Identification of Haemoglobinopathies by LC/MS

Similar documents
Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Quadrupole and Ion Trap Mass Analysers and an introduction to Resolution

Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry

PTM Discovery Method for Automated Identification and Sequencing of Phosphopeptides Using the Q TRAP LC/MS/MS System

2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Characterization of an Unknown Compound Using the LTQ Orbitrap

The Comparison of High Resolution MS with Triple Quadrupole MS for the Analysis of Oligonucleotides

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Identification & Confirmation of Structurally Related Degradation Products of Simvastatin

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010

Sample Concentration and Analysis of Human Hormones in Drinking Water

Quantitation of Protein Phosphorylation Using Multiple Reaction Monitoring

Targeted and untargeted metabolic profiling by incorporating scanning FAIMS into LC-MS. Kayleigh Arthur

Supporting information

Comparison of mass spectrometers performances

Primary Structure Analysis. Automated Evaluation. LC-MS Data Sets

SWATH Acquisition Enables the Ultra-Fast and Accurate Determination of Novel Synthetic Opioids

HbF<2% 95-98% H b A %

Using Software Tools to Improve the Detection of Impurities by LC/MS. Application Note. Christine Miller Agilent Technologies.

Moving from targeted towards non-targeted approaches

for the Identification of Phosphorylated Peptides

LC-MS/MS quantitative analysis of Polyunsaturated Omega 3, 6,7 and 9 Fatty Acids in Serum for

Mass spectra of peptides and proteins - and LC analysis of proteomes Stephen Barnes, PhD

High-Throughput Analysis of Oligonucleotides using Automated Electrospray Ionization Mass Spectrometry

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

LC/MS Crossroads. Jerry Pappas Sales Representative 265 Davidson Avenue Somerset, NJ

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

In-Solution Digestion for proteomics

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine

Analysis of Limonin in Citrus Juice Using QuEChERS and LC-MS/MS

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices

Shotgun Proteomics MS/MS. Protein Mixture. proteolysis. Peptide Mixture. Time. Abundance. Abundance. m/z. Abundance. m/z 2. Abundance.

Automated Purification and Analytical Reinjection of a Small Molecule Drug, Probenecid, on a Gilson LC/MS Dual Function System

Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications

Application of a new capillary HPLC- ICP-MS interface to the identification of selenium-containing proteins in selenized yeast

Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

2D-LC as an Automated Desalting Tool for MSD Analysis

Methods in Mass Spectrometry. Dr. Noam Tal Laboratory of Mass Spectrometry School of Chemistry, Tel Aviv University

Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Supporting Information

Neosolaniol. [Methods listed in the Feed Analysis Standards]

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid

SYNAPT G2-S High Definition MS (HDMS) System

Phospholipid characterization by a TQ-MS data based identification scheme

Quantitative Analysis of THC and Main Metabolites in Whole Blood Using Tandem Mass Spectrometry and Automated Online Sample Preparation

Edgar Naegele. Abstract

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

Designer Cannabinoids

Designer Fentanyls Drugs that kill and how to detect them. Cyclopropylfentanyl

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

[ APPLICATION NOTE ] APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

Small Molecule Science: Experimental designs for achieving ultra trace analysis

Sample Preparation is Key

Mass Spectrometry. - Introduction - Ion sources & sample introduction - Mass analyzers - Basics of biomolecule MS - Applications

REDOX PROTEOMICS. Roman Zubarev.

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS.

New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics

High Resolution Glycopeptide Mapping of EPO Using an Agilent AdvanceBio Peptide Mapping Column

Identification of Ginsenosides Using the SCIEX X500R QTOF System

Measuring Lipid Composition LC-MS/MS

Supplementary Materials for

Mass Spectrometry Infrastructure

High-Throughput Quantitative LC-MS/MS Analysis of 6 Opiates and 14 Benzodiazepines in Urine

Determination of Amantadine Residues in Chicken by LCMS-8040

Impurity Identification using a Quadrupole - Time of Flight Mass Spectrometer QTOF

Application Note LCMS-108 Quantitation of benzodiazepines and Z-drugs in serum with the EVOQ TM LC triple quadrupole mass spectrometer

