Evaluation of the 1B Equation to Estimate Glomerular Filtration Rate in Pediatric Patients with Cancer

Similar documents
Am J Nephrol 2013;38: DOI: /

GFR Estimation in Adolescents and Young Adults

Validity of the use of Schwartz formula against creatinine clearance in the assessment of renal functions in children

Abnormal glomerular filtration rate in children, adolescents and young adults starts below 75 ml/min/1.73 m 2

Evaluation of the Cockroft Gault, Jelliffe and Wright formulae in estimating renal function in elderly cancer patients

Original Article. Saudi Journal of Kidney Diseases and Transplantation

Measurement and Estimation of renal function. Professeur Pierre Delanaye Université de Liège CHU Sart Tilman BELGIQUE

Estimates of glomerular filtration rate (GFR) from serum

Measurement and Estimation of renal function. Professeur Pierre Delanaye Université de Liège CHU Sart Tilman BELGIQUE

AUTOMATIC REPORTING OF CREATININE-BASED ESTIMATED GLOMERULAR FILTRATION RATE IN CHILDREN: IS THIS FEASIBLE?

Glomerular Filtration Rate Estimations and Measurements. Pierre Delanaye, MD, PhD University of Liège CHU Sart Tilman BELGIUM

Environmental Variability

Εκηίμηζη ηης μεθρικής λειηοσργίας Ε. Μωραλίδης

GFR and Drug Dosage Adaptation: Are We still in the Mist?

Validation of El-Minia Equation for Estimation of Glomerular Filtration Rate in Different Stages of Chronic Kidney Disease

Clinical Usefulness of Serum Cystatin C as a Marker of Renal Function

Acute renal failure Definition and detection

Original Article Clinical Chemistry INTRODUCTION

Carboplatin Time to Drop the Curtain on the Dosing Debate

Can modifications of the MDRD formula improve the estimation of glomerular filtration rate in renal allograft recipients?

HHS Public Access Author manuscript Am J Kidney Dis. Author manuscript; available in PMC 2017 July 05.

RENAL FUNCTION ASSESSMENT ASSESSMENT OF GLOMERULAR FUNCTION ASSESSMENT OF TUBULAR FUNCTION

The Effect of Residual Renal Function at the Initiation of Dialysis on Patient Survival

Can the height-independent Pottel egfr equation be used as a screening tool for chronic kidney disease in children?

Life Science Journal 2014;11(10)

Multicenter Comparison of Four Automated Immunoassay Analyzers for Prostate Specific Antigen

Validation of the Korean coefficient for the modification of diet in renal disease study equation

Is the new Mayo Clinic Quadratic (MCQ) equation useful for the estimation of glomerular filtration rate in type 2 diabetic patients?

9. GFR - WHERE ARE WE NOW?

Calibration of High-Density Lipoprotein Cholesterol Values From the Korea National Health and Nutrition Examination Survey Data, 2008 to 2015

How and why to measure renal function in patients with liver disease?

Correspondence should be addressed to Maisarah Jalalonmuhali;

Acute kidney injury and outcomes in acute decompensated heart failure in Korea

Creatinine & egfr A Clinical Perspective. Suheir Assady MD, PhD Dept. of Nephrology & Hypertension RHCC

A New Approach for Evaluating Renal Function and Predicting Risk. William McClellan, MD, MPH Emory University Atlanta

Introduction of the CKD-EPI equation to estimate glomerular filtration rate in a Caucasian population

MDRD vs. CKD-EPI in comparison to

Cystatin C: A New Approach to Improve Medication Dosing

מסקנות מיישום סטנדרטיזציה של בדיקת קראטינין : שימוש בנוסחאות לחישוב egfr

Page 1. Disclosures. Main Points of My Talk. Enlightened Views of Serum Creatinine, egfr, Measured GFR, and the Concept of Clearance

The estimation of kidney function with different formulas in overall population

Glomerular filtration rate estimation in patients with type 2 diabetes: creatinine- or cystatin C-based equations?

