Journal of the American College of Cardiology Vol. 38, No. 1, by the American College of Cardiology ISSN /01/$20.

Similar documents
Changes in Coronary Plaque Color and Morphology by Lipid-Lowering Therapy With Atorvastatin: Serial Evaluation by Coronary Angioscopy

Assessment of plaque morphology by OCT in patients with ACS

Culprit Lesion Remodeling and Long-term (> 5years) Prognosis in Patients with Acute Coronary Syndrome

IVUS Analysis. Myeong-Ki. Hong, MD, PhD. Cardiac Center, Asan Medical Center University of Ulsan College of Medicine, Seoul, Korea

The Site of Plaque Rupture in Native Coronary Arteries

Assessment of Vulnerable Plaques Causing Acute Coronary Syndrome Using Integrated Backscatter Intravascular Ultrasound

Spotty Calcification Typifies the Culprit Plaque in Patients With Acute Myocardial Infarction An Intravascular Ultrasound Study

IVUS Virtual Histology. Listening through Walls D. Geoffrey Vince, PhD The Cleveland Clinic Foundation

Intravascular Ultrasound

Added Value of Invasive Coronary Imaging for Plaque Rupture and Erosion

OCT; Comparative Imaging Results with IVUS, VH and Angioscopy

Arterial remodelling of native human coronary arteries in patients with unstable angina pectoris: a prospective intravascular ultrasound study

Imaging Atheroma The quest for the Vulnerable Plaque

Invasive Coronary Imaging Modalities for Vulnerable Plaque Detection

Non ST-elevation acute coronary syndromes (NSTE-

Imaging Overview for Vulnerable Plaque: Data from IVUS Trial and An Introduction to VH-IVUS Imgaging

Gary S. Mintz,, MD. IVUS Observations in Acute (vs Chronic) Coronary Artery Disease: Structure vs Function

Cardiovascular Research Foundation and Columbia University Medical Center, New York.

Assessment of Culprit Lesion Morphology in Acute Myocardial Infarction

Angiographic Geometric Predictors of Myocardial Infarction Are Not Associated with Ultrasonographic Markers of Plaque Vulnerability CONCLUSION

Journal of the American College of Cardiology Vol. 37, No. 1, by the American College of Cardiology ISSN /01/$20.

Title for Paragraph Format Slide

Left main coronary artery (LMCA): The proximal segment

Optimal assessment observation of intravascular ultrasound

The Severity of Coronary Atherosclerosis at Sites of Plaque Rupture With Occlusive Thrombosis

Coronary Artery Imaging. Suvipaporn Siripornpitak, MD Inter-hospital Conference : Rajavithi Hospital

Pathology of Coronary Artery Disease

Appearance of Lipid-Laden Intima and Neovascularization After Implantation of Bare-Metal Stents

Assessment of vulnerable plaque by OCT

Impact of Metabolic Syndrome on Tissue Characteristics of Angiographically Mild to Moderate Coronary Lesions

Medical sciences 1 (2017) 1 9

Morphological changes after percutaneous transluminal coronary angioplasty of unstable plaques

04RC2. The biology of vulnerable plaques. Jozef L. Van Herck 1, Christiaan J. Vrints 1, Arnold G. Herman 2

What Does the Yellow Color of Angioscopy Mean? Why Yellow Plaque Is Always Vulnerable?

CLINICAL APPLICATIONS OF OPTICAL COHERENCE TOMOGRAPHY. Konstantina P. Bouki, FESC 2 nd Department of Cardiology General Hospital Of Nikea, Pireaus

1st Department of Cardiology, University of Athens, Hippokration Hospital, Athens, Greece

Journal of the American College of Cardiology Vol. 46, No. 5, by the American College of Cardiology Foundation ISSN /05/$30.

Pathology of Vulnerable Plaque Angioplasty Summit 2005 TCT Asia Pacific, Seoul, April 28-30, 2005

Journal of the American College of Cardiology Vol. 35, No. 2, by the American College of Cardiology ISSN /00/$20.

Analysis of macrophage accumulation using optical coherence tomography one year after sirolimus, paclitaxel and zotarolimus-eluting stent

Ischemic heart disease

Percutaneous Coronary Angioscopy. Yasumi UCHIDA, M.D., Yoshiharu FUJIMORI, M.D., Junichi HIROSE, M.D., and Tomomitsu OSHIMA, M.D.