Michal Godula Thermo Fisher Scientific. The world leader in serving science

PosterREPRINT EVALUATION OF A RF-ONLY STACKED RING BASED COLLISION CELL WITH AXIAL FIELD FOR THE LC-MS-MS ANALYSIS OF THE METABOLITES OF RABEPRAZOLE

Mass Spectrometry. Mass spectrometer MALDI-TOF ESI/MS/MS. Basic components. Ionization source Mass analyzer Detector

Lecture 3. Tandem MS & Protein Sequencing

An Introduction to the Use of itraq Reagents for Amino Acid Analysis

Sequence Identification And Spatial Distribution of Rat Brain Tryptic Peptides Using MALDI Mass Spectrometric Imaging

Databehandling. 3. Mark e.g. the first fraction (1: 0-45 min, 2: min, 3; min, 4: min, 5: min, 6: min).

Profiling Flavonoid Isomers in Highly Complex Citrus Juice Samples Using UPLC Ion Mobility Time-of-Flight Mass Spectrometry

High resolution mass spectrometry for bioanalysis at Janssen. Current experiences and future perspectives

Mass-Spectrometric Analysis of Lipids (Lipidomics)

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

NON TARGETED SEARCHING FOR FOOD

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform

For personal use only. Please do not reuse or reproduce

Biological Mass Spectrometry. April 30, 2014

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection

Ten Second DART -MS: Ultra-Fast QC Screening of Foods and Juices with Next Generation DART systems

Haemoglobinopathies case studies 11 th Annual Sickle Cell and Thalassaemia Conference October 2017

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05.

LC-MS/MS Method for the Determination of Raloxifene and its Glucuronide Metabolites from Human Plasma Using SPE Micro Elution

LC-MS/MS Method for the Determination of Tenofovir from Plasma

Metabolomics Core Lab School of Medicine University of Utah

Application Note: 425. Introduction. Goal. Experimental Conditions

Quantitative Analysis of Underivatized Amino Acids in Plant Matrix by Hydrophilic Interaction Chromatography (HILIC) with LC/MS Detection

How to Use TOF and Q-TOF Mass Spectrometers

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1

Increased Identification Coverage and Throughput for Complex Lipidomes

Electrospray mass spectrometric characterization of hemoglobin Q (Hb Q-India) and a double mutant hemoglobin S/D in clinical samples

Analysis of Peptides via Capillary HPLC and Fraction Collection Directly onto a MALDI Plate for Off-line Analysis by MALDI-TOF

Transcription:

Identification of Haemoglobinopathies by LC/ Mark Harrison; Senior Scientist, ThermoFisher Scientific Sarah Battle; Senior Biomedical Scientist, Royal Hallamshire Hospital

Introduction There are over 2 known haemoglobin variants Precise identification the variant is relevant to the patient s current clinical state or any possible inherited conditions Gel Based electrophoresis Is widely used in the diagnosis of hemoglobinopathies, Analyses can be done quickly and at a low cost. Only used as an initial screening test HPLC Ion exchange HPLC allows the detection of abnormal Hb quickly and precisely, using a small sample amount Quantification of Hb A2, Hb F, Hb A, Hb S, and Hb C and screening for Hb variants Important method for the investigation of hemoglobinopathies in routine laboratories 2

Introduction HPLC// Loop injection with SRM Provide rapid screening for clinically significant variants Hb S, Hb C, D Punjab, O Arab and Hb E, Often samples which are shown to be abnormal but are inconclusive by existing methods are sent for investigation in a specialized laboratory. Requires expert tuning and operation of the Data interpretation is manual, time consuming Here we present some preliminary work using HPLC// Aim for non-expert operators Use automated tuning procedures Batch analysis Chromatographic retention as additional identifier Software tools for data interpretation 3

