Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL 60 cells

Similar documents
Impact factor: Reporter:4A1H0019 Chen Zi Hao 4A1H0023 Huang Wan ting 4A1H0039 Sue Yi Zhu 4A1H0070 Lin Guan cheng 4A1H0077 Chen Bo xuan

Bakuchiol inhibits cell proliferation and induces apoptosis and cell cycle arrest in SGC-7901 human gastric cancer cells.

C-Phycocyanin (C-PC) is a n«sjfc&c- waefc-jduble phycobiliprotein. pigment isolated from Spirulina platensis. This water- soluble protein pigment is

Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

The effect of insulin on chemotherapeutic drug sensitivity in human esophageal and lung cancer cells

Li et al. Journal of Experimental & Clinical Cancer Research (2018) 37:108

Annals of Oncology Advance Access published January 10, 2005

Research Article Ginseng Extract Enhances Anti-cancer Effect of Cytarabine on Human Acute Leukemia Cells

McAb and rhil-2 activated bone marrow on the killing and purging of leukemia cells

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

RESEARCH ARTICLE. Ginsenoside-Rh2 Inhibits Proliferation and Induces Apoptosis of Human Gastric Cancer SGC-7901 Side Population Cells

School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, , People s Republic of China; 2

PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Department of General Surgery, The Third People s Hospital of Dalian, Dalian Medical University, Dalian, Liaoning, China,

The Annexin V Apoptosis Assay

Effective Targeting of Quiescent Chronic Myelogenous

Instructions for Use. APO-AB Annexin V-Biotin Apoptosis Detection Kit 100 tests

This article is downloaded from.

Supporting Information

Pterostilbene (3,5 -dimethoxy-resveratrol) exerts

School of Traditional Chinese Medicine, Chongqing Medical University, Huxi University City, Chongqing , China; 2

Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells

To determine the effect of over-expression and/or ligand activation of. PPAR / on cell cycle, cell lines were cultured as described above until ~80%

Research on the inhibitory effect of metformin on human oral squamous cell carcinoma SCC-4 and CAL-27 cells and the relevant molecular mechanism.

Cinnamomum Essential Oil Prevents DNA Damage- Induced by Doxorubicin on CHO-K1 Cells

Introduction: 年 Fas signal-mediated apoptosis. PI3K/Akt

International Conference on Biomedical and Biological Engineering (BBE 2016)

ADCC Assay Protocol Vikram Srivastava 1, Zheng Yang 1, Ivan Fan Ngai Hung 2, Jianqing Xu 3, Bojian Zheng 3 and Mei- Yun Zhang 3*

MOLECULAR MEDICINE REPORTS 14: , 2016

Chinese Pharmacological Bulletin 2012 Sep ~ 6. http / /www. cnki. net /kcms /detail / R html

A novel bfgf antagonist peptide inhibits breast cancer cell growth

- 1 - Cell types Monocytes THP-1 cells Macrophages. LPS Treatment time (Hour) IL-6 level (pg/ml)

Effects of metallothionein-3 and metallothionein-1e gene transfection on proliferation, cell cycle, and apoptosis of esophageal cancer cells

Multi-Parameter Apoptosis Assay Kit

Effect of Survivin-siRNA on Drug Sensitivity of Osteosarcoma Cell Line MG-63

CHAPTER 4 RESULTS AND DISCUSSION. chemistry, polar substances would dissolve in polar solvents while non-polar substances

OPTIMIZATION OF EXTRACTION PROCESS FOR TOTAL POLYPHENOLS FROM ADLAY

Montri Punyatong 1, Puntipa Pongpiachan 2 *, Petai Pongpiachan 2 Dumnern Karladee 3 and Samlee Mankhetkorn 4 ABSTRACT

Apoptosis Mediated Cytotoxicity of Curcumin Analogues PGV-0 and PGV-1 in WiDr Cell Line

Original Article Bufalin attenuates the proliferation of breast cancer MCF-7 cells in vitro and in vivo by inhibiting the PI3K/Akt pathway

Effect of ST2825 on the proliferation and apoptosis of human hepatocellular carcinoma cells

