding was calculated as follows: for each point associated with the protein peak, the base line counts were subtracted from the total counts and the differences were divided by the specific activity of the [3H]Triton X-1 (125 cpm/ag) and by the amount of protein in the aliquot. For calculation of molar ratios the following molecular weights were assumed: for Triton X-1, 636; toin, 62,; fragment A, 22,; fragment B, 4,; CRM45, 45,; and fragment B45, 23,. RESULTS Triton X-1 Binding to Diphtheria Toin and ts Fragments. Fig. 2A shows that in the absence of NaDodSO4, there is no measurable binding of Triton X-1 to diphtheria toin above the CMC, nor does isolated fragment A, under similar conditions, bind a measurable amount of the detergent (Fig. 2B). Even after "nicking" with trypsin and/or reduction before centrifugation through gradients containing.3% 2-mercaptoethanol, no binding of Triton X-1 to toin could be detected. From the scatter of the base-line data, binding in ecess BOTTOM FRACTON NUMBER TOP FC. 2. Binding of [3H]Triton X-1 by toin and its fragments. Proteins were centrifuged into sucrose gradients containing the detergent above its CMC. Samples (2 Ml) in 1 mm phosphate buffer, ph 7.2, containing 5 mg/ml of [3H]Triton X-1 and.8 mg of protein were layered on 3.7 ml of 5-2% sucrose gradients containing.5 mg/ml of :HJTriton X-1 and centrifuged at 4. Panel A, toin, 55, rpm for 16 hr; Panel B, fragment A, 6, rpm for 2 hr; Panel C, fragment B, 6, rpm for 2 hr. of 1 or 2 mol of detergent per mol of protein would have been easily detectable. Thus, in this respect, both toin and its A fragment behave as do other soluble proteins that have been studied (6, 7). Fragment B, on the other hand, binds an appreciable amount of nonionic detergent, as shown in Fig. 2C. A large peak of radioactivity is associated with the protein peak, equivalent to at least.7 mg of Triton X-1 bound per mg of fragment B (about 44 mol/mole of protein). Fig. 3 plots the Triton X-1 bound to fragment B as a function of increasing detergent concentration, both below and above CMC. t is clear that, under these particular conditions, fragment B is able to bind Triton X-1 monomers. The curve shown in Fig. 3 is drawn to fit a theoretical equation describing a system in which a maimum of 52 mol of Triton X-1 is bound per mol of protein (.83 mg/mg of protein) with a dissociation constant KD =.2 mm. The same data are shown in the insert as a double reciprocal plot. t should be stressed at this point that because of its insolubility in ordinary buffers, the fragment B solutions layered on

c.7 ).6 ) 8 E o.6.5 3.4 m~.2 o.1 m Biochemistry: Boquet et al. / CMC BOUND /- TRTON -- _ Y-1 8T 8 --- 4 -- 2+ l -2-b 1 2 3 4 _ FREE TRTONWOO.1.2.3.4.5 Free Triton X-1, mg/ml Fi(c. 3. Binding of Triton X-1 to fragment B as a function of detergent concentration. Samples of 1,l, each containing.5 mg of protein in 1 mm phosphate buffer containing.1% NaDodSO4 and 1-5 mg/ml of [:'H]Triton X-1, were layered on 5-2% sucrose gradients made in 1 mm phosphate containing increasing concentrations of the tritiated detergent. Gradients were centrifuged at 4 for 2 hr at 6, rpm. The curve is drawn to fit the equation B = (Bo X C)/KD + C) where B is mg of detergent bound per mg of protein, Bo is maimum binding, c is the concentration of free Triton X-1 and K11 is the dissociation constant in mg/ml. Bo and KD were estimated from the reciprocal plot shown in the insert. the gradients shown in Figs. 2C and 3 contained.1% Na- DodSO4 and therefore B was not in its native conformation. However, from our own eperiments and those of Clarke (7), when a protein dissolved in NaDoda5SO4 is centrifuged through a gradient containing Triton X-1, all or almost all of the radioactive NaDodSO4 remains behind at the top of the