Relative Abundance I nt ensit y x 1^6 Workflow of identifying variants J e d d a h 8 1 5 1 2 5. 8 1 5 1 4 8. 6 1 5 8 6 6. 8 IC -HPLC indicates presence of variant LC/ Intact Proteins 7 6 5 4 3 2 1 5 1 6 6. 2 1 5 1 9. 9 1 5 8 4 6. 5 Variant in alpha or beta chain. Mass Change of variant 1 5 8 8 8. 3 1 5 1 9. 8 1 5 7 8. 3 1 5 1 3 8. 2 15857 1 5 9 2. 145 9 1 2. 4 1 5 9 8. 8 15181 15 152 153 154 155 156 157 158 159 M ass, Da RT:. - 3. SM: 3B 95 9 15.27 1.3E8 Base Peak 6May_Dig ests_l8 85 8 75 7 1.76 8.75 14.55 Perform tryptic digest 65 6 55 5 45 4 1.27 12.23 12.95 17.63 15.67 Look up mass shift in tables 35 3 5.81 4.96 25.85 25.9 2 17.32 19.11 21.56 15 1.7 25.62 1 5 2.77 3.89 7.9 19.42 22.68 24.69 26.92 27.95 2 4 6 8 1 12 14 16 18 2 22 24 26 28 Time (min) Examine chromatograms of tryptic fragments Can variant be assigned unambiguously? Process / data Perform Specific / experiment Can variant be assigned unambiguously? YES YES 4

Sample Preparation Stock solution 1ul blood diluted to 5ul with water Intact analysis 2 ul Stock Solution diluted to 2ul with water Protein digests ul stock solution was denatured with 1ul 1% Formic acid and 1ul ACN Mix and stand for 5mins Add 6ul 1M ammonium bicarbonate and 5ul 5mg/ml TPCK treated trypsin Vortex mix and centrifuge for 15 secs Incubate at 37 o C for 1 hour Dilute 2ul to 2ul with water B.N. Green et. al. Rapid Identification of Hemoglobin variants by Electrospray Ionization Mass Spectrometry, Blood Cell, Molecules and Diseases (21) 27(3) 5

LC/ Methods HPLC Conditions Column BioBasic-4 *1 mm 5µm Mobile Phase A: water.1% Formic Acid Mobile Phase B: Acetonitrile.1% Formic Acid 3 min gradient Intact proteins Full scan Peakwidth.2µ FWHM 65-12 m/z Digests Full scan Peakwidth.2µ FWHM 15-145 m/z 6

Mass Spectrometry TSQ Quantum Ultra Triple Quadrupole Accela UHPLC Open Accela AS 7

Triple Stage Quadrupoles API Source Ion Optics Q2 -rf only Collision Cell Q1 Q2 Q3 rf/dc mass analysing quadrupoles Detection System 8

TSQ Quantum HyperQuads Technology Why use Hyperbolic rods? Forms Pure Quadrupolar Fields Reduces Fringing Field Effects Significantly Improves Resolution Improves Transmission Improves Peak Shapes 9

Resolution Performance of HyperQuads.7u FWHM 2.6e6.1u FWHM 1.2 e6 1

Relative Abundance Use of high resolution Unit resolution.7µ FWHM High resolution.2µ FWHM 8 6 4 Normal T13 [M+2H] 2+ 69.27 8 6 4 2.41E4 EFTPPVQAAYQK +H +H 2 O: C 64 H 97 N 15 O 19 p (gss, s /p:4) Chrg 2 R:.7 Da @FWHM 689.85 Normal T13 [M+2H] 2+ 69.35 N 1 E C p R 2 8 6 4 D-Punjab T13 [M+2H] 2+ 689.78 2 8 6 4 2.41E4 QFTPPVQAAYQK +H +H 2 O: C 64 H 98 N 16 O 18 p (gss, s /p:4) Chrg 2 R:.7 Da @FWHM 689.36 689.86 69.86 691.36 D-Punjab T13 [M+2H] 2+ N 1 Q C p R 2 8 6 69.3 Mixture [M+2H] 2+ 2 8 6 2.41E4 689.85 69.37 69.87 EFTPPVQAAYQK *1.+ QFTPPVQAAYQK *1. +H +H 2 O: p (gss, s /p:4) Chrg 2 R:.7 Da @FWHM 69.36 Mixture [M+2H] 2+ N 1 E Q s R 4 4 2 2 69.86 688 69 692 694 696 m/z 691.36 691.86 692.36 689 69 691 692 693 m/z 11 Simulation of isotope patterns

Electrospray ionisation Electrospray can produce multiple charges Compounds with multiple basic centres Eg peptides and proteins Mass spectrometer Measures to mass / charge ratio of a compound; m/z 12