A Novel Low Pressure Self Expanding Nitinol Coronary Stent (vprotect): Device Design and FIH Experience

Spotty Calcification as a Marker of Accelerated Progression of Coronary Atherosclerosis : Insights from Serial Intravascular Ultrasound

Coronary Artery Embolism From Ruptured Plaque in the Left Main Trunks With Difficulty in Detection of Culprit Lesion: A Case Report

Positive Vascular Remodeling in Culprit Coronary Lesion is Associated With Plaque Composition: An Intravascular Ultrasound-Virtual Histology Study

Effect of Intravascular Ultrasound- Guided vs. Angiography-Guided Everolimus-Eluting Stent Implantation: the IVUS-XPL Randomized Clinical Trial

Intracoronary Serum Smooth Muscle Myosin Heavy Chain Levels Following PTCA may Predict Restenosis

The PROSPECT Trial. A Natural History Study of Atherosclerosis Using Multimodality Intracoronary Imaging to Prospectively Identify Vulnerable Plaque

OCT. molecular imaging J Jpn Coll Angiol, 2008, 48: molecular imaging MRI positron-emission tomography PET IMT

Quick guide. Core. precision guided therapy system

Chapter 43 Noninvasive Coronary Plaque Imaging

2yrs 2-6yrs >6yrs BMS 0% 22% 42% DES 29% 41% Nakazawa et al. J Am Coll Cardiol 2011;57:

Intravascular Ultrasound for Complex Cases

Coronary Artery Thermography

Vulnerable Plaque Pathophysiology, Detection, and Intervention. VP: A Local Problem or Systemic Disease. Erling Falk, Denmark

Relationship Between Atheroma Regression and Change in Lumen Size After Infusion of Apolipoprotein A-I Milano

FFR and intravascular imaging, which of which?

Between Coronary Angiography and Fractional Flow Reserve

Evaluation of Intermediate Coronary lesions: Can You Handle the Pressure? Jeffrey A Southard, MD May 4, 2013

UNDERSTANDING ATHEROSCLEROSIS

Yukio Ozaki, M Okumura, TF Ismail 2, S Motoyama, H. Naruse, K. Hattori, H. Kawai, M. Sarai, J. Ishii, Jagat Narula 3

PCI for Left Anterior Descending Artery Ostial Stenosis

Tissue Characterization of Coronary Plaques Using Intravascular Ultrasound/Virtual Histology

as a Mechanism of Stent Failure

Arterial Remodeling in the Left Coronary System The Role of High-Density Lipoprotein Cholesterol

Quantification of Coronary Arterial Narrowing at Necropsy in Acute Transmural Myocardial Infarction

Relationship Between Cardiovascular Risk Factors and Atherosclerotic Disease Burden Measured by Intravascular Ultrasound

Can IVUS Define Plaque Features that Impact Patient Care?

Acute Myocardial Infarction

Declaration of conflict of interest. Nothing to disclose

Coronary Artery Calcification and Changes in Atheroma Burden in Response to Established Medical Therapies

Optical Coherence Tomography (OCT): A New Imaging Tool During Carotid Artery Stenting

Basics of Angiographic Interpretation Analysis of Angiography

Progression of coronary atherosclerosis may lead to angina

Optical Coherence Tomography for Intracoronary Imaging

Noninvasive Coronary Imaging: Plaque Imaging by MDCT

Coronary Spasm as a Cause of Coronary Thrombosis and Myocardial Infarction

Usefulness of OCT during coronary intervention

Limitation of Angiography to Identify the Culprit Plaque in Acute Myocardial Infarction With Coronary Total Occlusion

Plaque Shift vs. Carina Shift Prevalence and Implication

CT Imaging of Atherosclerotic Plaque. William Stanford MD Professor-Emeritus Radiology University of Iowa College of Medicine Iowa City, IA

Κλινική Χρήση IVUS και OCT PERIKLIS A. DAVLOUROS ASSOCIATE PROFESSOR OF CARDIOLOGY INVASIVE CARDIOLOGY & CONGENITAL HEART DISEASE

Integrated Use of IVUS and FFR for LM Stenting

In Vivo Quantitative Tissue Characterization of Angiographically Normal Coronary Lesions and the Relation With Risk Factors

Reproducibility of Intravascular Ultrasound imap for Radiofrequency Data Analysis: Implications for Design of Longitudinal Studies

State of the Art. Advances in Cardiovascular Imaging. ESC Congres Stockholm September 1, 2010 Frank E. Rademakers, MD, PhD, FESC

Angiographic and Intravascular Ultrasound Predictors of In-Stent Restenosis

Plaque Characteristics in Coronary Artery Disease. Chourmouzios Arampatzis MD, PhD, FESC

Intravascular ultrasound-based analysis of factors affecting minimum lumen area in coronary artery intermediate lesions

High-risk vulnerable plaques. Kostis Raisakis G.Gennimatas General Hospital of Athens

Evading the fate of Pheidippides: acute coronary thrombosis in a young marathon runner with minimal atherosclerosis but sickle cell trait

Optical Coherence Tomography

Anatomy is Destiny, But Physiology is Here Today

Results of the Washington Radiation for In-Stent Restenosis Trial for Long Lesions (Long WRIST) Studies

Journal of the American College of Cardiology Vol. 34, No. 1, by the American College of Cardiology ISSN /99/$20.