gradient. After replacement of NaDodSO4 by Triton X-1 in the gradient during centrifugation, B remains fully soluble. When intact toin dissolved in. 1% NaDodSO4-containing buffer was centrifuged into a gradient containing.11 mg/ml of [3H]Triton X-1 (i.e., just below CMC).33 mg of detergent were bound per mg of toin (32 mol/mol), a figure that is close to that epected from its B content. Even when treated with NaDodSO4, however, fragment A binds no detergent. Triton X-1 Binding to CRM45 and to ts B Fragment, B45. As seen in Fig. 4, CRM45 binds no Triton X-1 until the detergent concentration reaches its CMC. Above CMC, binding abruptly becomes maimal whether CRM45 is nicked or unnicked, whether it is reduced or unreduced. Therefore, in contrast to toin itself, CRM45 readily enters into the detergent micelles, even in the absence of NaDodSO4. When CRM45 solutions are dialyzed against.1% NaDodSO4-containing buffers before centrifugation into gradients containing increasing concentrations of Triton X-1, binding of monomers does occur and a typical binding curve similar to that shown for fragment B in Fig. 3 is obtained. The curve shown in Fig. 4 was drawn to fit a theoretical system with maimal binding of 51 mol of detergent per mol of CRM45 (.71 mg/mg of protein) and a KD =.15 mm. The maimum observed number of Triton X-1 molecules bound per molecule CRM45 was reached at a detergent concentration well above CMC and was about 42 mol/mol of CRM45 whether or not the protein had been pretreated with NaDodSO4. Assuming that there are 12 Triton X-1 monomers per micelle (13), it may be calculated that 3 molecules of CRM45 are inserted per micelle. The density of such a micelle-crm45 comple is high enough that the comple passes into the gradient. On the other hand, isolated fragment B45 appears to bind so much [3H]Triton X-1 at n7 c v.,1 v._ ).6. c.5 E.4 c.3 H.2 c. o.1 m Proc. Natl. Acad. Sci. USA 73 (1976) 4451 1 71l 1l 1 M 1i ih 8-6- 4-2 (.) -2-1 1 2 3 4 5-,- FREE TRTON X1.1.2.3.4.5 Free Triton X-1, mg/m FG. 4. Binding of [3H]Triton X-1 to CRM45 as a function of detergent concentration. Samples of 2 ul, each containing.8 mg of protein dialyzed against 1 mm phosphate buffer at ph 7.2, either with.1% NaDodSO4 () or without NaDodSO4 () were layered on 5-2% sucrose gradients containing increasing concentrations of ['H]Triton X-1. Centrifugation was at 4 for 2 hr at 57, rpm. n the insert the data for CRM45 previously treated with NaDodSO4 are shown as a double reciprocal plot. concentrations above CMC that it remains on top of the gradient even after 24 hr centrifugation at 6, rpm. Below CMC there is no binding of detergent (data not shown). However, just as in the case of toin itself and CRM45, when B45 was dialyzed against.1% NaDodSO4-containing buffer before centrifuging, a typical binding curve for monomeric [3H]Triton X-1 was obtained. A reciprocal plot of the data is shown in Fig. 5. The data fit a system with a maimum of 55 mol of detergent bound per mole of B45 and KD =.2 mm. These constants do not differ significantly from those found for toin itself or for CRM45. DSCUSSON We have studied the hydrophobicity of diphtheria toin, CRM45, and their isolated A and B fragments by measuring Bound Triton X- Free Triton X-O FG. 5. Double reciprocal plot of [3H]Triton X-1 binding to fragment B45 as a function of detergent concentration. Samples of 2 Ml containing.6 mg of protein previously dialyzed against 1 mm phosphate buffer, ph 7.2, containing.1% NaDodSO4 and 1-1.5 mg/ml of [3H]Triton X-1 were layered on 5-2% sucrose gradients containing increasing concentration of the tritiated detergent below critical micelle concentration. Centrifugation was at 7 for 24 hr at 6, rpm. Concentrations of bound Triton X-1 are in terms of mg/mg of protein; free detergent is in mg/ml.