A New Modified CKD-EPI Equation for Chinese Patients with Type 2 Diabetes

2017/3/7. Evaluation of GFR. Chronic Kidney Disease (CKD) Serum creatinine(scr) Learning Objectives

Department of Clinical Pathology, Faculty of Medicine Padjadjaran University-Dr. Hasan Sadikin General Hospital 2

ALLHAT RENAL DISEASE OUTCOMES IN HYPERTENSIVE PATIENTS STRATIFIED INTO 4 GROUPS BY BASELINE GLOMERULAR FILTRATION RATE (GFR)

Objectives. Pre-dialysis CKD: The Problem. Pre-dialysis CKD: The Problem. Objectives

Clinical Significance of Subjective Foamy Urine

Assessing Renal Function: What you Didn t Know You Didn t Know

Nowadays, many centers rely on estimating equations

Standardization of. S.M.Boutorabi DCLS,PhD

Egfr non african american vs african american

Creatinine (serum, plasma)

New Combined Serum Creatinine and Cystatin C Quadratic Formula for GFR Assessment in Children

Norman Poh Andrew McGovern Simon de Lusignan SEPTEMBER 2014 TR-14-03

PKPD Changes with Age

Comparison of Three Whole Blood Creatinine Methods for Estimation of Glomerular Filtration Rate Before Radiographic Contrast Administration

ASSESSMENT OF A POINT-OF-CARE DEVICE FOR MEASURING CREATININE IN A COMMUNITY SCREENING PROGRAM FOR CHRONIC KIDNEY DISEASE

Evaluation of Renal Profile in Liver Cirrhosis Patients: A Clinical Study

Accuracy of Different Equations in Estimating GFR in Pediatric Kidney Transplant Recipients

Routine serum creatinine measurements: how well do we perform?

Seung Hyeok Han, MD, PhD Department of Internal Medicine Yonsei University College of Medicine

University of Groningen. Evaluation of renal end points in nephrology trials Weldegiorgis, Misghina Tekeste

Renal function vs chemotherapy dosing

Con: Should we abandon the use of the MDRD equation in favour of the CKD-EPI equation?

Performance of MDRD study and CKD-EPI equations for long-term follow-up of nondiabetic patients with chronic kidney disease

Screening for chronic kidney disease racial implications. Not everybody that pees has healthy kidneys!

Article. Accuracy of GFR Estimation in Obese Patients

Glomerular Filtration Rate. Hui Li, PhD, FCACB, DABCC

Special Challenges and Co-Morbidities

Creatinine-based equations for the adjustment of drug dosage in an obese population

Defining risk factors associated with renal and cognitive dysfunction Joosten, Johanna Maria Helena

Original Article General Laboratory Medicine INTRODUCTION

Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation

CKD EVIDENCE TABLES - ALL CHAPTERS

Evaluation of Cheongmeak DCS TM Reagents for Chemistry Analyzers

Con: Should we abandon the use of the MDRD equation in favour of the CKD-EPI equation?

Cystatin C-based Formula is Superior to MDRD, Cockcroft-Gault and Nankivell Formulae in Estimating the Glomerular Filtration Rate in Renal Allografts

ORIGINAL ARTICLE Estimating the glomerular filtration rate using serum cystatin C levels in patients with spinal cord injuries

GFR prediction using the MDRD and Cockcroft and Gault equations in patients with end-stage renal disease

Comparison of Modified Jaffe s Kinetic Method and Enzymatic Method of Serum Creatinine Estimation for Precision, Linearity and Effect of Interferent

Sebastião Rodrigues Ferreira-Filho, Camila Caetano Cardoso, Luiz Augusto Vieira de Castro, Ricardo Mendes Oliveira, and Renata Rodrigues Sá