C atastrophic atherosclerotic plaque rupture, the most

Microvascular Disease: How to Diagnose and What s its Treatment

Transcription:

Journal of the American College of Cardiology Vol. 38, No. 1, 2001 2001 by the American College of Cardiology ISSN 0735-1097/01/$20.00 Published by Elsevier Science Inc. PII S0735-1097(01)01315-8 Coronary Plaque Mechanical and Structural Characteristics of Vulnerable Plaques: Analysis by Coronary Angioscopy and Intravascular Ultrasound Masamichi Takano, MD, Kyoichi Mizuno, MD, FACC, Kentaro Okamatsu, MD, Shinya Yokoyama, MD, Takayoshi Ohba, MD, Shunta Sakai, MD Chiba, Japan OBJECTIVES BACKGROUND METHODS RESULTS CONCLUSIONS Mechanical and structural characteristics of vulnerable plaques were evaluated using coronary angioscopy and intravascular ultrasound. Mechanical stress and composition of plaques play an important role in plaque disruption. Thirty-eight lesions in 38 patients were examined pre-interventionally. The plaques were classified as either yellow or white using coronary angioscopy. Intravascular ultrasound imaging was performed simultaneously with electrocardiographic and intracoronary pressure recordings to calculate distensibility index and stiffness. Moreover, the type of remodeling was classified. We identified 27 patients with yellow plaques and 11 patients with white plaques. Patients with yellow plaques presented acute coronary syndromes more frequently than stable angina (85% vs. 36%, p 0.01). The distensibility index in yellow plaques was significantly greater than it was in white plaques (2.7 0.8 mm Hg 1 vs. 0.7 0.8 mm Hg 1,p 0.0001), while stiffness for white plaques was significantly greater than it was for yellow plaques (34.9 16.3 vs. 8.7 2.7, p 0.0001). Compensatory enlargement occurred more frequently with yellow plaques than with white plaques (56% vs. 9%, p 0.01), while paradoxical shrinkage occurred more frequently with white plaques than it did with yellow plaques (64% vs. 4%, p 0.001). Yellow plaques with an increased distensibility and a compensatory enlargement may be mechanically and structurally weak. As a result, mechanical fatigue, caused by repetitive stretching, may lead to plaque disruption. Plaques with a high distensibility and a compensatory enlargement may be vulnerable. (J Am Coll Cardiol 2001;38:99 104) 2001 by the American College of Cardiology Atherosclerotic plaques of coronary arteries can be classified into two types according to color by coronary angioscopy. Yellow plaques are frequently observed at the site of a culprit lesion in the setting of acute coronary syndromes (1 3). These plaques have thin fibrous caps with lipid-rich cores and inadequate collagen content (3). In contrast, white plaques have thick fibrous caps or are completely fibrous (3,4). A previous prospective study has demonstrated that acute coronary syndromes occur frequently in patients with yellow plaques (5). These results suggest that yellow plaques are more vulnerable to rupture than white plaques. Disruption of plaques, which is considered to be the cause of acute coronary syndromes, occurs through the action of extrinsic mechanical stresses, such as shear forces, acute changes in coronary blood pressure or bending and twisting of an artery during each cardiac contraction (6). However, the relationship between mechanical properties, such as coronary artery distensibility, and plaque color is unknown. From the Department of Internal Medicine, Nippon Medical School, Chiba Hokusoh Hospital, Chiba, Japan. Manuscript received November 20, 2000; revised manuscript received March 13, 2001, accepted March 26, 2001. Intravascular ultrasound (IVUS) allows for the evaluation of plaque morphology, vascular remodeling and vessel wall distensibility (7 10). Arterial remodeling of the coronary artery was originally described in a necropsy study by Glagov et al. (11) and later confirmed in vivo using IVUS (12). Compensatory enlargement is defined as an increase in local vessel size in response to increased plaque burden (13). Paradoxical shrinkage is defined as the local shrinkage of vessel caliber and has been implicated in the development of native atherosclerosis and restenosis after angioplasty (14,15). Recently, Schoenhagen et al. (8) reported that compensatory enlargement commonly occurs in patients with acute coronary syndromes, whereas paradoxical shrinkage commonly occurs in those with stable angina. However, the relationship between plaque color and the presence of arterial remodeling has not been determined. We hypothesized that yellow plaques are softer and more distensible and are associated with compensatory enlargement more frequently than white plaques. In this study, we determined whether yellow plaques have high distensibility and are associated with compensatory enlargement using coronary angioscopy and IVUS.