Rapid Detection of Milk Protein based on Proteolysis Catalyzed by Trypsinase

Salvianolic Acid-A Induces Apoptosis, Mitochondrial Membrane Potential Loss and DNA Damage in Small Cell Lung Cancer Cell Lines

Key words: apoptosis, beta-amyrin, cell cycle, liver cancer, tritepenoids

Nitric oxide damages neuronal mitochondria and induces apoptosis in neurons

Journal of Chemical and Pharmaceutical Research, 2012, 4(5): Research Article

Detection of Apoptosis in Primary Cells by Annexin V Binding Using the Agilent 2100 Bioanalyzer. Application Note

In situ drug-receptor binding kinetics in single cells: a quantitative label-free study of anti-tumor drug resistance

Johannes F Fahrmann and W Elaine Hardman *

Peking University People's Hospital, Peking University Institute of Hematology

Research Article. Cytotoxic activities of chloroform extract from leaves of Polyalthia glauca (Hassk.) Boerl. on HeLa cell line

Effect of starvation-induced autophagy on cell cycle of tumor cells

ONCOLOGY LETTERS 7: , 2014

Effects of Arsenic Compounds on Growth, Cell-Cycle Distribution and Apoptosis of Tretinoin-resistant Human Promyelocytic Leukemia Cells

Inhibitory effect of cinnamoyl compounds against human malignant cell line

Protein-Mediated Anti-Adhesion Surface against Oral Bacteria

Biodegradable Zwitterionic Nanogels with Long. Circulation for Antitumor Drug Delivery

Sunitinib, an orally available receptor tyrosine kinase inhibitor, induces monocytic

Effects of AFP gene silencing on Survivin mrna expression inhibition in HepG2 cells

ORIGINAL ARTICLE. Hang Huang 1,2, Lin-Jin Li 3, Hai-Bo Zhang 4, An-Yang Wei 4. Summary. Introduction

IMMP8-1. Different Mechanisms of Androg and IPAD on Apoptosis Induction in Cervical Cancer Cells

A549 and A549-fLuc cells were maintained in high glucose Dulbecco modified

Canqiu Yu 1, Jinwei Chen 2, Li Huang 3*

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Corresponding author Key Words: Non-small cell lung cancer, apoptosis, cucurbitacin A, cell cycle, antitumor activity

Annexin V-APC/7-AAD Apoptosis Kit

Journal of Chemical and Pharmaceutical Research, 2017, 9(3): Research Article

Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54

Ethanolic Extract of Moringa oleifera L. Increases Sensitivity of WiDr Colon Cancer Cell Line Towards 5-Fluorouracil

Cellometer Image Cytometry for Cell Cycle Analysis

Serafino et al. Thymosin α1 activates complement receptor-mediated phagocytosis in human monocyte-derived macrophages. SUPPLEMENTARY FIGURES

The effect of elemene reversing the multidurg resistance of A549/DDP lung cancer cells

HL-60 ATP assay for predicting rat oral toxicity study

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO

Supporting Information

MELANOMA CANCER TEST

The association between methylenetetrahydrofolate reductase gene C677T polymorphisms and breast cancer risk in Chinese population

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article

SUPPLEMENTARY INFORMATION. CXCR4 inhibitors could benefit to HER2 but not to Triple-Negative. breast cancer patients

Inhibitory effect of emodin on human colon cancer SW620 cells and possible mechanisms.

Inhaled Formaldehyde Induces Bone Marrow Toxicity via Oxidative Stress in Exposed Mice

Biomedical Research 2016; 27 (2): ISSN X

http / /cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology A431 . Western aza-dC FUT4-siRNA

Research on Extraction Process of Gallic Acid from Penthorum chinense Pursh by Aqueous Ethanol

Cytotoxic and Apoptotic Effect of Commercial Tinctures of Scutellaria baicalensis on Lung Cancer Cell Lines

Linderalactone inhibits human lung cancer growth b

KDR gene silencing inhibits proliferation of A549cells and enhancestheir sensitivity to docetaxel

RESEARCH ARTICLE. Comparative Evaluation of Silibinin Effects on Cell Cycling and Apoptosis in Human Breast Cancer MCF-7 and T47D Cell Lines

Caractérisation et méthodes d études de la mort cellulaire par cytométrie en flux

http / / cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology COX-2 NTera-2 NTera-2 RT-PCR FasL caspase-8 caspase-3 PARP.