Renal Function Considerations for Stroke Prevention in Atrial Fibrillation

Renal Disease and PK/PD. Anjay Rastogi MD PhD Division of Nephrology

DEFINITION, CLASSIFICATION AND DIAGNOSIS OF ACUTE KIDNEY INJURY

Estimating Glomerular Filtration Rate from Serum Creatinine and Cystatin C

Comparison of Serum Cystatin C and Creatinine Levels to Evaluate Early Renal Function after Kidney Transplantation

British Columbia is the first

Risk for chronic kidney disease increases with obesity: Health Survey for England 2010

Correspondence should be addressed to Byung-Wan Lee; and Beom Seok Kim;

Chronic Kidney Disease Prevalence and Rate of Diagnosis

Recently, the National Kidney Foundation endorsed a

Chronic kidney disease (CKD) has received

From the 1 Department of Transplantation, Mayo Clinic, Jacksonville, FL; 2 Baylor Regional Transplant Institute, Dallas, TX; 3 Division of

Chapter 1: CKD in the General Population

Shuma Hirashio 1,2, Shigehiro Doi 1 and Takao Masaki 1*

Effect of the Standardization of Diagnostic Tests on the Prevalence of Diabetes Mellitus and Impaired Fasting Glucose

THE PROGNOSIS OF PATIENTS WITH CHRONIC KIDNEY DISEASE AND DIABETES MELLITUS

International Journal of Pharma and Bio Sciences IS CYSTATIN C ESTIMATION A BETTER MARKER IN CHRONIC KIDNEY DISEASE PATIENTS?

Estimating GFR using serum beta trace protein: accuracy and validation in kidney transplant and pediatric populations

Transcription:

Brief Communication Clinical Chemistry Ann Lab Med 2018;38:261-265 https://doi.org/10.3343/alm.2018.38.3.261 ISSN 2234-3806 eissn 2234-3814 Evaluation of the Equation to Estimate Glomerular Filtration Rate in Pediatric Patients with Cancer Tae-Dong Jeong, M.D. 1, Jaeryuk Kim, M.D. 2, Woochang Lee, M.D. 2, Sail Chun, M.D. 2, Ki-Sook Hong, M.D. 1, and Won-Ki Min, M.D. 2 Department of Laboratory Medicine 1, College of Medicine, Ewha Womans University, Seoul; Department of Laboratory Medicine 2, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea The equation is recommended for calculating the glomerular filtration rate (GFR) in children. Since few reports have evaluated the performance of the equation, we investigated the performance of estimated GFR (egfr) equations with the blood urea nitrogen (BUN) variable for pediatric cancer patients. In total, 203 children with cancer who underwent measured GFR (mgfr) assessment were enrolled. The median (range) mgfr and egfr calculated using the updated Schwartz equation were 118 (43 241) and 135 (34 257) ml/min/1.73 m 2, respectively. The bias, precision (root mean square error [RMSE]), and accuracy (P30, mgfr±30%) of three egfr equations including updated Schwartz,, and full age spectrum () were compared. The median bias (ml/min/1.73 m 2 ) was: updated Schwartz, 8.5;, -9.0; and, 4.2. The biases for all three egfr equations were significantly different from zero. The P30 was: updated Schwartz, 63.5%;, 66.0%; and, 66.0%. The RMSE was the lowest for the equation (40.4), followed by (42.3), and updated Schwartz (45.5). The median egfr/mgfr ratio for the egfr equations decreased with age and reduced kidney functions (i.e., increased creatinine and BUN concentrations). The bias may be further reduced by using the average from two equations, such as the updated Schwartz and, or equation, rather than using the updated Schwartz or equation alone. The use of the equation may underestimate the GFR. Using creatinine and BUN variables in the egfr equation may yield a more accurate estimate of the GFR in pediatric cancer patients. Key Words:, Blood urea nitrogen, Children, Creatinine, full age spectrum, Glomerular filtration rate, updated Schwartz Received: July 24, 2017 Revision received: September 4, 2017 Accepted: January 8, 2018 Corresponding author: Won-Ki Min Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-4503 Fax: +82-2-478-0884 E-mail: wkmin@amc.seoul.kr Korean Society for Laboratory Medicine This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Accurately estimating the glomerular filtration rate (GFR) is essential for appropriate medical decisions in clinical practice, such as for the diagnosis and management of acute kidney disease and chronic kidney diseases (CKD) [1]. The estimated glomerular filtration rate (egfr) is especially critical when potentially nephrotoxic drugs are used in pediatric cancer patients [2, 3]. The 2012 Kidney Disease: Improving Global Outcomes (KDIGO) guidelines recommend the use of the updated Bedside Schwartz or equation to calculate egfr in children [4]. Several studies have demonstrated performance of the updated Schwartz equation [5-11]; however, few have assessed performance of the equation that includes a blood urea nitrogen (BUN) component. Recently, some researchers have reported that the performance of the full age spectrum () equation was superior to the updated Schwartz equation [5, 7]. In this study, we aimed to evaluate the performance of the equation compared to updated Schwartz and equations in Korean pediatric patients with cancer. In total, 572 pediatric patients aged 2 17 years underwent 51Cr-EDTA GFR measurements from July 2009 to May 2016 at https://doi.org/10.3343/alm.2018.38.3.261 www.annlabmed.org 261