100 Takano et al. JACC Vol. 38, No. 1, 2001 Mechanical and Structural Characteristics of Vulnerable Plaques July 2001:99 104 Abbreviation and Acronyms CSA cross-sectional area DBP diastolic intracoronary pressure EEM external elastic membrane IVUS intravascular ultrasound RR remodeling ratio SBP systolic intracoronary pressure METHODS Patient population. Pre-interventional coronary angioscopy and IVUS images were obtained from 57 patients with ischemic heart disease. Catheter procedures were performed within three days after onset of acute coronary events. All patients had a single culprit lesion in the native coronary arteries. All patients were in sinus rhythm. Bifurcation lesions (n 3), moderate to severely calcified lesions (n 4) and tortuous lesions (n 1) were excluded because measurements with IVUS are not exact for such lesions. Ostial lesions (n 2), angiographically diffuse lesions (lesion length 20 mm, n 1) and distal lesions of 50% stenosis (n 2) were also excluded from this study. The cases of disagreement between observers concerning plaque color (n 2) were also excluded. Finally, five cases with poor angioscopic or IVUS image quality were excluded. Therefore, 38 patients (32 men and 6 women) were included in the study. Clinical data and information about the clinical presentation were collected from patients charts. Written informed consent approved by our institutional review board was obtained from all patients. Clinical presentation. Unstable angina was defined using American Heart Association criteria (16). Acute myocardial infarction was defined by the presence of typical chest pain, ST-segment elevation and an increase in the serum creatine kinase-mb isoenzyme activity more than two times the upper limit of normal range. Stable angina was defined as the presence of exertional chest pain (unchanged over the previous two months) or the presence of an abnormal stress test. Coronary angioscopic procedure. After routine coronary angiography, an additional 100 U/kg heparin was administered, and an 8F guiding catheter was used to engage the coronary artery. Coronary angioscopy was performed with an image catheter (Vecmova, Clinical Supply Co., Gifu, Japan). Before use, the white balance was adjusted for color correction. The light power was adjusted to avoid refraction and to determine the color of the plaque. IVUS procedure. A 30 MHz, 3.2F monorail IVUS catheter (Ultra Cross, Boston Scientific Scimed, Inc., Boston, Massachusetts) was used. The IVUS catheter was advanced at least 10 mm distal to the culprit lesion over a guide wire. The IVUS catheter was then withdrawn automatically at a rate of 0.5 mm/s using a motorized transducer pullback device. The IVUS catheter was then fixed just proximal to the culprit lesion for measurements of coronary artery distensibility. The culprit lesion was defined as the site with the smallest luminal diameter. The proximal and distal reference sites were chosen 10 mm proximal and distal to the culprit lesion. All IVUS studies were performed immediately after the intracoronary administration of 400 g nitroglycerin to prevent coronary spasm. Qualitative angioscopic analysis. Angioscopic images were analyzed independently by two observers. Both observers had no knowledge of the IVUS findings or patient history. The plaques were classified as either yellow or white (Fig. 1A and E). Intra-observer agreement was measured by having an observer repeat the assessment of 20 images (presented in random order) after one week. The interobserver agreement was measured by comparing the assessment of 20 images by the two observers. Intra- and inter-observer agreements were both 95%. If there was no consensus concerning plaque color, the data were excluded from the study. Quantitative IVUS measurements and calculations. A single observer blinded to the angioscopic findings and clinical history analyzed the IVUS images. The crosssectional area (CSA) was traced manually. The lumen intimal border was traced, and the lumen CSA was calculated. The external elastic membrane (EEM) adventitial border was traced, and the EEM CSA was determined. The plaque CSA was calculated as (EEM CSA lumen CSA). The percentage of plaque area was calculated as (plaque CSA/EEM CSA) 100 (%). These measurements were performed during the diastolic phase. For the measurement of coronary artery distensibility, simultaneous electrocardiogram and intracoronary pressure were recorded on a strip chart at 200 mm/s during IVUS imaging. Electrocardiographic gating was used to determine the largest lumen CSA (lumen CSA in systole) and the smallest lumen CSA (lumen CSA in diastole) (Fig. 2). Distensibility was defined as follows: distensibility index lumen CSA/(lumen CSA in diastole P) 10 3 (mm Hg 1 ), where lumen CSA is the difference between lumen CSA in systole and lumen CSA in diastole and Pis the difference between systolic intracoronary pressure (SBP) and diastolic intracoronary pressure (DBP). We also calculated stiffness, which is a pressureindependent vascular stiffness index (17). Stiffness [ln (SBP/DBP)]/( D/diastolic mean luminal diameter), where D is the difference between the systolic and diastolic mean luminal diameters. The systolic and diastolic mean luminal diameters were calculated from the CSA, assuming that the cross-section was circular [diameter 2 (EEM CSA/ ) 1/2 ]. Distensibility index and stiffness were measured at the proximal site near to the culprit lesion. All measurements represent the average values for three cardiac cycles. IVUS definitions of remodeling. The remodeling ratio (RR) was defined as follows: RR EEM CSA at the culprit lesion/mean reference EEM CSA, where mean reference EEM CSA is the average of the proximal and the