Spectrum of Normal Hb 19 7May_Intacts_7 #277-282 RT: 23.32-23.74 AV: 6 SM: 3B 6.62E7 T: + p ESI Q1 [65.-12.] 2 797.13 757.27 18 841.34 95 9 85 8 75 21 721.35 17 89.78 7 65 6 55 5 45 4 35 3 25 658.66 688.54 2 19 836.14 18 882.5 17 934.37 16 946.37 16 992.63 15 9.38 15 158.84 14 2 181.42 15 1 5 862.24 898.6 955.49 147.4 1134.33 1164.55 114.7 119.71 7 75 8 85 9 95 15 1 115 12 m/z 13

Deconvoluted spectrum of Normal Hb 15125.8 15866.8 15 152 153 154 155 156 157 158 159 Mass, Da 15

Intensity x 1^9 Intensity x 1^9 Example 1 D-Punjab 2.5 15125.8 α 15126 Da Normal Haemoglobin 2. 1.5 15867 Da 15866.8 1..5. 2. 1.8 15167.1 1519.8 1578.3 15146.9 15796.5 15888.2 15176.6 D-Punjab 15 152 153 154 155 156 157 158 159 15125.8 Mass, Da α 15126 Da 1.6 1.4 1.2 1..8 β -1 Da (15867 15866 Da) 15865.9.6.4.2 1519.4 15166.2 15146.9 15888.1. 15 152 153 154 155 156 157 158 159 Mass, Da 16

Example 1 RT:. - 26.69 SM: 3B 9 8 7 Normal 8.75 1.76 14.55 15.27 NL 1. Ba 6M sts 6 5 1.27 12.23 12.95 15.67 17.63 4 3 2.9 4.96 5.81 25.85 17.32 1 9 8 7 Chain -1Da 8.75 1.76 12.19 15.18 14.46 NL 1. Ba m/z 15 145 6M sts 6 17.63 5 4 3 2 4.96 5.76 1.27 9.73 12.9 15.63 17.37 19.6 25.8 1 2 4 6 8 1 12 14 16 18 2 22 24 26 Time (min) 17

Example 1 chromatogram RT: 8.1-12.5 9 8 SM: 3B Normal 8.75 1.76 12.23 7.25E7 Base Pea 6May_D sts_l8 7 6 5 9.69 1.27 4 3 2 1 9.15 11.25 9 8 7 6 5 Chain 8.75-1Da 9.73 1.27 1.76 12.19 8.57E7 Base Pea 15.- 145. 6May_D sts_l2 4 3 2 1 9.11 11.25 8.5 9. 9.5 1. 1.5 11. 11.5 12. 12.5 Time (min) 18

[M+2H] 2+ of extra peak at rt 1.6 6May_Digests_L2 #236-237 RT: 1.49-1.54 AV: 2 SM: 5B 1.82E7 T: + p ESI Q1 [15.-145.] 689.36 95 9 85 8 75 7 65 6 55 689.82.5 Da 5 45 4 35 69.36.5 Da 3 25 2 15 1 5 684 686 688 69 692 694 696 698 7 72 m/z 19

Example 1 Mass Chromatogram of 689.36 +.2µ RT:. - 3. SM: 3B 9 8 7 Normal 1.45E8 689.25-689.45 6May_Dig ests_l8 6 5 4 3 2 1 9 8 7 Chain -1Da 1.54 1.45E8 689.25-689.45 6May_Dig ests_l2 6 5 4 3 2 1 2 4 6 8 1 12 14 16 18 2 22 24 26 28 Time (min) 2

21

Table of chain -1Da shift Chain Pos T Frag Mutation Name Delta Mass Sequence / Diagnostic ion(s) Ret T 6 1 Glu - Lys C -1 VHLTPEEK N 347.7 / 694.4 2.7 7 1 Glu - Lys G-Siriraj -1 VHLTPEEK Y 412.2 / 823.5 22 3 Glu -Gln D-Iran -1 VNVDEVGGEALGR Y 657.3 / 1313.7 22 3 Glu-Lys E-Saskatoon -1 VNVDEVGGEALGR Y 574.3 & 379.7/ 758.4 26 3 Glu-Gln Novel -1 VNVDEVGGEALGR Y 657.3 / 1313.7 26 3 Glu - Lys E -1 VNVDEVGGEALGR N 458.7 / 916.5 & 416.25 1.3 & 6.1 43 5 Glu - Lys Hornchurch -1 FFESFGDLSTPDAVMGNPK N 441.25 & 818.4 / 545.9 52 5 Asp - Asn Osu -1 FFESFGDLSTPDAVMGNPK Y 686.66 / 129.5 73 9 Asp - Asn G-Accra -1 VLGAFSDGLAHLDNLK Y 557. / 835. 79 9 Asp - Asn Yaizu -1 VLGAFSDGLAHLDNLK Y 557. / 835. 9 1 Glu - Lys Agenogi -1 GTFATLSELHCDK N 412.7 / 824.5 & 34.1 / 615.3 94 1 Asp - Asn Bunbury -1 GTFATLSELHCDK N 474.2 / 71.9 99 11 Asp - Asn Kempsey -1 LHVDPENFR Y 563.3 / 1125.6 121 13 Glu-Gln D-Punjab -1 EFTPPVQAAYQK N 689.4 1.5 121 13 Glu - Lys O-Arab -1 EFTPPVQAAYQK N 625.3 1249.7 22

