Nomogram using transrectal ultrasound-derived information predicting the detection of high grade prostate cancer on initial biopsy

Similar documents
BJUI. Study Type Prognosis (individual cohort study) Level of Evidence 2b OBJECTIVES CONCLUSIONS

A nomogram based on age, prostate-specific antigen level, prostate volume and digital rectal examination for predicting risk of prostate cancer

Preoperative Gleason score, percent of positive prostate biopsies and PSA in predicting biochemical recurrence after radical prostatectomy

Nomogram for Prediction of Prostate Cancer with Serum Prostate Specific Antigen Less than 10 ng/ml

Prostate volume predicts high grade prostate cancer both in digital rectal examination negative (ct1c) and positive ( ct2) patients

Since the beginning of the prostate-specific antigen (PSA) era in the. Characteristics of Insignificant Clinical T1c Prostate Tumors

NIH Public Access Author Manuscript World J Urol. Author manuscript; available in PMC 2012 February 1.

EUROPEAN UROLOGY 58 (2010)

Can Prostate-Specific Antigen Kinetics before Prostate Biopsy Predict the Malignant Potential of Prostate Cancer?

Predicting Prostate Biopsy Outcome Using a PCA3-based Nomogram in a Polish Cohort

ORIGINAL ARTICLE Urology INTRODUCTION

Prognostic value of the Gleason score in prostate cancer

Developing a new score system for patients with PSA ranging from 4 to 20 ng/ ml to improve the accuracy of PCa detection

CONTEMPORARY UPDATE OF PROSTATE CANCER STAGING NOMOGRAMS (PARTIN TABLES) FOR THE NEW MILLENNIUM

Research Article External Validation of an Artificial Neural Network and Two Nomograms for Prostate Cancer Detection

Correlation of Gleason Scores Between Needle-Core Biopsy and Radical Prostatectomy Specimens in Patients with Prostate Cancer

Changes in Prostate Cancer Aggressiveness over a 12-Year Period in Korea

ORIGINAL ARTICLE. Ja Hyeon Ku 1, Kyung Chul Moon 2, Sung Yong Cho 1, Cheol Kwak 1 and Hyeon Hoe Kim 1

Outcomes of Radical Prostatectomy in Thai Men with Prostate Cancer

1. Introduction. Department of Urology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba , Japan 2

Original Article - Urological Oncology. Ho Gyun Park 1, Oh Seok Ko 1, Young Gon Kim 1, Jong Kwan Park 1-4

Although the test that measures total prostate-specific antigen (PSA) has been

Predictive Factors of Gleason Score Upgrading in Localized and Locally Advanced Prostate Cancer Diagnosed by Prostate Biopsy

Role of Prostate-Specific Antigen Change Ratio at Initial Biopsy as a Novel Decision-Making Marker for Repeat Prostate Biopsy

Regional difference in cancer detection rate in prostate cancer screening by a local municipality in Japan

1. Introduction. Correspondence should be addressed to Zhongcheng Xin; and Liqun Zhou;

Victor H. W. Yeung, Yi Chiu, Sylvia S. Y. Yu, W. H. Au, and Steve W. H. Chan

european urology 55 (2009)

Utility of Incorporating Genetic Variants for the Early Detection of Prostate Cancer

Cancer. Description. Section: Surgery Effective Date: October 15, 2016 Subsection: Original Policy Date: September 9, 2011 Subject:

BJUI. Follow-up of men with an elevated PCA3 score and a negative biopsy: does an elevated PCA3 score indeed predict the presence of prostate cancer?

Focus on... Prostate Health Index (PHI) Proven To Outperform Traditional PSA Screening In Predicting Clinically Significant Prostate Cancer

Are Clinically Insignificant Prostate Cancers Really Insignificant among Korean Men?