JACC Vol. 38, No. 1, 2001 July 2001:99 104 Takano et al. Mechanical and Structural Characteristics of Vulnerable Plaques 101 Figure 1. (A) Angioscopic image of the left anterior descending artery in a patient with acute myocardial infarction demonstrating yellow plaque. (B,C,D) Intravascular ultrasound images at the same lesion as A demonstrating compensatory enlargement. (B) At the proximal reference site, external elastic membrane (EEM) cross-sectional area (CSA) was 11.8 mm 2. (C) At the culprit lesion, EEM CSA was 13.5 mm 2. (D) At the distal reference site, EEM CSA was 9.6 mm 2. The remodeling ratio (RR) was 1.26. (E) Angioscopic image of the left anterior descending artery in a patient with stable angina demonstrating white plaque. (F,G,H) Intravascular ultrasound images at the same lesion as E demonstrating paradoxical shrinkage. (F) At the proximal reference site, EEM CSA was 17.1 mm 2. (G) At the culprit lesion, EEM CSA was 10.1 mm 2. (H) At the distal reference site, EEM CSA was 15.3 mm 2. The RR was 0.62. distal reference site EEM CSA. Three remodeling categories were defined as follows: compensatory enlargement, an RR 1.10; no remodeling, an RR between 0.90 and 1.10; paradoxical shrinkage, an RR 0.90 (Fig. 1., B to D and F to H). Qualitative IVUS analysis. The observer classified plaque morphology visually according to commonly used criteria (18). Echo-lucent plaques were defined as lesions with an echo density less than that of the adventitia for 75% of the plaque area. Echo-dense plaques were defined as lesions with an echo density equivalent to or greater than the adventitia for 75% of the plaque area without acoustic shadowing. All other lesions were defined as mixed plaques. Statistical analysis. Data are presented as the mean SD. If the data were normally distributed, an unpaired Student t test was used to compare two groups. Otherwise, a Mann-Whitney U test was used. Categorical variables were analyzed using Fisher exact probability test. The correlation between two parameters was evaluated by linear regression analysis. Analysis of residual variance was used to detect significant differences in a dependent variable (e.g., stiffness ) between the categories of a factor (e.g., plaque color). Statistical analyses were performed using SAS for Windows, version 6.12. A value of p 0.05 was considered statistically significant. Figure 2. Intravascular ultrasound images of changes in the lumen crosssectional area (CSA). (Left) Lumen CSA was 2.7 mm 2 during diastole. (Right) Lumen CSA increased to 3.5 mm 2 during systole. RESULTS Patient population. Yellow plaques were observed in 27 patients, and white plaques were observed in 11 patients. The clinical and demographic characteristics of the patients are summarized in Table 1. There were no significant differences in the frequency of risk factors for coronary artery disease and demographic characteristics between the patients with yellow plaques and white plaques. The frequency of acute coronary syndromes (acute myocardial infarction and unstable angina) was significantly higher in