Asan Medical Center (Seoul, Korea). Data on height, serum creatinine (Scr), and BUN was available for 203 of the 572 patients on the day of GFR measurements. For these 203 patients, we collected data on age, sex, ethnicity, height, Scr, and BUN required for the egfr calculations from electronic medical records. The 51Cr-EDTA GFR results (measured GFR [mgfr]) were used as the reference. The median age of the patients was 10 years, and the study population included 115 (56.7%) male patients. The median Scr and BUN concentrations were 0.39 mg/dl and 8.5 mg/dl, respectively. The median measured mgfr was 118 ml/min/ 1.73 m 2, and the median egfrs calculated using the updated Schwartz,, and equations were 135, 113, and 130 ml/ min/1.73 m 2, respectively. Detailed patient characteristics are summarized in see Supplemental Data Tables S1 and S2. This study was approved by the Institutional Review Board (IRB) of Asan Medical Center (approval number: 2016-0535). It was conducted through retrospective reviews of anonymous medical records for use in research, and the IRB waived the requirement of informed consent from both patients and their parents. The Scr concentration was measured using the rate-blanked compensated kinetic Jaffe method (Roche Diagnostics, Indianapolis, IN, USA) with an isotope dilution mass spectrometrytraceable calibrator (Roche Diagnostics). The BUN concentration was determined by a kinetic assay using urease and glutamate dehydrogenase (Roche Diagnostics). The egfr was calculated using three different equations, as described below. Th e updated Schwartz equation was as follows [12]: egfr (ml/min/1.73 m 2 )=4 (Height/Scr) where the height was in meters and the Scr was in mg/dl. Th e equation was as follows [12]: egfr (ml/min/1.73 m 2 )=4 (Height/Scr) 4 (30/BUN) 0.202 where the height was in meters, and the Scr and BUN concentrations were in mg/dl. The equation was as follows [7]: 107.3 egfr (ml/min/1.73 m 2 )= for 2 age 40 years Scr/Q where the Scr was in µmol/l, and Q was the median Scr in the healthy population group based on age and sex [4]. We calculated the bias (egfr mgfr) for the three egfr equations and analyzed whether there were significant differences in the bias from zero using a one-sample t-test. To assess clinical accuracy, we calculated the P30 of each egfr equation and compared the P30 values of each equation using McNemar s test. P30 was defined as the percentage of egfr within±30% of the mgfr. The root mean square error (RMSE) was calculated to evaluate precision. The egfr/mgfr ratio of each egfr equation was stratified by age, Scr, height, and BUN concentration. Statistical analyses were performed using MedCalc version 14.12.0 (MedCalc Software, Ostend, Belgium) and Analyse-it for Microsoft Excel, version 4.65.2 (Analyze Software, Leeds, UK). P <0.05 was considered statistically significant. The median (range) mgfr and egfr calculated using the updated Schwartz equation were 118 (43 241) ml/min/1.73 m 2 and 135 (34 257) ml/min/1.73 m 2, respectively. The median (first quartile; third quartile) biases (ml/min/1.73 m 2 ) of the three egfr equations were as follows: updated Schwartz, 8.5 (6.0; 1);, -9.0 (-30.1, 13.6); and, 4.2 (-15.3; 32.4). The biases for all three egfr equations were significantly different from zero (Table 1). The P30 values were as follows: updated Schwartz, 63.5%;, 66.0%; and 66.0%. There was no significant difference in P30 between the three equations. The RMSE was the lowest for the equation (40.4), followed by (42.3), and updated Schwartz (45.5). The median egfr/mgfr ratio of the three egfr equations decreased with age (Fig. 1A), height (Fig. ), and Scr creatinine concentration (Fig. 1C). The median egfr/mgfr ratio of was < and it decreased with increasing BUN concentration (Fig. 1D). There was no difference in the mgfr and BUN between age groups (<14 vs 14 years; see Supplemental Data Table S2). The median egfr/mgfr ratio of the updated Schwartz and equations for age <14 years was >, while that of the equation was < (Fig. 1A and see Supplemental Data Table 1. Bias, clinical accuracy, and precision of the updated Schwartz,, and equations in pediatric cancer patients (N=203) Variable Bias (egfr mgfr), ml/min/1.73 m 2 Median (IQR) 10.4 (53.2) -9.0 (43.8) 4.2 (47.6)* Clinical accuracy P10, N (%) 51 (25.1) 52 (25.6) 56 (27.6) P30, N (%) 129 (63.5) 134 (66.0) 134 (66.0) Precision RMSE 45.5 40.4 42.3 *Significant difference from zero, P <0.05; Significant difference from zero, P <0.001; P10 and P30 represent the egfr within the range of ±10% and ±30%, respectively, of the mgfr. Abbreviations: egfr, estimated glomerular filtration rate;, full age spectrum; IQR, interquartile range; mgfr, measured glomerular filtration rate; RMSE, root mean square error. 262 www.annlabmed.org https://doi.org/10.3343/alm.2018.38.3.261