Nature Protocols: doi: /nprot Supplementary Figure 1. Fluorescent titration of probe CPDSA.

L6 GLUT4myc Cell Growth Protocol

Notch Signaling Pathway Notch CSL Reporter HEK293 Cell line Catalog #: 60652

Anti-Aging Activity Of Cucurbita moschata Ethanolic Extract Towards NIH3T3 Fibroblast Cells Induced By Doxorubicin

Effects of COX-2 Inhibitor on the Proliferation of MCF-7 and LTED MCF-7 Cells

Antioxidant, anticancer and apoptotic effects of the Bupleurum chinense root extract in HO-8910 ovarian cancer cells

Supplemental Materials. STK16 regulates actin dynamics to control Golgi organization and cell cycle

7-AAD/CFSE Cell-Mediated Cytotoxicity Assay Kit

Enhanced Anti-cancer Efficacy in MCF-7 Breast Cancer Cells by Combined Drugs of Metformin and Sodium Salicylate

Transcription:

1106 Chlorogenic acid induced apoptosis and inhibition of proliferation in human acute promyelocytic leukemia HL 60 cells YA JING LIU 1*, CHANG YANG ZHOU 1*, CHUN HONG QIU 1, XIU MIN LU 1 and YONG TANG WANG 2 1 College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054; 2 State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China Received May 27, 2013; Accepted August 8, 2013 DOI: 10.3892/mmr.2013.1652 Abstract. Chlorogenic acid (CA), is found in high abundance in the leaves of a number of plants and has antibacterial, antiphlogistic, antimutagenic, antioxidant and other biological activities. It reportedly possesses antitumor activity via the induction of apoptosis in chronic myelogenous leukemia (CML) cell lines, including U937 and K562 cells. However, the effects of CA on human acute promyelocytic leukemia (APL) HL 60 cells remains unknown. In the current study, the ability of CA to cause G0/G1 cycle arrest and induce apoptosis in the treatment of human APL HL 60 cells was investigated. Following 5 days treatment with 1, 5 and 10 µm CA, cell viability and the effects of CA on the growth of HL 60 cells were investigated using a growth curve constructed using trypan blue staining. Induction of apoptosis and inhibition of cell proliferation were estimated using Wright's Giemsa staining, Hoechst 33342 and propidium iodide (PI) staining, DNA ladder analysis and flow cytometry, following 48 h cell treatment with various doses of CA. The results indicated that the growth of HL 60 cells reached a plateau phase at 72 h and the proliferation inhibition rate of HL 60 cells in CA treated groups was significantly higher compared with the control, in a time and dose dependent manner. However, the level of apoptosis of HL 60 cells treated with CA markedly increased and formed more apoptotic bodies compared with the cells Correspondence to: Dr Xiu Min Lu, College of Pharmacy and Biological Engineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, P.R. China E mail: luxm@cqut.edu.cn Dr Yong Tang Wang, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Sub Road, Chongqing 400042, P.R. China E mail: wangytlu@163.com * Contributed equally Key words: chlorogenic acid, acute promyelocytic leukemia, HL 60 cell, cell cycle, apoptosis with no drug treatment, according to the Wright's Giemsa staining, Hoechst 33342 and PI staining, respectively. Using DNA ladder analysis and flow cytometry it was shown that a significant characteristic DNA ladder was observed when treated with CA. CA was capable of arresting cell cycle at G0/G1 phase. Apoptosis of HL 60 cells treated with CA for 48 h was promoted significantly in a dose dependent manner, as well as the inhibition of proliferation. The observations revealed that CA inhibits proliferation and induces preprophase apoptosis of HL 60 cells. Thus, the concentration of 10 µm may be the optimal dose for treatment human acute promyelocytic leukemia. Introduction Leukemia is a heterogeneous group of hematopoietic malignancies that include a number of diverse and biologically distinct subgroups, of which chronic myelogenous leukemia (CML) and acute promyelocytic leukemia (APL) are two types. The former rarely affects children, while the latter affects adults and children. Thus, the treatment and prevention of leukemia is of great importance. Leukemic cells are often a type of overgrown immature cell. Thus, leukemia may be treated by the inhibition of cell growth proliferation, induction apoptosis and terminal differentiation. As medical science progresses, there is an increasing amount of research being performed on the antitumor function in natural medicine. As an antioxidant, chlorogenic acid (CA) is a type of ester that is widely studied in edible and medicinal plants. It is isolated from Eucommiaceae plants and honeysuckle and has marked antioxidant and anti inflammatory effects. In addition, it may prevent diabetes and cardiovascular disease (1 3). Recent studies have demonstrated that CA has the activity of induced human hepatoma and glioma cell apoptosis (4,5). CA reportedly possesses antitumor activity via the induction of apoptosis in human CML cell lines, including U937 and K562 cells (6,7). However, the effects of CA on human APL HL 60 cells remain unknown. The current study aimed to investigate whether CA inhibits proliferation and induces apoptosis in human leukemia HL 60 cells. The results suggest that CA may be available for the clinical treatment of human acute promyelocytic leukemia.