4452 Biochemistry: Boquet et at. binding of tritiated Triton X-1 according to the method described by Clarke (7). When these proteins were centrifuged through sucrose gradients containing [3H]Triton X-1 at concentrations below its critical micelle concentration, none of them bound measurable amounts of the detergent. On the other hand, when the same proteins were first dialyzed against the ionic detergent sodium dodecyl sulfate (.1% solution in 1 mm buffer) before the binding assay, toin, CRM45, and their isolated B fragments (but not fragment A) each bound a maimum of about 4 mol of monomeric Triton X-1 per mol of protein. The fact that under these conditions B45 binds as much detergent as CRM45 or as the entire B fragment of toin clearly demonstrates that the 23, amino acid sequence linking fragment A to the remainder of B carries a hydrophobic "domain." Within this domain, in the presence of NaDodSO4, it seems likely that the amino acids become coiled in such a manner that their hydrophobic side chains are clustered and thus able to bind monomeric Triton X-1 molecules (14). As mentioned above, without prior dialysis against NaDod- S4, none of the toin-related proteins binds Triton X-1 below its CMC. Above CMC, however, the proteins behave very differently from one another. Toin itself, whether nicked or unnicked, whether reduced or unreduced, does not bind Triton X-1 or enter into micelles. Nor does fragment A bind the detergent at any concentration tested. n contrast, when the concentration of Triton X-1 in the gradient reaches its CMC, both CRM45 and B45 abruptly become inserted into micelles (see Fig. 4). We have calculated that three molecules CRM45 are bound for each micelle containing 12 molecules of the detergent (13). Because of the fragment B's insolubility, in aqueous buffers, it has not been feasible to measure the Triton X-1 binding of the toin B fragment without prior treatment with NaDodSO4. t is not possible to redissolve precipitated B in Triton X-1- containing buffers, although after solution with the aid of Na- DodSO4, the NaDodSO4 may be replaced by Triton X-1 without causing B to precipitate. The instability of fragment B in aqueous solution is clearly not due to its hydrophobicity, since B45, which contains the hydrophobic domain, is soluble and stable in neutral buffers. ts relatively high hydrophobicity as compared to fragment A may account for the fact that in NaDodSO4 polyacrylamide gel electrophoresis, B45 travels faster than A even though its molecular weight is almost certainly greater (15). Fragment A travels slower than would be epected from its molecular weight of 21,15 calculated from the sequence data (16), probably because it binds less NaDod- S4 than most proteins. B45, because of its hydrophobicity, probably binds more. That a large segment of the CRM45 actually enters into the micelles and is not merely adsorbed to their surface is shown by the following eperiment involving two gradients. n the first, CRM45 was dialyzed against 1 mm buffer containing.1% NaDodSO4. At this low ionic strength, NaDodSO4 does not form micelles (17). just before centrifugation, 1 mg/ml of Triton X-1 was added (about seven times its CMG) and the protein was then centrifuged through a sucrose gradient containing.1% [3H]Triton X-1 (i.e., below the CMC). The epected amount of labeled detergent was found associated with the protein peak (see Fig. 4, closed circles). n the second gradient, the order of addition of the two detergents was reversed, so that CRM45 had already become inserted into Triton X-1 micelles before NaDodSO4 was added. Under these circumstances, no significant radioactivity was associated with the protein peak, presumably because NaDodSO4 could not readily penetrate the Triton X-1 micelles to interact with the Proc. Natl. Acad. Sci. USA 73 (1976) hydrophobic region of CRM45. Upon entering the gradient, with detergent below CMC, the micelles dissociate and release native CRM45 while the NaDodSO4 remains behind at the top of the gradient. Although the toin-specific receptors on growing HeLa cell membranes fail to react with CRM45, preliminary eperiments have shown that unpurified membrane ghost preparations from HeLa cells do bind 