Clinicopathological Features of Prostate Ductal Carcinoma: Matching Analysis and Comparison with Prostate Acinar Carcinoma

PROSTATE CANCER SCREENING: AN UPDATE

Relationship between initial PSA density with future PSA kinetics and repeat biopsies in men with prostate cancer on active surveillance

Prostate Cancer Screening Guidelines in 2017

Aram Kim 4, Myong Kim 1, Se Un Jeong 2, Cheryn Song 1, Yong Mee Cho 2, Jae Yoon Ro 3 and Hanjong Ahn 1*

10/2/2018 OBJECTIVES PROSTATE HEALTH BACKGROUND THE PROSTATE HEALTH INDEX PHI*: BETTER PROSTATE CANCER DETECTION

three after the most recent release in These modifications were based primarily on data from clinical, not pathological, staging [1].

The Impact of MRI-TRUS Cognitively Targeted Biopsy on the Incidence of Pathologic Upgrading After Radical Prostatectomy

estimating risk of BCR and risk of aggressive recurrence after RP was assessed using the concordance index, c.

Standardized Thyroid Cancer Mortality in Korea between 1985 and 2010

Prostate Cancer Gene 3 (PCA3): Development and Internal Validation of a Novel Biopsy Nomogram

ONCOLOGY LETTERS 8: , 2014

PREVALENCE OF PROSTATE CANCER AMONG HYPOGONADAL MEN WITH PROSTATE-SPECIFIC ANTIGEN LEVELS OF 4.0 ng/ml OR LESS

Prostate Cancer. Axiom. Overdetection Is A Small Issue. Reducing Morbidity and Mortality

Is Small Prostate Volume a Predictor of Gleason Score Upgrading after Radical Prostatectomy?

Prognosis of Prostate Cancer With Other Primary Malignancies

Use of the cell cycle progression (CCP) score for predicting systemic disease and response to radiation of biochemical recurrence

A Nomogram Predicting Long-term Biochemical Recurrence After Radical Prostatectomy

A NEURAL NETWORK PREDICTS PROGRESSION FOR MEN WITH GLEASON SCORE 3 4 VERSUS 4 3 TUMORS AFTER RADICAL PROSTATECTOMY

Prostate-specific antigen density as a parameter for the prediction of positive lymph nodes at radical prostatectomy

Introduction. Key Words: high-grade prostatic intraepithelial neoplasia, HGPIN, radical prostatectomy, prostate biopsy, insignificant prostate cancer

Supplemental Information

Practice Patterns of Korean Urologists for Screening and Managing Prostate Cancer according to PSA Level

Clinical Evaluation of the PCA3 Assay in Guiding Initial Biopsy Decisions

Information Content of Five Nomograms for Outcomes in Prostate Cancer

Between-Method Differences in Prostate-Specific Antigen Assays Affect Prostate Cancer Risk Prediction by Nomograms

J Clin Oncol 25: by American Society of Clinical Oncology INTRODUCTION

Department of Urology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea

Establishment of Korean prostate cancer database by the Korean Urological Oncology Society

PROSTATE MRI. Dr. Margaret Gallegos Radiologist Santa Fe Imaging

Development and Internal Validation of a Prostate Health Index Based Nomogram for Predicting Prostate Cancer at Extended Biopsy

Factors Predicting Prostatic Biopsy Gleason Sum Under Grading

Selective Detection of Histologically Aggressive Prostate Cancer

Approximately 680,000 men are diagnosed with prostate

Prospective validation of a risk calculator which calculates the probability of a positive prostate biopsy in a contemporary clinical cohort

Elevated PSA. Dr.Nesaretnam Barr Kumarakulasinghe Associate Consultant Medical Oncology National University Cancer Institute, Singapore 9 th July 2017

european urology 52 (2007)

Determination of An Optimum Cut-off Point for % fpsa/tpsa to Improve Detection of Prostate Cancer

Questions and Answers about Prostate Cancer Screening with the Prostate-Specific Antigen Test

pt3 Predictive Factors in Patients with a Gleason Score of 6 in Prostate Biopsies

The Role of the Pathologist Active Surveillance for Prostate Cancer

Metachronous anterior urethral metastasis of prostatic ductal adenocarcinoma

Correlation of Preoperative and Radical Prostatectomy Gleason Score: Examining the Predictors of Upgrade and Downgrade Results

Correspondence should be addressed to Taha Numan Yıkılmaz;

Is Prostate Biopsy Essential to Diagnose Prostate Cancer in the Older Patient with Extremely High Prostate-Specific Antigen?