LIU et al: EFFECTS OF CHLOROGENIC ACID ON HL-60 CELLS 1107 Materials and methods Chemical reagents and cells. HL 60 cells were obtained from the China Center for Type Culture Collection (Wuhan, China). CA was purchased from Sigma Aldrich (St. Louis, MO, USA) and was dissolved at a concentration of 0.1 M in DMSO as a stock solution stored at 70 C. Fetal bovine serum (FBS) was purchased from Gibco BRL (Grand Island, NY, USA). Hoechst and PI staining, DNA Ladder Extraction, Trypan Blue Staining Cell Viability assay kits, propidium iodide (PI) and RNase were purchased from Beyotime Institute of Biotechnology (Shanghai, China). Giemsa stain was purchased from the Beijing Dingguo Changsheng Biotechnology Co., Ltd. (Beijing, China). Cell culture. HL 60 cells were maintained in RPMI 1640 (Gibco BRL) medium supplemented with 10% heat inactivated FBS, at 37 C in a 5% CO 2 humidified incubator. Cells were harvested by centrifugation at 38 x g for 5 min and resuspended in fresh medium every two days. Cell viability analysis. Cells in logarithmic phase growth were seeded at a concentration of 1x10 5 cells/ml in a 24 well plate (Corning Incorporated, New York, NY, USA) and treated with 0, 1, 5 and 10 µm CA, respectively. Following 24, 48, 72, 96 and 120 h, the cells were harvested, diluted by trypan blue working solution and counted with an automated cell counter (Bio Rad Laboratories, Inc., Hercules, CA, USA) to allow for growth curve construction. Wright Giemsa staining. Cells treated with CA at the indicated concentrations for 48 h were harvested and collected on slides, air dried, stained with Wright for 5 min at room temperature and one drop of Giemsa was added. The staining solution was diluted with PBS to form a water break free surface. After 15 min, the slides were rinsed in deionized water and air dried. The cells were observed by light microscopy (Olympus Corporation, Tokyo, Japan) and images were captured by digital camera (Olympus) (8). Evaluation of apoptosis by nuclear morphology. Cells in logarithmic phase growth were seeded at a concentration of 1x10 5 cells/ml in a 24 well plate and treated with CA (1, 5 and 10 µm, respectively). After 48 h, the cells were incubated for 15 min at 37 C with the DNA specific dye Hoechst 33342 and propidium iodide (PI). Nuclear morphology was investigated by fluorescence microscopy (Olympus) and images were captured using a digital camera (Olympus). DNA ladder analyze apoptosis. Cells treated with CA at the indicated concentrations for 48 h were harvested and washed with PBS (ph 7.4). DNA was then extracted from the cells according to the DNA Ladder Extraction kit instructions. Samples were separated by electrophoresis on 1.5% (w/v) agarose gels containing GoldView and subsequently the separated DNA ladders were visualized using a UV transilluminator (Beijing Liuyi Instrument Factory, Beijing, China). The size of the DNA ladders was determined by comparison with DL2000 DNA markers (Takara Biotechnology Inc., Dalian, China). Figure 1. Effects of CA on the viability of HL 60 cells. HL 60 cells (1x10 5 cells/ml) were incubated with CA at 0, 1, 5 and 10 µm for 5 days, continuously. HL 60 cells treated with various doses of CA were examined through a growth curve constructed using trypan blue staining. * P<0.05, vs. control, ** P<0.01, vs. control. CA, chlorogenic acid. Cell cycle analysis. Cells treated with CA for 48 h were harvested and washed twice with ice cold PBS. The cells were fixed for 30 min at 4 C in ice cold 70% ethanol. The cells were washed twice with PBS and resuspended in 50 µg/ml DNase free RNase (Sigma Aldrich) at 37 C for 30 min. PI (25 µg/ml; Sigma Aldrich) was added at 4 C for 30 min in the dark. The cells were then analyzed using a flow cytometer (FACSCalibur, Becton Dickinson, San Jose, CA, USA) and histograms were analyzed by ModFit software (Becton Dickinson). Statistical analysis. Data obtained from experiments are presented as means ± SEM from at least three independent experiments. Statistical analyses were performed by one way analysis of variance followed by the Student's t test. P<0.05 and P<0.01 were considered to indicate a statistically significant difference. Results Cell viability analysis. Cell proliferation is a crucial marker for the promotion and progression of carcinogenesis. As a result, to investigate cell viability and the effect of CA on the proliferation of HL 60 cells, cells treated with specific doses of CA were examined using a growth curve constructed using trypan blue staining. Cell viability in the control increased in a time dependent manner, reached a plateau at 72 h and persisted until at least 120 h. This same change was observed in CA treated groups. However, when compared with the control, cell viability in CA treated groups decreased significantly at 72 h and cell viability decreased with an increasing dose of CA. The results indicated that growth of HL 60 cells reached a plateau at 72 h and when treated with CA, cell growth was inhibited significantly in a dose and time dependent manner compared with the control (Fig. 1). According to the growth curve, the optimal HL 60 cell growth was identified at 48 h. In the subsequent experiments, induction of apoptosis and inhibition of cell proliferation were estimated, respectively, following 48 h cell treatment with various doses of CA.