A B 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Age (year) < 90 90 99 100 109 110 119 120 129 130 139 140 149 150 159 160 C D Height (cm) < 0.30 0.30 0.39 0.40 0.49 0 9 0 9 0 9 0 < 5.0 5.0 6.9 7.0 8.9 9.0 1 1 12.9 13.0 14.9 15.0 Serum creatinine (mg/dl) Blood urea nitrogen (mg/dl) Fig. 1. Median ratio of egfr to mgfr was stratified by (A) age, (B) height, (C) serum creatinine, and (D) blood urea nitrogen. Black solid line ( ), updated Schwartz equation; black dotted line ( ), equation; black dashed line ( ), equation; and gray line, the reference line (egfr/mgfr ratio of ). Abbreviations: egfr, estimated glomerular filtration rate;, full age spectrum; mgfr, measured glomerular filtration rate. See Supplemental Data Table S1 for detailed numerical values (median and interquartile ratios). Table S3). The results revealed that the equation underestimated the GFR of pediatric cancer patients, while the updated Schwartz and equations overestimated the GFR. In previous studies evaluating bias (egfr mgfr, ml/min/1.73 m 2 ) of the updated Schwartz equation, the reported positive bias of approximately 3.1 10.1 was comparable to that obtained in the present study [7, 8, 13]. In the present study, the updated Schwartz and equations overestimated the GFR when the Scr concentration was <0.40 mg/dl, and tended to underestimate the GFR with increasing Scr creatinine concentration. The equation also exhibited a similar pattern, and the degree of GFR underestimation gradually increased with increasing Scr concentration. The equation includes a BUN variable in addition to Scr, and the two variables have exponent of < (i.e., [height/scr ] 4 and [30/BUN] 0.202 ). Therefore, unlike the updated Schwartz and equations, the equation had a negative bias due to the structure of the equation. Theoretically, in normal kidneys, urea that passes through the glomeruli migrates from the renal tubules to the interstitium, ultimately causing back-diffusion that reenters the plasma. At a high-flow rate, it is well-known that urea clearance causes an underestimation of the GFR as back-diffusion decreases [14]. Because the GFR of a child is higher than that of an adult, it is expected that the equation, which includes the BUN variable, underestimates the GFR. Scr concentrations are affected by various nonrenal factors, such as high-protein diet and by activity of the urea cycle enzymes [14]. In children, creatinine gradually increases with age, and differs by sex after adolescence [14]. Previous studies have confirmed this trend. However, the BUN concentration of children older than one year of age is comparable to that of adults, and does not differ significantly by sex or age [14, 15]. In the present study, the biases for the updated Schwartz and equations were not correlated with the BUN concentration; however, the equation had an increased negative bias as the BUN concentration increased. This can be explained by the characteristics of the urea clearance itself and the structure of the equation (e.g., [30/BUN] 0.202 ). https://doi.org/10.3343/alm.2018.38.3.261 www.annlabmed.org 263