125-labeled CRM45. n fact, such preparations can bind at least 3-4 times as much 125-CRM45 as 125-toin. n this respect at least, a lipid membrane preparation resembles the detergent micelles in its behavior. Our earlier studies (3) have shown that the initial reaction between diphtheria toin and specific surface receptor is followed by irreversible entry of the molecule into the plasma membrane. As a result, fragment A reaches the cytoplasm and B remains, temporarily at least (4), within the lipid bilayer. The fact that CRM45 can enter detergent micelles and is taken up avidly by cell membrane ghosts, whereas the toin molecule itself is not, poses some interesting questions. s a COOH-terminal polypeptide split off after toin becomes bound to the cell surface so that the rest of the molecule, now resembling CRM45 and being in close proimity to the membrane, can insert itself into the lipid bilayer? Does the receptor itself play an active role in this process? s it possible that the receptor might be a specific protease? We propose the following hypothetical model to describe how the fragment A of toin traverses the plasma membrane. As a result of the initial reaction of membrane receptor with groups mainly located on the COOH-terminal portion of the toin molecule, the hydrophobic domain of B is brought into close proimity with the phospholipid bilayer. Before this region can enter into the bilayer, either a COOH-terminal hydrophilic polypeptide must be split off so as to produce a molecule resembling CRM45 or a major conformational change must be brought about by some other mechanism. n any case, the hydrophobic domain becomes inserted into the bilayer, where it may form a channel either by itself or in association with that part of the receptor molecule already lying within the mem' brane. Since fragment A is attached to that part of the B polypeptide in which the hydrophobic region is located, A may be drawn through the channel as it is being formed until the disulfide bridge and the short eposed loop that link the two fragments together reach the inner surface of the membrane. There, "nicking" and reduction take place and A enters the cytoplasm. Because fragment A readily renatures even after being subjected to drastic denaturing conditions, any channel through the membrane need only be large enough to accommodate A in its unfolded form. We are indebted to Dr. Steven Clarke and to Dr. Eva Neer for helpful discussion and suggestions and to Dr. Guido Guidotti for critical reading of the manuscript. This work was supported by Grant PCM75-15314 from the National Science Foundation. P.B. is a Postdoctoral Fellow supported in part by the French government and in part by the nstitut National de la Sante et de la Recherche Medicale (NSERM). 1. Pappenheimer, A. M., Jr. & Gill, D. M. (1973) Science 182, 353-358. 2. Collier, R. J. (1975) Bacteriol. Rev. 39,54-82. 3. Boquet, P. & Pappenheimer, A. M., Jr. (1976) J. Biol. Chem., 251, 577-5778. 4. Boquet, P., Silverman, M. & Pappenheimer, A. M., Jr. (1976) in Proc. of the 1976 UCLA Winter Symposium on Cell Shape and Surface Architecture (Alan R. Liss, New York), in press. 5. Bretscher, M. S. & Raff M. C. (1975) Nature 258,43-49. 6. Helenius, A. & Simon, K. (1972) J. Biol. Chem. 247, 3656-3661.

Biochemistry: Boquet et al. Proc. Nati. Acad. Sci. USA 73 (1976) 4453 7. Clarke, S. (1975) J. Biol. Chem. 25,5459-5469. 8. Uchida, T., Gill, D. M. & Pappenheimer, A. M., Jr. (1971) Nature New Biol. 233, 8-11. 9. Benzonana, G. (1969) Biochim. Biophys. Acta 176, 836-848. 1. Pappenheimer, A. M., Jr., Uchida, T. & Harper, A. A. (1972) mmunochemistry 9,891-96. 11. Gill, D. M. & Dinius, L. L. (1971) J. Biol. Chem. 246, 1485-1491. 12. Lowry,. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) J. Biol. Chem. 193,265-275. 13. Becher, P. (1967) in Nonionic Surfactants, ed. Schick, M. J. (Marcel Dekker, New York), p. 495. 14. Visser, L., Robinson, N. C. & Tanford, C. (1975) Biochemistry 14, 1194-1199. 15. Grefrath, S. P. & Reynolds, J. A. (1974) Proc. Nat. Acad. Sci. USA 71,3913-3916. 16. DeLange, R. J., Drazin, R. E. & Collier, R. J. (1976) Proc. Nat. Acad. Sci. USA 73, 69-72. 17. Reynolds, J. A. & Tanford, C. (197) Proc. Nat. Acad. Sci. USA 66, 12-17.