102 Takano et al. JACC Vol. 38, No. 1, 2001 Mechanical and Structural Characteristics of Vulnerable Plaques July 2001:99 104 Table 1. Clinical and Demographic Characteristics Patients With Yellow Plaques (n 27) Patients With White Plaques (n 11) p Value Age (yr) 60 13 56 10 0.37 Gender: male 15 (56) 6 (55) 0.62 Diabetes mellitus 9 (33) 1 (9) 0.13 Hypertension 10 (27) 4 (36) 0.63 Hyperlipidemia 15 (56) 6 (55) 0.62 Smoking 15 (56) 4 (36) 0.24 Family history 7 (26) 3 (27) 0.70 Obesity 7 (26) 3 (27) 0.70 Hyperuricemia 4 (15) 2 (18) 0.79 Acute coronary syndrome 23 (85) 4 (36) 0.0052 Acute myocardial 13 (48) 2 (18) infarction Unstable angina 10 (37) 2 (18) Stable angina 4 (15) 7 (64) Target lesion RCA 7 (26) 5 (46) 0.94 LAD 13 (48) 4 (36) 0.38 LCx 7 (26) 2 (18) 0.48 Values are reported as n (%) except for age, which is mean SD. LAD left anterior descending artery; LCx left circumflex artery; RCA right coronary artery. the patients with yellow plaques than it was in the patients with white plaques (p 0.01). Quantitative IVUS measurements and remodeling. There were no significant differences between the yellow plaques and white plaques in EEM CSA, plaque CSA, lumen CSA and percentage of plaque area at the proximal reference site and culprit lesion. At the distensibility measurement site, the lumen CSA and distensibility index were greater in the yellow plaques than they were in the white plaques (p 0.0001). Stiffness was greater in the Figure 3. Correlations between percentage of plaque area and stiffness. Open squares represent white plaques, and open circles represent yellow plaques. Good correlation is observed (white plaques: r 2 0.432, p 0.0279; yellow plaques: r 2 0.325, p 0.0019). The stiffness for the white plaques is significantly greater than for the yellow plaques (p 0.00391). white plaques than it was in the yellow plaques (p 0.0001). However, the percentage of plaque area was not different between the two groups (Table 2). Figure 3 shows the relationship between percentage of plaque area and stiffness in the yellow plaques and white plaques. In both groups, the percentage of plaque area correlated with stiffness. Stiffness in the white plaques was significantly greater than it was in the yellow plaques (p 0.005). The frequency of compensatory enlargement was significantly higher in the yellow plaque group than it was in the white plaque group (p 0.01). In contrast, the frequency of paradoxical shrinkage was significantly higher in the white plaques than it was in the yellow plaques (p 0.001). Table 2. Comparison of IVUS Findings Between the Yellow and the White Plaques Yellow Plaques (n 27) White Plaques (n 11) p Value Measurement values at the distensibility measurement site: EEM CSA (mm 2 ) 14.7 3.7 14.6 2.4 0.93 Lumen CSA (mm 2 ) 6.0 1.9 5.5 2.1 0.48 Plaque CSA (mm 2 ) 8.6 2.6 9.1 1.6 0.56 % Plaque area (%) 58.9 8.1 63.4 10.5 0.16 Lumen CSA (mm 2 ) 0.80 0.54 0.21 0.19 0.000016 P (mm Hg) 50.4 16.8 53.4 10.5 0.59 Distensibility index (mm Hg 1 ) 2.7 0.8 0.7 0.8 0.00000003 Stiffness 8.7 2.7 34.9 16.3 0.00034 Type of remodeling: Compensatory enlargement 15 (56) 1 (9) 0.0092 No remodeling 11 (41) 3 (27) 0.35 Paradoxical shrinkage 1 (4) 7 (64) 0.00019 Remodeling ratio 1.23 0.28 0.86 0.16 0.000014 Plaque morphology: Echo-lucent 17 (63) 4 (36) 0.13 Echo-dense 3 (11) 4 (36) 0.09 Mixed 7 (26) 3 (28) 0.93 Values are reported as mean SD, except for the type of remodeling and plaque morphology, which are n (%). CSA cross-sectional area; EEM external elastic membrane; IVUS intravascular ultrasound; Lumen CSA difference between the largest and smallest luminal cross-sectional area; P difference between systolic intracoronary pressure and diastolic intracoronary pressure.

