ORIGINAL ARTICLE. The Nasal Obstruction Symptom Evaluation. as a Screening Tool for Obstructive Sleep Apnea

Similar documents
Sleep Disorders and the Metabolic Syndrome

Obstructive sleep apnoea How to identify?

OBSTRUCTIVE SLEEP APNEA and WORK Treatment Update

DECLARATION OF CONFLICT OF INTEREST

Nasal Evaluation & Non-surgical Nasal Therapy in SDB

Diagnostic Accuracy of the Multivariable Apnea Prediction (MAP) Index as a Screening Tool for Obstructive Sleep Apnea

Nasal obstruction is implicated in the. Does Nasal Obstruction Increase Heart Rate? Main Article

Evaluation of the Brussells Questionnaire as a screening tool

The Agony or the Ecstasy. Familiar?

Outline. Major variables contributing to airway patency/collapse. OSA- Definition

BTS sleep Course. Module 10 Therapies I: Mechanical Intervention Devices (Prepared by Debby Nicoll and Debbie Smith)

Sleep Apnea: Diagnosis & Treatment

WHAT YOU NEED TO KNOW ABOUT SLEEP APNEA

Management of OSA in the Acute Care Environment. Robert S. Campbell, RRT FAARC HRC, Philips Healthcare May, 2018

GOALS. Obstructive Sleep Apnea and Cardiovascular Disease (OVERVIEW) FINANCIAL DISCLOSURE 2/1/2017

11/19/2012 ก! " Varies 5-86% in men 2-57% in women. Thailand 26.4% (Neruntarut et al, Sleep Breath (2011) 15: )

Dear, Respectfully, United Sleep Centers SLEEP STUDY DATE: FEBUARY 26, 2015 AT OUR DOWNEY CENTER TIME: 10PM, PLEASE ARRIVE ON TIME

Snoring and Its Outcomes

Mario Kinsella MD FAASM 10/5/2016

Obstructive Sleep Apnea in Truck Drivers

Simple diagnostic tools for the Screening of Sleep Apnea in subjects with high risk of cardiovascular disease

OBSTRUCTIVE SLEEP APNEA. Obstructive Sleep Apnea Syndrome and Postoperative Complications. Clinical Use of the STOP-BANG Questionnaire

Prevalence of and treatment outcomes for patients with obstructive sleep apnoea identified by preoperative screening compared with clinician referrals

Surgical Options for the Successful Treatment of Obstructive Sleep Apnea

What is the Role of Soft Palate Surgery in OSA?

Sleep and the Heart. Physiologic Changes in Cardiovascular Parameters during Sleep

Sleep and the Heart. Rami N. Khayat, MD

Sleep Apnea. Herbert A Berger, MD Pulmonary Division Department of Internal Medicine University of Iowa

The incidence of early post-operative complications following uvulopalatopharyngoplasty: identification of predictive risk factors

Obstructive sleep apnea (OSA) is the periodic reduction

ORIGINAL ARTICLE. Validation of the Snore Outcomes Survey for Patients With Sleep-Disordered Breathing

Polysomnography (PSG) (Sleep Studies), Sleep Center

Sleep Apnea and ifficulty in Extubation. Jean Louis BOURGAIN May 15, 2016

Sleep Apnea: Vascular and Metabolic Complications

Is CPAP helpful in severe Asthma?

ROBERT C. PRITCHARD DIRECTOR MICHAEL O. FOSTER ASSISTANT DIR. SLEEP APNEA

Assessment of Screening Tests for Sleep Apnea Syndrome in the Workplace

Maxillomandibular Advancement for Treatment of Obstructive Sleep Apnea: A Meta-analysis.

Emerging Nursing Roles in Collaborative Management of Sleep Disordered Breathing and Obstructive Sleep Apnoea

POLICY All patients will be assessed for risk factors associated with OSA prior to any surgical procedures.