All three equations (the updated Schwartz,, and ) had statistically significant differences in the mean biases from zero. However, averaging the egfr values from equation with a negative bias, and updated Schwartz or equation with a positive bias can reduce the bias when compared with to using a single equation alone; the mean bias (95% CI) of the average from updated Schwartz and equations ([updated Schwartz +]/2) was ( 4.7 to 6.5) ml/min/1.73 m 2 and similarly, the mean bias (95% CI) of the average from and equations ([ +]/2) was -1.6 ( 7.1 to 3.8) ml/min/1.73 m 2. In both cases, the 95% CI of the mean biases included zero, indicating that there was no significant difference in the mean biases from zero. We evaluated only 203 pediatric patients with cancer whose egfr was near the normal range; thus, it is necessary to evaluate various groups of children, including those with CKD. At 14 years of age, the bias (egfr mgfr) of the updated Schwartz equation changed from positive to negative. This trend has been reported in previous studies [13, 16]. Thus, one study suggested that the constant, k, used in the Schwartz equation should be applied differently according to age [17]. In the present study, when we applied the updated Schwartz equation to patients aged<14 years, we modified the constant from 4 to 36.8 (for height in meters and Scr in mg/dl). The mean bias (95% CI) changed from 11.6 (5.5 to 17.7) to - (-6.2 to 5.1) ml/min/1.73 m 2 ; therefore, there was no significant difference from zero. Currently, the updated Schwartz equation of the 2012 KDIGO guidelines contains a single constant of 4 (for height in meters and Scr in mg/dl), but applying a different constant based on age may yield a more accurate egfr for children. Additionally, several studies have reported that the equation is more accurate than the updated Schwartz equation [5, 7]. The recommended egfr equation for adults was revised from MDRD (modification of diet in renal disease) to CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) [4]; thus, a different egfr equation in lieu of the updated Schwartz or equation should be further considered for pediatric patients. Using the equation instead of the updated Schwartz equation, the CKD stage as per KDIGO guidelines was unchanged for 86.7%, was one level lower (i.e. from CKD stage 1 to stage 2) for 12.3%, and was one level higher (i.e. from CKD stage 2 to stage 1 or from stage 3A to stage 2) for % of the patients in this study. When the CKD stage as per KDIGO guidelines was classified using the mgfr for the 203 patients, use of the updated Schwartz equation resulted in no change in CKD stage in 79.8%, a onelevel decrease (i.e. from CKD stage 1 to stage 2) in 4.4%, and a one-level increase (i.e. from CKD stage 2 to stage 1 or CKD stage 3A to stage 2) in 14.3% of the patients, while use of the equation, resulted in no change in CKD stage in 79.3%, a one-level decrease in 9.9%, and a one-level increase in 10.3% of the patients. That is, compared to updated Schwartz equation, the equation tended to underestimate the GFR. In conclusion, the equation tended to underestimate the GFR in the Korean pediatric cancer patients. Averaging the values obtained from two egfr equations, namely the updated Schwartz and equations, can reduce the egfr bias. Therefore, if clinically necessary, egfr calculation using Scr and BUN variables may yield a more accurate GFR estimation compared with the use of the updated Schwartz or equation alone. Authors Disclosures of Potential Conflicts of Interest No potential conflicts of interest relevant to this article were reported. REFERENCES 1. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function- -measured and estimated glomerular filtration rate. N Engl J Med 2006; 354:2473-83. 2. Cole M, Price L, Parry A, Keir MJ, Pearson AD, Boddy AV, et al. Estimation of glomerular filtration rate in paediatric cancer patients using 51 CR- EDTA population pharmacokinetics. Br J Cancer 2004;90:60-4. 3. Mattman A, Eintracht S, Mock T, Schick G, Seccombe DW, Hurley RM, et al. Estimating pediatric glomerular filtration rates in the era of chronic kidney disease staging. J Am Soc Nephrol 2006;17:487-96. 4. Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco ALM, De Jong PE, et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3: 1-150. 5. Jeong TD, Cho EJ, Lee W, Chun S, Hong KS, Min WK. Efficient reporting of the estimated glomerular filtration rate without height in pediatric patients with cancer. Clin Chem Lab Med 2017;55:1891-7. 6. Selistre L, Rabilloud M, Cochat P, de Souza V, Iwaz J, Lemoine S, et al. Comparison of the Schwartz and CKD-EPI equations for estimating glomerular filtration rate in children, adolescents, and adults: a retrospective cross-sectional study. PLoS Med 2016;13:e1001979. 7. Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant 2016;31:798-806. 8. Deng F, Finer G, Haymond S, Brooks E, Langman CB. Applicability of estimating glomerular filtration rate equations in pediatric patients: comparison with a measured glomerular filtration rate by iohexol clearance. Transl Res 2015;165:437-45. 9. De Souza V, Pottel H, Hoste L, Dolomanova O, Cartier R, Selistre L, et al. Can the height-independent Pottel egfr equation be used as a screening tool for chronic kidney disease in children? Eur J Pediatr 2015;174: 264 www.annlabmed.org https://doi.org/10.3343/alm.2018.38.3.261