1108 A B C D Figure 2. Effects of CA on morphological changes in HL 60 cells. Following 48 h of CA treatment, irregular changes in morphology, including shrinkage of the cell membrane were detected in the (B) 1 µm CA group and along with the increasing concentration of CA, apoptotic cells significantly increased and generated more apoptotic bodies when compared with the (A) control. (A) control, (B) 1 µm CA, (C) 5 µm CA, (D) 10 µm CA. Arrows show the positive apoptotic HL 60 cells and scale bar represents 25 µm. CA, chlorogenic acid. A B C D Figure 3. Observation of HL 60 cells stained with Hoechst and PI. Cells stained with Hoechst and PI were observed by fluorescence microscopy. Early apoptotic nuclei had an appearance of bright blue fluorescence accompanied by cell nuclear morphological changes and late apoptotic cell membrane damage, which was dyed red by PI. (A) Control, (B) 1 µm CA, (C) 5 µm CA, (D) 10 µm CA. The scale bar represents 100 µm. CA, chlorogenic acid, PI, propidium iodide. Effects of CA on the morphological changes of HL 60 cells. As morphological changes of cells are key for the detection of cell apoptosis, the morphological changes of HL 60 cells following 48 h of CA treatment were observed using Wright's Giemsa staining. Following treatment for 48 h, the irregular changes in morphology, including shrinkage of the cell membrane were detected in the 1 µm CA group. As the concentration of CA increased, apoptotic cells significantly increased and generated more apoptotic bodies when compared with the control (Fig. 2). Apoptosis and necrosis assay. To detect the apoptosis and necrosis of HL 60 cells following 48 h treatment with CA, the cells were stained with Hoechst and PI. The results indicated that, in the CA treated groups, early apoptotic nuclei had an appearance of bright blue fluorescence accompanied with Figure 4. DNA ladder formed in HL 60 cells following 48 h treatment with CA. A significant characteristic DNA ladder was observed along with the concentration of CA increasing. Lanes M, DL2000 DNA marker; 1, 1 µm CA; 2, 10 µm CA; 3, 50 µm CA and 4, positive control. CA, chlorogenic acid.