Pre-Operative Services Teaching Rounds 11 March 2011

Absorbable Nasal Implant for Treatment of Nasal Valve Collapse

The veteran population: one at high risk for sleep-disordered breathing

Upper Airway Stimulation for Obstructive Sleep Apnea

Obstructive Sleep Apnea

Brian Palmer, D.D.S, Kansas City, Missouri, USA. April, 2001

1/27/2017 RECOGNITION AND MANAGEMENT OF OBSTRUCTIVE SLEEP APNEA: STRATEGIES TO PREVENT POST-OPERATIVE RESPIRATORY FAILURE DEFINITION PATHOPHYSIOLOGY

The use of overnight pulse oximetry for obstructive sleep apnoea in a resource poor setting in Sri Lanka

I would like for my patient to be seen in Sleep Medicine consultation and managed by the sleep physician. Yes No

RESEARCH PACKET DENTAL SLEEP MEDICINE

In-Patient Sleep Testing/Management Boaz Markewitz, MD

International Journal of Scientific & Engineering Research Volume 9, Issue 1, January ISSN

Christopher D. Turnbull 1,2, Daniel J. Bratton 3, Sonya E. Craig 1, Malcolm Kohler 3, John R. Stradling 1,2. Original Article

Sleep Diordered Breathing (Part 1)

Subjective Assessment of Outcomes of Septoplasty

OBSTRUCTIVE SLEEP APNEA and WORK Treatment Update

Underdiagnosis of Sleep Apnea Syndrome in U.S. Communities

Edward M. Weaver, MD, MPH. University of Washington VA Puget Sound

Designing Clinical Trials in Perioperative Sleep Medicine

Using Questionnaire Tools to Predict Pediatric OSA outcomes. Vidya T. Raman, MD Nationwide Children s Hospital October 201

Critical Review Form Diagnostic Test

UPDATES IN SLEEP APNEA:

MCOEM Spring Chapter Meeting April 5, Sleep Apnea An Overview with Emphasis on Cardiovascular Correlations Jacques Conaway, MD

Comparing Upper Airway Stimulation to Expansion Sphincter Pharyngoplasty: A Single University Experience

Sleep Apnea Symptoms in Diabetics and their First Degree Relatives

Sleep and the Heart Reversing the Effects of Sleep Apnea to Better Manage Heart Disease

Association between Depression and Severity of Obstructive Sleep Apnea Syndrome

An update on childhood sleep-disordered breathing

SNORING AND OBSTRUCTIVE SLEEP APNOEA WAYS TO DEAL WITH THESE PROBLEMS

Process Measure: Screening for Adult Obstructive Sleep Apnea

The STOP-Bang Equivalent Model and Prediction of Severity

The most accurate predictors of arterial hypertension in patients with Obstructive Sleep Apnea Syndrome

(Young et al., 1993) AHI 15 AHI >5. (Peppard et al., 2013) - 10% 17%

Snoring. Forty-five percent of normal adults snore at least occasionally and 25

Impact of APD on Sleep

Heart Failure and Sleep Disordered Breathing (SDB) Unhappy Bedfellows

In Australia, the provision of polysomnography has steadily

OSA - Obstructive sleep apnoea What you need to know if you think you might have OSA

Does AHI Value Enough for Evaluating the Obstructive Sleep Apnea Severity?

Nasal Expiratory Positive Airway Pressure (EPAP) for the Treatment of Obstructive Sleep Apnea: A Review of Clinical Studies of Provent Therapy

Fabrice Czarnecki, M.D., M.A., M.P.H., FACOEM I have no disclosures to make.