Intensity x 1^9 Intensity x 1^9 Example 2 G-Philadelphia 2.5 15125.8 α 15126 Da Normal Haemoglobin 2. 1.5 15867 Da 15866.8 1..5. 1.2 1.1 15167.1 1519.8 1578.3 15146.9 15796.5 15888.2 15176.6 G-Philadelphia 15 152 153 154 155 156 157 158 159 Mass, Da 15125.8 α 15126 Da 1..9.8.7 1514 Variant α 1514 Da 15867 Da 15866.8.6.5 +14 Da.4.3.2 1519.8 15166.1.1. 15178.6 15888.4 1598.1 15847.9 15 152 153 154 155 156 157 158 159 Mass, Da 23

Example 2 RT:. - 2.1 9 8 7 SM: 3B 8.75 1.76 14.55 15.27 1.3 Bas 6M ests 6 5 1.27 12.23 12.95 15.67 17.63 4 3 2 1 9 8 7 6 5 4 3 2 1 4.96 5.81 17.32.9 14.2 19.11 1.7 2.77 3.89 6.7 7.9 4.96 5.76 8.66 1.22 9.69 2 4 6 8 1 12 14 16 18 2 Time (min) 1.72 12.14 12.81 14.38 15.13 15.54 1.12 17.32 2.82 RT: 3.44 6.7 7.99 15.98 17.59 18.93 1.3 Bas 6M ests 24

Relative Abundance Example 2 RT:. - 2.44 SM: 3B 15.13 14.38 8 Hb + 14 Da 1.72 8.66 12.14 6 1.22 12.81 15.54 4 17.59 4.96 5.76 18.93 2 1.12 2.82 17.32 8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2 3.22 3.48 [M+2H] 2+ 423.25 [M+2H] 2+ 359.2 [M+3H] 3+ 771.4 T9 [M+4H] 4+ 749.86 2 4 6 8 1 12 14 16 18 2 Time (min) 14.29 17.59 19.2 RT:. - 2.11 2 9.7E7 8 359.-359.4 6 6May_Digests_L 4 4 2 SM: 3B 1.3E8 8 Normal Hb 15.27 Base Peak 6May_Digests_L 6 8.75 1.76 14.55 4 12.23 12.95 17.63 4 1.27 15.67 4.96 5.81 17.32 2.9 1.7 19.11 6.71E7 8 423.5-423.45 6 6May_Digests_L 4 4 1.15E8 8 771.2-771.6+ 1156.4-1156.8 6 6May_Digests_L 4 4 2 4.38E8 8 749.66-75.6+ 999.3-999.7 6 6May_Digests_L 4 4 2 [M+2H] 2+ 423.25 [M+2H] 2+ 359.2 [M+3H] 3+ 771.4 T9 [M+4H] 4+ 749.86 2 4 6 8 1 12 14 16 18 2 Time (min) 14.64 1.3E8 Base P 6May 8 7.E7 423.5 6May 8 1.E8 359. 6May 8 1.E8 771.2 1156.4 6May 8 4.E8 749.66 999.3 6May 8 25

Example 2 +14 Da in Hb Roubaix 55 val leu/ile TYFPHFDLSHGSAQVK G-philadelphia 68 Asn Lys VADALTNAVAHVDDMPNALS ALSDLHAHK (K)VADALTK & AVAHVDDMPNALS ALSDLHAHK Stanleyville II 78 Asn Lys VADALTNAVAHVDDMPN ALS ALSDLHAHK VADALTNAVAHVDDMPK & ALS ALSDLHAHK Roanne 94 Asp Glu VEPVNFK 26