LIU et al: EFFECTS OF CHLOROGENIC ACID ON HL-60 CELLS 1109 Figure 5. Cell cycle distribution determined by flow cytometry. Effects of CA on HL 60 cells of G1 phase arrest. Following 48 h treatment with CA, HL 60 cells were stained with PI and analyzed for DNA content by flow cytometry. Data are presented as means ± SEM from a minimum of three independent experiments, * P<0.05, vs. control. CA, chlorogenic acid, PI, propidium iodide. cell nuclear morphological changes and the late apoptotic cell membrane was damaged, which was dyed red by PI, whereas the normal cells showed a faint blue. Following 48 h treatment with CA, the results revealed that together with the concentration of CA increasing, the number of late apoptotic cells increased in a dose dependent manner (Fig. 3). DNA ladder analysis apoptosis. Since the DNA ladder is a significant marker for the study of apoptosis, to analyze the apoptosis of HL 60 cells at the molecular level, agarose gel electrophoresis of DNA samples from the cells treated with CA for 48 h was performed. A characteristic DNA ladder was observed along with an increasing concentration of CA (Fig. 4). The results also showed that, following 48 h of CA treatment, apoptotic cells increased in a dose-dependent manner. Cell cycle arrest by CA. Cell cycle arrest is a regulatory process that halts progression through the cell cycle during normal phases (G1, S, G2 and M). To investigate whether the growth inhibitory effect of CA resulted from growth arrest, the present study analyzed the cell cycle following 48 h of treatment with 0, 1, 5 and 10 µm of CA. The results indicated that the G0/G1 phase of HL 60 cells treated with CA, increased significantly in concordance with a decrease of the S and G2/M phases and CA induced an increased G0/G1 phase arrest in a concentration dependent manner (Fig. 5). When cells were treated with 1 µm of CA a slight accumulation (~32.53%) of cells in G0/G1 phase was observed. However, when 5 µm of CA was added to cells, a significant accumulation (~39.87%) of cells in G0/G1 phase was observed. Cells treated with 10 µm of CA resulted in a more significant (~45.90%) enhancement of cells in G0/G1 phase. Discussion It is well established that cancer cells evade apoptosis by the accumulation of a number of genetic and epigenetic changes (9). Thus, leukemia may be treated by the inhibition of APL cell growth proliferation and induction of apoptosis. An increasing number of studies have focused on natural drugs to treat leukemia. A number of previous studies have shown that Artemisinin (10), Isoliquiritigenin (11), Pycnogenol (12) and other natural drugs have been shown to effectively inhibit APL cell growth proliferation, induce apoptosis and differentiation. Thus, it is crucial to identify safer drugs that yield the same or improved effects, but with fewer side effects. A previous study revealed that a number of natural drugs from plants were found to inhibit APL cell growth proliferation and induce apoptosis in human APL cells. CA is a type of phenolic antioxidant, with low toxicity and less side effects, with a marked antioxidant and antibacterial effect. CA may prevent colon (13) and liver cancer (14). It reportedly possesses antitumor activity via the induction apoptosis of CML cell lines, including U937 and K562 cells. However, no study is currently available on the use of CA treatment on APL HL 60 cells. Thus, the current study investigated the ability of CA to inhibit HL 60 cell growth proliferation and to induce apoptosis. To clarify the effects of CA on growth proliferation and apoptosis in human APL HL 60 cells, the present study first investigated cell viability and the effect of CA on the proliferation of HL 60 cells using a growth curve constructed using trypan blue staining. According to the growth curve, the growth of HL 60 cells reached a plateau at 72 h. When treated with CA, the cell growth was inhibited significantly in a dose and time dependent manner and the optimal time of HL 60 cell