STOP BANG questionnaire as a screening tool for diagnosis of obstructive sleep apnea by unattended portable monitoring sleep study

What is SDB? Obstructive sleep apnea-hypopnea syndrome (OSAHS)

THE RISE AND FALL(?) OF UPPP FOR SLEEP APNEA COPYRIGHT NOTICE

Time for Recovery of Symptoms after Septoplasty

Todays Topics For Discussion. Learning Objectives. What is Obstructive Sleep Apnea (OSA)? Why Obstruction Occurs During Sleep

Pediatric Sleep Disorders

Chronic NIV in heart failure patients: ASV, NIV and CPAP

Inspire Therapy for Obstructive Sleep Apnea. Clinical Data Update

Healthy Sleep. Frederick Tolle, M.D., dabsm Community Health Network

Presenter Disclosure Information

Obstructive Sleep Apnea Concerning and Costly

ORIGINAL ARTICLE. Improvement in Quality of Life After Nasal Surgery Alone for Patients With Obstructive Sleep Apnea and Nasal Obstruction

Research Article Predictors of Nasal Obstruction: Quantification and Assessment Using Multiple Grading Scales

Obstructive Sleep Apnea and COPD overlap syndrome. Financial Disclosures. Outline 11/1/2016

Association of Palatine Tonsil Size and Obstructive Sleep Apnea in Adults

Outcomes of Upper Airway Surgery in Obstructive Sleep Apnea

Inspire Therapy for Sleep Apnea

Corporate Medical Policy Septoplasty

Transcription:

ORIGINAL ARTICLE The Nasal Obstruction Symptom Evaluation Survey as a Screening Tool for Obstructive Sleep Apnea Lisa Ishii, MD, MHS; Andres Godoy, MD; Stacey L. Ishman, MD, MPH; Christine G. Gourin, MD; Masaru Ishii, MD, PhD Objective: To determine if clinical data and Nasal Obstruction Symptom Evaluation (NOSE) scores can be used to identify patients at risk for obstructive sleep apnea (OSA). Design: Intake surveys using the NOSE, Epworth Sleepiness Scale (ESS), and Snore Outcomes Scale (SOS) were administered to new patients visiting a facial plastic surgery practice and a rhinology practice. Setting: An academic facial plastic surgery practice and an academic rhinology practice. Patients: New patients to both practices. Main Outcome Measures: NOSE score and presence of septal deviation. Results: The odds ratio (OR) for an ESS score higher than 10 was 2.98 (95% confidence interval [CI], 1.17-7.57) when snoring was present; 5.5 (95% CI, 1.35-22.58) when the NOSE score was 10 or higher; and 3.3 (95% CI, 0.98-11.0) when a deviated septum was found on clinical examination. The probability of an elevated ESS score was 88% when all 3 factors were present and 56% when the NOSE score was not elevated. Receiver operating characteristic analysis with predictors snore and NOSE score of 10 or higher had an area under the curve of 0.72. With a probability cutoff of 0.5, the sensitivity was 30%, and the specificity 90%. Conclusions: Sinonasal surgery is among the most common outpatient procedures performed in the United States each year. Many patients undergoing sinonasal surgery have undiagnosed OSA or nasal obstruction, a known risk factor for OSA. Patients with OSA have unique perioperative needs. In patients with nasal obstruction, a deviated septum, and/or snoring, there is an association between the NOSE score and the ESS score. The NOSE survey may serve as a simple screening instrument instead of the ESS for patients at risk for undiagnosed OSA and special perioperative needs. Arch Otolaryngol Head Neck Surg. 2011;137(2):119-123 Author Affiliations: Department of Otolaryngology Head and Neck Surgery (Drs L. Ishii, Godoy, Ishman, Gourin, and M. Ishii), Division of Facial Plastic & Reconstructive Surgery (Dr L. Ishii), Center for Snoring and Sleep Surgery (Dr Ishman), and Division of Rhinology (Dr M. Ishii), Johns Hopkins School of Medicine, Baltimore, Maryland. IT HAS BEEN ESTIMATED THAT 600 000 sinonasal procedures are performed in the United States each year, making them among the most commonly performed outpatient procedures in the United States. 1,2 Nasal obstruction is a common symptom in patients undergoing sinonasal surgery. The surgeon contemplating surgical intervention must recognize that nasal obstruction is a known risk factor for sleepdisordered breathing, and patients with sleep-disordered breathing are at greater risk for perioperative complications. 3 Sleep-disordered breathing, of which obstructive sleep apnea (OSA) is the most common type, has been reported to affect 17% of the adult population and is expected to increase in our aging and increasingly obese population. 4 Patients with OSA have unique perioperative needs and increased perioperative morbidity and mortality. 5,6 However, a significant percentage of patients have undiagnosed moderate to severe OSA at the time of elective surgical procedures. 7 The Nasal Obstruction Symptom Evaluation (NOSE) 8 survey is a validated diseasespecific instrument designed to measure nasal obstruction. It is commonly used in otolaryngology practices to provide an objective measure of nasal obstruction. The Epworth Sleepiness Scale (ESS) 9 is a validated screening tool for excessive daytime sleepiness. Patients with elevated ESS scores are at increased risk for OSA and should be referred for further evaluation. Given the increased risk of OSA in patients with nasal obstruction, the number of outpatient sinonasal surgical procedures performed each year, and the unique perioperative needs of patients with OSA, it would be helpful to have a screening tool for OSA that could be easily in- 119