JACC Vol. 38, No. 1, 2001 July 2001:99 104 Takano et al. Mechanical and Structural Characteristics of Vulnerable Plaques 103 Moreover, the mean RR was significantly greater in the yellow plaques than it was in the white plaques (p 0.0001, Table 2). Qualitative IVUS analysis. There was no significant difference in the frequency of echo-lucent, echo-dense or mixed plaque morphologies between the yellow and white plaques (Table 2). DISCUSSION Acute coronary syndromes are thought to result from atherosclerotic plaque disruption and intramural thrombus formation. Histologic studies have revealed that atherosclerotic plaques prone to disruption are commonly composed of thin fibrous caps and lipid-rich cores (19 21). Coronary angioscopic studies have established that yellow plaques are commonly observed at the site of culprit lesions in patients with acute coronary syndromes (1 3). Furthermore, a prospective study has demonstrated that yellow plaques frequently cause acute coronary syndromes (5). Therefore, yellow plaques detected by coronary angioscopy are believed to be vulnerable. Plaque disruption is triggered by intrinsic plaque changes, such as increased pressure in atheroma and thinning of fibrous caps caused by inflammatory cells and by extrinsic stress. Prior investigators have suggested that several kinds of stress, including shear stress (6) and circumferential and localized wall stress (19,21), play an important role in plaque disruption. However, the mechanical responses of vulnerable plaques to local stress are unknown. Coronary artery distensibility is one parameter of vessel wall stiffness (9). Previous investigators have reported that a few factors, including thickness of the intima media complex (9) and plaque distribution (10), influence distensibility. However, the difference in the distensibility of vulnerable and stable plaques is not known. The difference of distensibility. The distensibility index of yellow plaques was higher than it was in white plaques. There are two possible reasons for this difference. One of the reasons may be that the composition of the plaque differs between yellow and white plaques. The yellow plaques are closely related to atheromas, which have thin fibrous caps and large lipid pools (3), while the white plaques have thick fibrous caps or are entirely fibrous by histomorphologic analysis (3,4). The results of this study demonstrate that coronary artery distensibility may be regulated by plaque composition. Another reason may be that vascular remodeling also influences distensibility. Paradoxical shrinkage results from adventitial fibrosis, which compresses the vessel (22). As a result, the white plaques mainly cause paradoxical shrinkage and may be less distensible and stiffer than the yellow plaques that present with compensatory enlargement. Regional distensibility may play an important role in plaque disruption. The border of normal intima and plaque, the so-called shoulder lesion must be exposed to mechanical stress caused by difference of regional distensibility. However, circumferential plaques were frequently observed, and the border of the normal intima and the plaque was not clear at the distensibility measurement site. Therefore, whole vessel distensibility was calculated in this study. The difference of plaque morphology. A recent IVUS study demonstrated that echo-lucent plaques are more frequently found in the setting of acute coronary syndromes than in the setting of stable angina (8). In our study, there was no difference in the frequency of echo-lucent plaques between yellow and white plaques. However, yellow plaques detected in patients with acute coronary syndromes are frequently accompanied by thrombus, and these thrombi are seen as echo-dense masses by IVUS (23). Therefore, the frequency of echo-lucent plaques in the yellow plaques may be underestimated. The difference of remodeling. Collagen is one of the components of plaque, and its content regulates plaque growth and mechanical stability (24,25). Recent studies have shown that inadequate collagen content leads to plaque weakness and vulnerability, whereas excessive collagen accumulation leads to arterial stenosis (24 26). Moreover, collagen density correlates with the type of arterial remodeling. Specifically, the collagen density is higher in arteries with constrictive remodeling than it is in those with dilatory remodeling (26). Other histologic studies have shown that the numbers of collagen fibers in yellow plaques is much lower than they are in white plaques (3). These findings help to explain the fact that compensatory enlargement was more common with yellow plaques, while paradoxical shrinkage was more common in white plaques. Theoretically, the yellow plaques have greater plaque area than the white plaques. However, there was no difference in plaque area between the yellow and the white plaques. The reason for this result may be explained by the fact that there were a small number of patients in this study. A prospective IVUS study showed that large plaque area contributed to the acute coronary events (27). The results of this study showed that the increasing of the percentage of plaque area correlated with decreasing distensibility of the plaque. Percentage of plaque area does not always correlate with absolute plaque area. The plaques having large absolute area and a low percentage of plaque area may be most vulnerable. Vulnerable plaque may be observed as mild to moderate stenosis by angiogram and as compensatory enlargement by IVUS. Yellow plaques with increased distensibility and inadequate collagen content may be mechanically and structurally weak. As a result, mechanical fatigue, caused by repetitive stretching, may lead to plaque disruption. We concluded that plaques with high distensibility and compensatory enlargement may be vulnerable to rupture. Study limitations. Coronary artery distensibility is influenced by intracoronary pressure. In this study, measurements of intracoronary pressure were obtained through the tip of the guiding catheter, which may not accurately reflect intracoronary pressure. Therefore, in this study, the lesions