1110 growth was identified at 48 h (Fig. 1). Thus, in the subsequent experiments, the inhibition of proliferation and induction of apoptosis were estimated following 48 h treatment with various doses of CA. Cell apoptosis in cell development, growth, maturation and differentiation is important in the process of carcinogenesis and is significant in the research and treatment of tumor development. In the current study, Wright Giemsa staining was implemented to observe the morphological changes of HL 60 cells following 48 h CA treatment. The cells treated with CA revealed the characteristics of apoptosis (Fig. 2). Thus, this result suggests that CA may induce apoptosis in HL 60 cells. The distinct morphological features of apoptosis in HL 60 cells treated with CA were observed in a concentration dependent manner, when cells were observed by fluorescence microscopy following staining with Hoechst and PI (Fig. 3). A significant characteristic DNA ladder was observed with an increased CA concentration, which further suggests that CA has specific leukemia cell apoptosis inducing activity in HL 60 cells at the molecular level (Fig. 4). Cancer cells evade programmed cell death, thus increasing their life span, which is different from normal cells (9). A number of previous studies have shown that numerous anticancer drugs achieve cell cycle regulation through specific blockage of the cell cycle in the two phase transformation point of G0/G1 to S and G2 to M (15 17). In the present study, the cell cycle was analyzed using flow cytometry and the results showed that CA may induce HL 60 cell G0/G1 phase arrest with a decrease of S and G2/M phase. The current study has found that CA may induce HL 60 cell G0/G1 phase arrest and the result suggests that CA also has specific HL 60 cell growth inhibition inducing activity. The Bcl 2 gene family is significant in the regulation of cell apoptosis. It has been demonstrated that flavonoid compounds, including baicalin may induce apoptosis in HL 60 cell lines by downregulating the expression of Bcl 2 (18). Besides the Bcl 2 gene family, the caspase family is also crucial in apoptosis. As the most important member of the caspase family, caspase 3 has been widely studied. Under a variety of apoptotic stimuli, procaspase 3 is hydrolyzed to active caspase 3 and cleaved with PARP (poly(adp ribose) polymer rase). As a result, the activity of the PARP negatively regulated Ca 2+ /Mg 2+ dependent endonuclease increased to cleave the DNA between nucleosomes and induce apoptosis (19). Phosphatidylinositol 3 kinase (PI3K) is an important intra cellular signaling pathway associated with apoptosis and Akt is a potent kinase for Bad, which is an apoptotic member of the Bcl 2 family which may displace Bax from binding to Bcl 2 and Bcl XL, resulting in cell death (20). Thus, it is hypothesized that CA may induce cell apoptotis by downregulating Akt expression in Hl 60 cells. CA is also hypothesized to inhibit proliferation and promote the apoptosis of the HL 60 cells with a possible mechanism involving the downregulation of the expression of Akt, which further downregulates apoptosis associated proteins, including Bcl 2 and caspase 3. Therefore, a detailed mechanisms of the inhibition of prolife ration and promotion of apoptosis in HL 60 cells treated with CA should be further examined. In conclusion, to the best of our knowledge, the current study provided evidence, for the first time, that CA may inhibit growth proliferation and induce apoptosis in human acute promyelocytic leukemia HL 60 cells. The molecular mechanism of this process requires further investigation in future studies. The results of this study provides a new theoretical basis and therapeutic strategy for CA in the clinical treatment of acute promyelocytic leukemia. Acknowledgements This study was supported by a grant from the Top Innovative Talents Training Fund for College Students from Chongqing University of Technology (no. BC201205). References 1. Gallus S, Tavani A, Negri E and La Vecchia C: Does coffee protect against liver cirrhosis? Ann Epidemiol 12: 202 205, 2002. 