Table 1. Poor Predictors of Sleepiness a Characteristic Age, y Height, in Weight, lbs Systolic BP, mm Hg Diastolic BP, mm Hg Total Patients, No. Sex Male 54.5 (50.0-59.0) 65.8 (64.1-67.6) 164 (153-175) 128 (125-131) 74 (69-79) 44 Female 43.9 (40.4-47.5) 60.3 (59.9-60.7) 224 (209-239) 118 (115-122) 73 (71-75) 68 ESS score 10 47.7 (43.9-51.5) 62.1 (61-63.2) 188 (175-202) 123 (120-127) 72 (69-76) 75 10 48.9 (44.4-53.4) 62.7 (60.9-64.5) 189 (172-206) 121 (118-125) 75 (72-78) 37 Abbreviations: BP, blood pressure; CI, confidence interval; ESS, Epworth Sleepiness Scale. 9 Metric unit conversion factors: To convert inches to centimeters, multiply by 2.54; pounds to kilograms, multiply by 0.45. a Unless otherwise noted, data are means (95% CIs). corporated into practice to identify high-risk patients preoperatively. The NOSE survey is already used in a number of otolaryngology practices, while the ESS is not; therefore, we explored the association between the NOSE score and the ESS score for possible use of the NOSE survey as a screening tool for patients at risk for OSA. Specifically, we sought to determine if clinical data and NOSE results could be used to identify patients with excessive daytime sleepiness who might require special perioperative management. METHODS This study was conducted at the Johns Hopkins School of Medicine with institutional review board approval. Intake surveys were administered to new patients visiting a facial plastic surgery practice and a rhinology practice from January 2009 to January 2010. The intake surveys included the NOSE survey, the Snore Outcomes Scale (SOS), 10 and the ESS. The NOSE survey was used to measure nasal obstruction. It is a brief questionnaire consisting of 5 self-rated items, each scored from 0 to 4. 8 The NOSE score represents the sum of the responses to the 5 individual items and ranges from 0 to 20. 11 The SOS is an instrument designed to measure the snoring component of sleepdisordered breathing. 10 It consists of 8 items that evaluate the duration, severity, frequency, and consequences of problems associated with sleep-disordered breathing, and snoring in particular. The ESS was used for subjective assessment of daytime sleepiness. The ESS questionnaire consists of 8 self-rated items, each scored from 0 to 3, that measure the likelihood of dozing or falling asleep in common situations of daily living. The ESS score is the sum of the responses to the 8 individual items and ranges from 0 to 24. Values greater than 10 indicate significant sleepiness, and values greater than 16 indicate a high level of daytime sleepiness. The survey results were entered into a spreadsheet. Statistical analysis was performed using Stata/IC 11 (Stata Corporation, College Station, Texas). There was a positive correlation between the ESS score and the NOSE score, but the correlation was poor: 0.1989. The introduction of nonlinearity with a cut point allowed for better performance with classification and also led to a more clinically relevant