104 Takano et al. JACC Vol. 38, No. 1, 2001 Mechanical and Structural Characteristics of Vulnerable Plaques July 2001:99 104 that have 50% stenosis in proximal sites were excluded because the intracoronary pressure in this type of lesion differs significantly from the pressure at the tip of the guiding catheter. The pressure measurements at sites of severe stenosis and at sites distal to severe stenosis were not exact, because the coronary lumen was narrowed or obstructed by the IVUS catheter. Therefore, measurements of distensibility were performed at sites proximal to the culprit lesion. However, stiffness is a pressure-independent index of vascular stiffness. Based on both pressure-dependent and pressure-independent measurements, yellow plaques were more distensible than white plaques. The detection of differences between thrombus and plaque by IVUS is often difficult because thrombus appears similar to intima or plaque (23). Therefore, the plaque CSA and percentage of plaque area at the culprit lesion, especially in patients with acute coronary syndromes, may be overestimated. Moreover, the presence of thrombus may influence the distensibility and the morphologic classification of the plaque. Conclusions. This study demonstrated that yellow plaques were associated with the presence of compensatory enlargement, while white plaques were associated with paradoxical shrinkage. Furthermore, yellow plaques are more distensible than white plaques. We concluded that yellow plaques with a high distensibility and a compensatory enlargement are more vulnerable to disruption. Reprint requests and correspondence: Dr. Kyoichi Mizuno, Department of Internal Medicine, Nippon Medical School, Chiba Hokusoh Hospital, 1715 Kamakari, Imba, Imba, Chiba, Japan. E-mail: mizunok@nms.ac.jp. REFERENCES 1. Mizuno K, Miyamoto A, Satomura K, et al. Angioscopic macromorphology in patients with acute coronary disorders. Lancet 1991;337: 809 12. 2. Ramee SR, White CJ, Collins TJ, et al. Percutaneous angioscopy during angioplasty using a steerable microangioscopy. J Am Coll Cardiol 1991;17:100 5. 3. Thieme T, Wernecke KD, Meyer R, et al. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol 1996;28:1 6. 4. Lindop G. Blood vessels and lymphatics. In: Anderson JR, editor. Muir s Textbook of Pathology. 12th ed. London: Edward Arnord, 1985:14.3 14.14. 5. Uchida Y, Nakamura F, Tomaru T, et al. Prediction of acute coronary syndromes by percutaneous angioscopy in patients with stable angina. Am Heart J 1995;130:195 203. 6. Getz SD, Roberts WC. Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques. Am J Cardiol 1990;66:1368 72. 7. Nissen SE, Gurley JC, Grines CL, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991;84:1087 99. 8. Schoenhagen P, Ziada KM, Kapadia SR, et al. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 2000;101:598 603. 9. Nakatani S, Yamagishi M, Tamai J, et al. Assessment of coronary artery distensibility by intravascular ultrasound: application of simultaneous measurements of luminal area and pressure. Circulation 1995;91:2904 10. 10. Yamagishi M, Umeno T, Hongo Y, et al. Intravascular ultrasonic evidence for importance of plaque distribution (eccentric vs. circumferential) in determining distensibility of the left anterior descending artery. Am J Cardiol 1997;79:1596 600. 11. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371 5. 12. Hermiller JB, Tenaglia AN, Kisslo KB, et al. In vivo validation of compensatory enlargement of atherosclerotic coronary arteries. Am J Cardiol 1993;71:665 8. 13. Losordo DW, Rosenfield K, Kaufman J, et al. Focal compensatory enlargement of human arteries in response to progressive atherosclerosis. Circulation 1994;89:2570 7. 14. Pasterkamp G, Wensing PJW, Post MJ, et al. Paradoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries. Circulation 1995;91:1444 9. 15. Mintz GS, Kent KM, Pichard AD, et al. Contribution of inadequate arterial remodeling to the development of focal coronary artery stenosis. Circulation 1995;95:1791 8. 16. American Heart Association Committee Report. Coronary artery diseases report system. Circulation 1975;51:6 12. 17. Hirai T, Sasayama S, Kawasaki T, et al. Stiffness of systemic arteries in patients with myocardial infarction. Circulation 1989;80:78 86. 18. Hodgson JM, Reddy KG, Suneja R, et al. Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993;21:35 44. 19. Richardson PD, Davies MJ, Born GVR. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;2:459 64. 20. Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992;326:242 50. 21. Cheng GC, Loree HM, Kamm RD, et al. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation 1993;87:1179 87. 22. Anderson HR, Moeng M, Thorwest M, et al. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury: insights from a porcine coronary (re)stenosis model. Circulation 1996;93:1716 24. 23. Pandian NG, Kreis A, Brockway B. Detection of intra-arterial thrombus by intravascular high-frequency two-dimensional ultrasound imaging in in vitro and in vivo studies. Am J Cardiol 1990;65:1280 3. 24. Lee RT, Libby P. The unstable atheroma. Arterioscler Thromb Vasc Biol 1997;17:1859 67. 25. Burleight MC, Briggs AD, Lendon CL, et al. Collagen types I and III, collagen content, CAGs and mechanical strength of human atherosclerotic plaque caps: span-wise variations. Atherosclerosis 1992;96: 71 81. 26. Antoine L, Eric D, Jane LS, et al. Endothelial dysfunction and collagen accumulation: two independent factors for restenosis and constrictive remodeling after experimental angioplasty. Circulation 1999;100:1109 15. 27. Yamagishi M, Terashima M, Awano K, et al. Morphology of vulnerable coronary plaque: insights from follow-up patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol 2000;35:106 11.