1225-35. 10. Hoste L, Dubourg L, Selistre L, De Souza VC, Ranchin B, Hadj-Aïssa A, et al. A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol Dial Transplant 2014;29:1082-91. 11. Staples A, LeBlond R, Watkins S, Wong C, Brandt J. Validation of the revised Schwartz estimating equation in a predominantly non-ckd population. Pediatr Nephrol 2010;25:2321-6. 12. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol 2009;20:629-37. 13. Blufpand HN, Westland R, van Wijk JA, Roelandse-Koop EA, Kaspers GJ, Bokenkamp A. Height-independent estimation of glomerular filtration rate in children: an alternative to the Schwartz equation. J Pediatr 2013;163:1722-7. 14. Lamb EJ and Price C. Kidney function tests. In: Burtis CA, Edward RA, David EB, eds. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. London: Elsevier Health Sciences, 2012:669-707. 15. Colantonio DA, Kyriakopoulou L, Chan MK, Daly CH, Brinc D, Venner AA, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem 2012;58:854-68. 16. Selistre L, De Souza V, Cochat P, Antonello IC, Hadj-Aissa A, Ranchin B, et al. GFR estimation in adolescents and young adults. J Am Soc Nephrol 2012;23:989-96. 17. De Souza VC, Rabilloud M, Cochat P, Selistre L, Hadj-Aissa A, Kassai B, et al. Schwartz formula: is one k-coefficient adequate for all children? PLoS One 2012;7:e53439. https://doi.org/10.3343/alm.2018.38.3.261 www.annlabmed.org 265