screening tool. Logistic regression was performed with sleepiness (ESS score 10) as the dependent variable, and SOS score, NOSE score of 10 or higher, deviated septum, age, sex, height, weight, and blood pressure as the independent variables. An ESS score higher than 10 was used because that value indicates significant sleepiness. For snore, this value was determined from question 1 of the SOS that specifically addresses snoring. For patients who answered most or all of the time, the SOS score was considered yes, and for patients who answered little or none of the time, the SOS score was considered no. The presence or absence of a deviated septum was determined by clinical examination. A cutoff of 10 was used for the NOSE score because this was just outside the mean (SD) of 8.9 (6.4) in this group (141 observations) and because in a logistic regression with NOSE as a continuous variable, 10 corresponded to a 50% probability of having and ESS score higher than 10. Models were sequentially built with elimination of nonsignificant variables and the addition of significant interaction terms. Significance was attributed to P.05. RESULTS There were 158 patients who were administered the surveys. Forty-six were excluded: 5 because they were children and 41 because they did not complete the survey. Of the 112 patients enrolled in the study, 90 were women (57%) and 68 were men (43%). The mean (SD) body mass index (BMI, calculated as weight in kilograms divided by height in meters squared) was 28.7 (6.16 (18.18-44.93). The mean (SD) NOSE score was 8.9 (6.4) (range, 0-20). The mean (SD) ESS score was 7.9 (5.4) (range, 0-24). Table 1 lists the factors that were found to be poor predictors of sleepiness as a function of sex and ESS score. A Hotelling T 2 test was performed to simultaneously compare age, height, weight, and blood pressure for the groups ESS score of 10 or lower and ESS score higher than 10 (F 5,91 =0.5438, P=.74). This finding was not statistically significant, which suggests that these variables do not offer contrast between the high and low ESS groups. The degrees of freedom were lower than expected owing to missing data. A limited stepwise logistic regression was performed with factors that were highly correlated with the ESS score. The only significant variables for predicting ESS were NOSE score and presence or absence of snoring. In addition, owing to its clinically significant association and despite its lack of statistical significance, we also included deviated septum. The other variables tested were removed from the model. There were no significant interactions identified between predictive variables. The final logistic regression model included only NOSE score, presence or absence of snoring, and deviated septum (Table 2). The odds ratio (OR) for an ESS score higher than 10 was 2.98 (95% confidence interval [CI], 1.17-7.57) when snoring was present; 5.5 (95% CI, 1.35-22.58) when the NOSE score was 10 or higher; and 3.3 (95% CI, 0.98-11.0) when a 120