2. Namba T and Matsuse T: A historical study of coffee in Japanese and Asian countries: focusing the medicinal uses in Asian traditional medicines. Yakushigaku Zasshi 37: 65 75, 2002 (In Japanese). 3. Phan TT, Sun L, Bay BH, Chan SY and Lee ST: Dietary compounds inhibit proliferation and contraction of keloid and hypertrophic scar derived fibroblasts in vitro: therapeutic implication for excessive scarring. J Trauma 54: 1212 1224, 2003. 4. Belkaid A, Currie JC, Desgagnés J and Annabi B: The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose 6 phosphate translocase in brain tumor progression. Cancer Cell Int 6: 7, 2006. 5. Granado Serrano AB, Martin MA, Izquierdo Pulido M, et al: Molecular mechanisms of ( ) epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line. J Agr Food chem 55: 2020 2027, 2007. 6. Bandyopadhyay G, Biswas T, Roy KC, et al: Chlorogenic acid inhibits Bcr Abl tyrosine kinase and triggers p38 mitogen activated protein kinase dependent apoptosis in chronic myelogenous leukemic cells. Blood 104: 2514 2522, 2004. 7. Yang JS, Liu CW, Ma YS, et al: Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase and mitochondria dependent pathways. In Vivo 26: 971 978, 2012. 8. Zhang XM, Gao N, Chen RX, Xu HZ and He QY: Characteristics of boningmycin induced cellular senescence of human tumor cells. Yao Xue Xue Bao 45: 589 594, 2010 (In Chinese). 9. Klein G: Cancer, apoptosis, and nonimmune surveillance. Cell Death Differ 11: 13 17, 2004. 10. Kim SH, Chun SY and Kim TS: Interferon alpha enhances artemisinin induced differentiation of HL 60 leukemia cells via a PKC alpha/erk pathway. Eur J Pharmacol 587: 65 72, 2008. 11. Li D, Wang Z, Chen H, et al: Isoliquiritigenin induces monocytic differentiation of HL 60 cells. Free Radical Bio Med 46: 731 736, 2009. 12. Huang WW, Yang JS, Lin CF, Ho WJ and Lee MR: Pycnogenol induces differentiation and apoptosis in human promyeloid leukemia HL 60 cells. Leuk Res 29: 685 692, 2005. 13. Tavani A, Pregnolato A, La Vecchia C, et al: Coffee and tea intake and risk of cancers of the colon and rectum: a study of 3,530 cases and 7,057 controls. Int J Cancer 73: 193 197, 1997. 14. Larsson SC and Wolk A: Coffee consumption and risk of liver cancer: a meta analysis. Gastroenterology 132: 1740 1745, 2007. 15. Chen CJ, Wen YF, Huang PT, et al: 2 (1 Hydroxethyl) 4,8 dihy drobenzo[1,2 b:5,4 b']dithiophene 4,8 dione (BTP 11) enhances the ATRA induced differentiation in human leukemia HL 60 cells. Leuk Res 33: 1664 1669, 2009. 16. Guney I, Wu S and Sedivy JM: Reduced c Myc signaling triggers telomere independent senescence by regulating Bmi 1 and p16(ink4a). Proc Natl Acad Sci USA 103: 3645 3650, 2006. 17. Liu LL, Chen N, Yuan X, et al: The mechanism of alteronol inhibiting the proliferation of human promyelocytic leukemia HL 60 cells. Yao Xue Xue Bao 47: 1477 1482, 2012 (In Chinese). 18. Shieh DE, Cheng HY, Yen MH, et al: Baicalin induced apoptosis is mediated by Bcl 2 dependent, but not p53 dependent, pathway in human leukemia cell lines. Am J Chin Med 34: 245 261, 2006. 19. Ivana Scovassi A and Diederich M: Modulation of poly(adp ribosylation) in apoptotic cells. Biochem Pharmacol 68: 1041 1047, 2004. 20. Zheng J, Hu JD, Chen YY, et al: Baicalin induces apoptosis in leukemia HL 60/ADR cells via possible down regulation of the PI3K/Akt signaling pathway. Asian Pac J Cancer Prev 13: 1119 1124, 2012.