Extra confirmation of retention time Previous methods use infusion of total sample Problem when normal fragments match variant fragments Difference between [M+H] + and [M+Na] + = 22µ Mass shift of 1u in 15, can be inconclusive 27

Difference of 22Da Sequence of Normal T9 VADALTNAVAHVDDMPNALSALSDLHAHK [M+2H] 2+ = 1498.75, [M+3H] 3+ = 999.5, [M+4H] 4+ = 749.9 [M+H+Na] 2+ = 159.74, [M+2H+Na] 3+ = 6.8, [M+3H+Na] 4+ = 755.37 Sequence of Q-Iran T9 VADALTNAVAHVDHMPNALSALSDLHAHK [M+2H] 2+ = 159.75, [M+3H] 3+ = 6.8, [M+4H] 4+ = 755.37 28

Problem with infusion experiment SM: 5B 5.19 9 8 Normal Hb 999.85 7 6 999.51 5 4 3 2 1 99.55 992.56 993.56 996.32 111.6 1.55 2.53 9.34 112.52 113.53 999.88 9 8 Q-Iran Hb 7 999.55 6 5.22 5 4 3 2 1 1.57 99.55 2.57 7.22 9.5 112.55 992.57 111.55 996.45 993.57 114.54 99 995 5 11 115 m/z 29

Relative Abundance Extra confirmation of retention time RT: 11.75-2.1 8 6 4 2 SM: 3B Normal TIC 12.23 14.55 15.27 12.95 15.67 14.2 17.32 17.63 19.11 RT: 11.73-19.88 SM: 3B 1.3E8 Base Peak 6May_Digests_L8 8 12.19 6 12.9 Q-Iran TIC 4 14.6 2 14.42 15.13 15.58 17.59 17.28 19.2 16.7 Bas 6M 8 6 Normal T9 17.63 5.1E8 6.-6.2+ 749.8-75.+ 999.4-999.6 6May_Digests_L8 6 Normal T9 17.59 6 749 999 6M 4 4 2 14.51 2 14.33 8 6 4 Normal T8-9 17.32 2.68E8 625.8-626.+ 782.-782.2+ 8 142.1-142.3 6 6May_Digests_L8 4 Normal T8-9 17.28 625 782 14 6M 2 2 8 6 4 Normal T9 Na+ adduct 17.63 4.77E7 755.5-755.7+ 7.5-7.25 8 6May_Digests_L8 6 4 Q-Iran T9 16.7 Normal T9 Na+ 17.59 adduct 755 6M 2 2 12 13 14 15 16 17 18 19 2 Time (min) 12 13 14 15 16 17 18 19 Time (min) 3

When intact mass is inconclusive Q-Iran results in +22 Da shift in chain Sequence of Q-Iran T9 VADALTNAVAHVDHMPNALSALSDLHAHK [M+2H] 2+ = 159.75, [M+3H] 3+ = 6.8, [M+4H] 4+ = 755.37 Jeddah results in +23 Da shift in chain Sequence of Jeddah T9 VADALTHAVAHVDDMPNALSALSDLHAHK [M+2H] 2+ = 151.26, [M+3H] 3+ = 7.2, [M+4H] 4+ = 755.6 31

Problems with isotopes; simulation of [M+3H] 3+ 9 8 7 6 7.51 7.84 7.17 8.17 Jeddah T9 6.72E VAD SALS C 13 p (gs R:.2 5 4 3 8.51 2 1 8.84 9 8 7 7.17 7.51 Q-Iran T9 6.72E VAD SALS C 13 p (gs R:.2 6 7.84 5 4 3 8.18 2 1 8.51 8.85 9.52 7 8 9 11 111 112 m/z 32

Infusion SM: 5B 8 6 Normal 999.51 999.85 5.19 5.53 2.34 sam 6 R.1 AV: ESI 4 2 1.56 996.32 998.25 7.55 9.43 111.6 112.52 113.53 8 6 4 Jeddah 999.89 5.22 999.55 1.55 2.53 7.54 112.91 1.24 Sam 6-2 4.34 AV: ESI 2 996.51 997.53 111.58 114.53 8 6 Q-Iran 999.55 999.88 5.22 2.27 sam 9-34 1.87 AV: ESI 4 2 1.57 112.55 7.22 9.5 2.54 111.55 996.45 113.54 995 5 11 115 m/z 33