deviated septum was found on clinical examination. The probabilities of having an ESS score higher than 10 given the presence or absence of the different factors are listed in Table 3. Notably, the probability of having an elevated ESS score was 88% when all 3 factors were present (elevated NOSE score, positive snoring, and deviated septum) but only 56% when the NOSE score was not elevated. The probability of having an elevated ESS score was 70% when the NOSE score and only 1 of the other factors was elevated, highlighting the significance of nasal obstruction as a predictive variable for sleepiness. Based on these data, a receiver operating characteristic (ROC) analysis (Table 4) was performed using the predictors snore, NOSE score of 10 or higher, and presence of deviated septum; and the area under the curve was 0.72 (Figure). COMMENT Sinonasal surgery is among the most commonly performed of outpatient procedures in the United States, with a recent study estimating 600 000 cases per year. 1,2 The vast majority of these are performed with general anesthesia. 1 Nasal obstruction, a common complaint for many of the patients undergoing these procedures, may result from a number of causes including allergic rhinitis, deviated septum, nasal valve collapse, and nasal polyposis. Of particular concern is that regardless of the cause of the obstruction, nasal obstruction has been identified as a risk factor for sleep-disordered breathing. 12 Sleep-disordered breathing is the most frequent medical cause of daytime sleepiness, 13 and even in its most mild forms it has been associated with substantial morbidity. The true prevalence of sleep-disordered breathing is unknown, but it has been reported to be as high as 28% of the adult population. 11 Obstructive sleep apnea has been independently associated with an increased likelihood of hypertension, cardiovascular disease, stroke, daytime sleepiness, and motor vehicle accidents. 11 A casecontrol study confirmed that individuals with OSA, as defined by apnea-hypopnea index of 10 or higher, were 7.2 times more likely to have a motor vehicle accident than those without OSA. 14 Of particular importance to surgeons is that patients with OSA have unique perioperative needs that should be addressed prior to surgical intervention. Nasal obstruction has been identified as a modifiable risk factor for OSA and is a common complaint in patients with OSA. 15 The upper airway has been described as resembling a Starling resistor with a collapsible segment in the oropharynx where upper airway narrowing is induced by subatmospheric nasal pressure. 16 Multiple observational and cross-sectional studies have documented a relationship between chronic nasal obstruction, snoring, and OSA. 3,17-19 Based on those data, it is reasonable to assume that nasal obstruction plays a role in the pathogenesis of snoring and sleep apnea and that improving nasal patency may alleviate sleep-disordered breathing. It is thought that OSA is underdiagnosed in the population at large. By one estimate, in the adult white population in the BMI range of 25 to 28, the prevalence of mild Table 2. Logistic Regression Results by Predictor Predictor Odds Ratio (95% Confidence Interval) P Value Snore most or all of the time 2.98 (1.17-7.57).02 NOSE score 10 5.5 (1.35-22.58).02 Deviated septum 3.3 (0.98-11.0).054 Abbreviation: NOSE, Nasal Obstruction Symptom Evaluation. 8 OSA is 1 in 5, and the prevalence of at least moderate OSA is 1 in 15. 11 Given the association between nasal obstruction, snoring, and OSA, it is likely that there is a significant subpopulation of patients presenting to otolaryngologists for treatment of nasal obstruction who also have undiagnosed OSA. It would be beneficial for otolaryngologists to have a practical method to screen for OSA in this population. The importance of identifying these patients, even in practices not focused on sleep, cannot be overemphasized and is based in part on surgical risk. A large proportion of patients with nasal obstruction would benefit from a surgical intervention. Patients with OSA have different needs from an anesthesia standpoint because they are at increased risk for hypoxemia, hypercapnia, and cardiac arrhythmias postoperatively than are patients without OSA. 5,6 Patients with OSA should undergo preparation with continuous positive airway pressure prior to undergoing general anesthesia to prevent cardiac complications. Because such patients are at greater risk for respiratory depression from opiate analgesics, their postoperative pain management may need to be uniquely tailored, and they may benefit from sedation or regional anesthesia vs general anesthesia when possible. Additionally, patients with OSA may also benefit from surgery on the palate, tonsils, or base of tongue, which may be performed simultaneously or sequentially with nasal surgery. Given the association of OSA with comorbidities like depression, cardiovascular disease, and increased motor vehicle accidents, it is reasonable to expect our patients to have better outcomes from nasal surgery if this element of their quality of life is improved as well. The NOSE survey is a brief, validated, diseasespecific instrument designed to measure nasal obstruction. Many otolaryngologists already use it to objectively evaluate nasal obstruction. The results of the present study show that in patients who snore and have a deviated septum, there is an association between elevated NOSE scores and elevated ESS scores. The probability of having an elevated ESS score when all 3 factors (snoring, elevated NOSE score, and deviated septum) were present was 88%, and when the NOSE score was elevated with either of the other 2 factors, the probability was 70%. Patients with elevated ESS scores should have further evaluation by a sleep specialist and should possibly undergo polysomnography. We propose that there exists a subpopulation of patients with nasal obstruction who also have undiagnosed OSA. With our simple standard survey tool, the NOSE instrument, knowledge of snoring status, and clinical examination, we may be able to predict those at risk for OSA and refer them for further treat- 121

Table 3. Probability of ESS Score Being Higher Than 10 in the Presence of Various NOSE Scores, Septum Deviation, and Snoring Characteristics Cut Point NOSE Score Snoring Present Deviated Septum Probability, % Patients, No. 1 10 No No 11 15 2 10 No Yes 29 15 3 10 Yes No 30 8 4 10 No No 42 16 5 10 Yes Yes 56 9 6 10 No Yes 70 19 7 10 Yes No 70 12 8 10 Yes Yes 88 18 Abbreviations: ESS, Epworth Sleepiness Scale 9 ; NOSE, Nasal Obstruction Symptom Evaluation. 8 Table 4. Important Characteristics Found at Each Cut Point a Cut Point Sensitivity Specificity Positive Predictive Value Negative Predictive Value 1 100 0.0 26.8 NA 2 96.7 17.1 29.9 93.3 3 96.7 35.4 35.4 96.7 4 86.7 41.5 35.1 89.5 5 73.3 56.1 37.9 85.2 6 63.3 63.4 38.8 82.5 7 43.3 79.3 43.3 79.3 8 36.7 91.5 61.1 79.8 8 0.0 100 NA 73.2 Abbreviations: ESS, Epworth Sleepiness Scale 9 ; NA, not applicable; NOSE, Nasal Obstruction Symptom Evaluation. 8 a All data are reported as percentages. Sensitivity, % 100 75 50 25 0 0 25 50 75 100 1 Specificity, % Figure. Area under the receiver operating characteristic curve is 0.72, with predictors Nasal Obstruction Symptom Evaluation 8 score of 10 or higher, snoring present, and deviated septum present. ment. In addition, based on the high specificity of this screening method (90%), a physician can be fairly confident that if a patient does not snore, have a deviated septum, or an elevated NOSE score, the likelihood of an elevated ESS is extremely low, and therefore the risk of OSA may be low. The incorporation of these screening instruments into clinical practice requires a minimum amount of effort. For practices already using the NOSE survey, this information is already available, and the only additional data item would be snoring status. Our data suggest that the use of these simple screening tools aid in the identification of patients at high risk for OSA, who can be referred for further evaluation preoperatively to minimize perioperative morbidity and mortality. For those who do not already use these tools, a minimum amount of effort would be required to do so. In conclusion, sinonasal procedures are among the most common outpatient procedures performed each year, and most of them are performed with general anesthesia. Nasal obstruction, a symptom present in most patients undergoing sinonasal surgery, is common in otolaryngology practices and is a known risk factor for OSA. In patients with a deviated septum who snore and report nasal obstruction, there is an association between the NOSE score and the ESS score. Thus, when these data are available, one can determine if a patient is at increased risk for OSA without administering a separate survey, namely the ESS. The NOSE survey may serve as a simple, practical instrument for screening for patients at risk for undiagnosed OSA preoperatively, who may benefit from special perioperative management. Submitted for Publication: May 10, 2010; final revision received August 3, 2010; accepted September 20, 2010. Correspondence: Lisa Ishii, MD, MHS, Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, 4949 Eastern Ave, A5W, 595A, Baltimore, MD 21224 (Learnes2@jhmi.edu). Author Contributions: Dr L. Ishii had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: L. Ishii, Godoy, and M. Ishii. 122