Relative Abundance Relative Abundance Extra confirmation of retention time RT: 11.89-19.97 SM: 3B 15.27 8 6 Normal 14.55 TIC 12.23 12.95 15.67 17.63 RT: 11.7-2.3 SM: 3B 15.13 1.3E8 Base Peak 14.42 6May_Digests_L 8 Q-Iran TIC 8 12.19 6 12.9 15.58 17.59 RT: 11.73-19.88 SM: 3B 15.18 1.38E8 Base Peak 14.38 6May_Digests_ Jeddah TIC 8 L6 12.14 6 12.81 15.58 4 4 4 17.63 2 14.2 17.32 19.11 2 14.6 17.28 19.2 16.7 2 14.2 19.6 15.94 17.32 8 6 4 Normal T9 17.63 2.3E9 599.6-6.6+ 8 749.4-75.4+ 999.-. 6 6May_Digests_L 8 4 Normal T9 17.59 5.96E8 6.-6.2+ 8 749.8-75.+ 999.4-999.6 6 6May_Digests_ L6 4 Normal T9 17.63 2 14.51 2 14.33 2 14.2 14.33 8 6 4 17.63 1.56E8 755.1-756.1+ 8 6.7-7.7 6May_Digests_L 6 8 4 Q-Iran T9 16.7 17.59 7.62E7 755.4-755.6+ 8 7.5-7.25 6May_Digests_ 6 L6 4 15.94 Jeddah T9 17.63 2 2 2 12 13 14 15 16 17 18 19 Time (min) 12 13 14 15 16 17 18 19 2 Time (min) 12 13 14 15 16 17 18 19 Time (min) 34

Need for / Sequence of Normal T9 VADALTNAVAHVDDMPNALSALSDLHAHK Sequence of Q-India T9 VAHALTNAVAHVDDMPNALSALSDLHAHK Sequence of Q-Thailand T9 VADALTNAVAHVHDMPNALSALSDLHAHK Sequence of Q-Iran T9 VADALTNAVAHVDHMPNALSALSDLHAHK Sequence of possible variant T9 VADALTNAVAHVDDMPNALSALSHLHAHK 35

Relative Abundance Need for / Riccarton T6 + 3Da RT: 9.78-2.67 SM: 3B 15.27 8 6 4 2 1.76 14.55 12.23 12.95 1.27 15.67 Normal TIC 17.63 11.25 17.32 14.2 19.11 RT: 9.33-2.15 SM: 3B 1.3E8 Base Peak 6May_Digests_L 1.63 8 8 6 4 2 9.55 1.13 12.5 12.77 13.93 14.29 15.9 15.54 17.5 11.16 17.19 18.93 15.94 Normal TIC 19.24 Bas 6M 7 8 6 RT: 12.95 Normal T6 1.64E9 458.73-459.73+ 611.48-612.48+ 8 916.95-917.95 Genesis 6May_Digests_L 6 8 RT: 12.72 Normal T6 458. 611. 916. Gen 6M 7 4 4 2 2 8 6 RT: 12.23 Riccarton T6 1.64E8 621.45-622.45+ 931.95-932.95 8 Genesis 6May_Digests_L 8 6 RT: 12.5 RT: 12.68 Riccarton T6 621. 931. Gen 6M 7 4 2 17.32 4 2 17.19 1 11 12 13 14 15 16 17 18 19 2 Time (min) 1 11 12 13 14 15 16 17 18 19 2 Time (min) 36

/ of multiply charged ions: confirmation of sequence 5B 237. 265. 612.1 711.8 442.6 524. 11. 363.5 474.9 589.2 663.2 785.2 237.1 622.5 726.7 265.1 533.9 452.6 484.8 678.2 8.9 12. 378.7 588.2 81.2 2 3 4 5 6 7 8 9 m/z 37

Conclusions Ability to unequivocally identify Hb variants No special tuning knowledge needed Having LC retention gives extra confidence May eliminate the need for / in some cases Future work Investigate use of metabolomics software tools Automatically identify changing peaks Run further pilot studies Implement at Sheffield Northern General 38