Acquisition of data: L. Ishii, Godoy, and M. Ishii. Analysis and interpretation of data: L. Ishii, Ishman, Gourin, and M. Ishii. Drafting of the manuscript: L. Ishii and M. Ishii. Critical revision of the manuscript for important intellectual content: Godoy, Ishman, Gourin, and M. Ishii. Statistical analysis: L. Ishii, Godoy, and M. Ishii. Administrative, technical, and material support: Godoy. Financial Disclosure: Dr Ishman has served as a consultant for Apnex, has performed legal review for Leeseberg & Valentine, and has served as a contractor for First Line Medical. REFERENCES 1. Bhattacharyya N. Ambulatory sinus and nasal surgery in the United States: demographics and perioperative outcomes. Laryngoscope. 2010;120(3):635-638. 2. Manoukian PD, Wyatt JR, Leopold DA, Bass EB. Recent trends in utilization of procedures in otolaryngology-head and neck surgery. Laryngoscope. 1997; 107(4):472-477. 3. Young T, Finn L, Kim H; The University of Wisconsin Sleep and Respiratory Research Group. Nasal obstruction as a risk factor for sleep-disordered breathing. J Allergy Clin Immunol. 1997;99(2):S757-S762. 4. Young T, Peppard PE, Taheri S. Excess weight and sleep-disordered breathing. J Appl Physiol. 2005;99(4):1592-1599. 5. Candiotti K, Sharma S, Shankar R. Obesity, obstructive sleep apnoea, and diabetes mellitus: anaesthetic implications. Br J Anaesth. 2009;103(Suppl 1): i23-i30. 6. Riley RW, Powell NB, Guilleminault C, Pelayo R, Troell RJ, Li KK. Obstructive sleep apnea surgery: risk management and complications. Otolaryngol Head Neck Surg. 1997;117(6):648-652. 7. Chung F, Elsaid H. Screening for obstructive sleep apnea before surgery: why is it important? Curr Opin Anaesthesiol. 2009;22(3):405-411. 8. Stewart MG, Witsell DL, Smith TL, Weaver EM, Yueh B, Hannley MT. Development and validation of the Nasal Obstruction Symptom Evaluation (NOSE) scale. Otolaryngol Head Neck Surg. 2004;130(2):157-163. 9. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness Scale. Sleep. 1991;14(6):540-545. 10. Gliklich RE, Wang PC. Validation of the snore outcomes survey for patients with sleep-disordered breathing. Arch Otolaryngol Head Neck Surg. 2002;128(7): 819-824. 11. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med. 2002;165(9):1217-1239. 12. McNicholas WT. The nose and OSA: variable nasal obstruction may be more important in pathophysiology than fixed obstruction. Eur Respir J. 2008;32(1):3-8. 13. Cassel W, Ploch T, Becker C, Dugnus D, Peter JH, von Wichert P. Risk of traffic accidents in patients with sleep-disordered breathing: reduction with nasal CPAP. Eur Respir J. 1996;9(12):2606-2611. 14. Terán-Santos J, Jiménez-Gómez A, Cordero-Guevara J; Cooperative Group Burgos- Santander. The association between sleep apnea and the risk of traffic accidents. N Engl J Med. 1999;340(11):847-851. 15. Kohler M, Bloch KE, Stradling JR. The role of the nose in the pathogenesis of obstructive sleep apnoea and snoring. Eur Respir J. 2007;30(6):1208-1215. 16. Smith PL, Wise RA, Gold AR, Schwartz AR, Permutt S. Upper airway pressureflow relationships in obstructive sleep apnea. J Appl Physiol. 1988;64(2):789-795. 17. Liistro G, Rombaux P, Belge C, Dury M, Aubert G, Rodenstein DO. High Mallampati score and nasal obstruction are associated risk factors for obstructive sleep apnoea. Eur Respir J. 2003;21(2):248-252. 18. Lofaso F, Coste A, d Ortho MP, et al. Nasal obstruction as a risk factor for sleep apnoea syndrome. Eur Respir J. 2000;16(4):639-643. 19. Young T, Finn L, Palta M. Chronic nasal congestion at night is a risk factor for snoring in a population-based cohort study. Arch Intern Med. 2001;161(12): 1514-1519. Correction Error in Figure. In the Original Article titled Surgical Practice Patterns in the Treatment of Papillary Thyroid Microcarcinoma by Wu et al, published in the December issue of the Archives (2010;136[12]:1182-1190), an error occurred in Figure 2 on page 1185. For clinical scenario 1 at the top left portion of the figure, the pie chart should have shown that 29.7% of surgeons chose completion total thyroidectomy as the next most appropriate step, whereas 70.3% chose no further surgery. This article was corrected online. 123