Statin Use and Risk of Prostate Cancer in a Population of Men Who Underwent Biopsy

When PSA fails. Urology Grand Rounds Alexandra Perks. Rising PSA after Radical Prostatectomy

Detection & Risk Stratification for Early Stage Prostate Cancer

of Nebraska - Lincoln

THE SIGNIFICANCE OF HYPOECHOIC LESION DIRECTED AND TRANSITION ZONE BIOPSIES IN IMPROVING THE DIAGNOSTIC ABILITY IN PROSTATE CANCER

Contribution of prostate-specific antigen density in the prediction of prostate cancer: Does prostate volume matter?

The Prevalence and Characteristic Differences in Prostatic Calcification between Health Promotion Center and Urology Department Outpatients

Early outcomes of active surveillance for localized prostate cancer

Interval from Prostate Biopsy to Robot-Assisted Laparoscopic Radical Prostatectomy (RALP): Effects on Surgical Difficulties

MR-US Fusion Guided Biopsy: Is it fulfilling expectations?

Dong Hoon Lee, Ha Bum Jung, Seung Hwan Lee, Koon Ho Rha, Young Deuk Choi, Sung Jun Hong, Seung Choul Yang and Byung Ha Chung *

Evaluation of prognostic factors after radical prostatectomy in pt3b prostate cancer patients in Japanese population

Understanding the risk of recurrence after primary treatment for prostate cancer. Aditya Bagrodia, MD

Introduction. Original Article

Urological Society of Australia and New Zealand PSA Testing Policy 2009

Prognostic Value of Surgical Margin Status for Biochemical Recurrence Following Radical Prostatectomy

Are extended biopsies really necessary to improve prostate cancer detection?

Oncologic Outcomes of Patients With Gleason Score 7 and Tertiary Gleason Pattern 5 After Radical Prostatectomy

Original Article - Urological Oncology.

The prognostic significance of percentage of tumour involvement according to disease risk group in men treated with radical prostatectomy

Original Article. Introduction. Xin LIU 1, *Jie TANG 2, Xiang FEI 2, Qiu-Yang LI 2

Predictive Models. Michael W. Kattan, Ph.D. Department of Quantitative Health Sciences and Glickman Urologic and Kidney Institute

Transcription:

Original Article Prostate Int 2013;1(2):69-75 P R O S T A T E INTERNATIONAL Nomogram using transrectal ultrasound-derived information predicting the detection of high grade prostate cancer on initial biopsy In Gab Jeong, Ju Hyun Lim, Seung-Sik Hwang 1, Sung Cheol Kim, Dalsan You, Jun Hyuk Hong, Hanjong Ahn, Choung-Soo Kim Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea 1 Department of Social and Preventive Medicine, Inha University School of Medicine, Incheon, Korea Purpose: To develop a nomogram using transrectal ultrasound (TRUS)-derived information for predicting high grade (HG) prostate cancer (PCa) on initial biopsy. Methods: Data were collected on 1,048 men with serum prostate-specific antigen (PSA) levels 4.0 to 9.9 ng/ml who underwent an initial prostate biopsy. Two logistic regression-based nomograms were constructed to predict the detection of PCa. Nomogram-1 incorporated age, digital rectal examination, PSA and percent free PSA data, whereas nomogram-2 incorporated those factors plus TRUS-derived information (i.e., prostate volume and the presence of hypoechoic lesions). The prediction of any PCa and HGPCa (Gleason score 7) were determined. Twenty percent of the data were randomly reserved for study validation, and the predictive accuracies of the two nomograms were directly compared. Results: Of the 1,048 men who underwent biopsy, 216 (20.6%) were found to have any PCa, and 97 (9.3%) were found to have HGPCa. All six risk factors were found to be independent predictors for both any PCa and HGPCa. The area under curve (AUC) for nomogram-2 was 0.76 (95% confidence interval [CI], 0.72 to 0.81) for predicting any PCa, and 0.83 (95% CI, 0.79 to 0.88) for predicting HGPCa. These AUCs were greater than those for nomogram-1 (0.72 [95% CI, 0.68 to 0.76 for any PCa; P<0.001], 0.78 [95% CI, 0.72 to 0.83 for HGPCa; P<0.001]). Removing the TRUS-derived information from nomogram-2 resulted in an incremental AUC decrease of 0.052 for any PCa and 0.063 for HGPCa. Conclusions: The nomogram using TRUS-derived information had a high predictive accuracy for HGPCa on initial prostate biopsy. Keywords: Prostatic neoplasms, Biopsy, Nomograms, Ultrasonography INTRODUCTION Prostate cancer (PCa) is the most common nonskin cancer in men in the United States (US), with an estimated 186,320 new cases in 2008 [1]. The serum prostate-specific antigen (PSA) test is commonly used as a diagnostic screening tool for detecting PCa. A recent randomized European trial showed that while PCa screening decreased PCa mortality by 20%, it was associated with a high risk of overdiagnosis [2]. Approximately 1.5 million US men aged 40 to 69 years have a PSA level greater than 4.0 ng/ml, a value widely accepted as a positive test result [3]. In men with intermediate PSA range (4 to 10 ng/ml), the detection rate of prostate biopsy is approximately 25%. In this range, PSA alone does not differentiate men with the benign prostatic disease from those with PCa due to its lack of speci- Corresponding author: Choung-Soo Kim Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea E-mail: cskim@amc.seoul.kr / Tel: +82-2-3010-3734 / Fax: +82-2-477-8928 Submitted: 7 December 2012 / Accepted after revision: 9 May 2013 Copyright 2013 Asian Pacific Prostate Society (APPS) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. http://p-international.org/ pissn: 2287-8882 eissn: 2287-903X 69

Jeong, et al. Nomogram of high grade prostate cancer ficity [4]. Therefore, several clinical and laboratory variables have been proposed in an attempt to improve the sensitivity and specificity of detecting PCa in men with intermediate PSA levels [5]. Models such as nomograms and artificial neural networks have been developed to integrate multiple prebiopsy risk factors, to predict initial biopsy outcomes on an individual basis [6-8]. Successful modeling will reduce the number of unnecessary prostate biopsies and assist in optimal disease management, and thus will have significant benefits in terms of costs and patient satisfaction. Patients with high grade PCa (HGPCa) have a significantly worse prognosis compared with those with low grade PCa. Therefore, predicting the presence of HGPCa is important to treat these patients aggressively [9]. Transrectal ultrasound (TRUS) data (i.e., prostate volume and the presence of hypoechoic lesions) have been incorporated into conventional nomograms using serum PSA and digital rectal examination (DRE) to increase the predictive accuracy [10]. However, it remains unclear whether the inclusion of such TRUS-derived information improves the accuracy of HGPCa prediction in men with intermediate PSA levels. In the present study, we developed a nomogram that incorporated TRUS-derived information for predicting HGPCa on initial biopsy in men with serum PSA levels of 4.0 9.9 ng/ ml and tested whether the addition of TRUS-derived information would enhance nomogram accuracy for predicting HGPCa. MATERIALS AND METHODS 1. Study subjects The study included a total of 1,048 eligible men who visited the Asan Medical Center (Seoul, Korea) between December 1997 and March 2008 for prostatic evaluation due to abnormal DRE and/or PSA results. Eligible patients were unselected and were accrued consecutively. All subjects had PSA levels ranging from 4.0 to 9.9 ng/ml. The enrolled subjects had visited hospitals for various reasons including PCa screening and voiding symptoms, and were included in the study regardless of whether those visits were primary or referred. Patients who had active acute prostatitis, were in active urinary retention, had recently undergone prostatic manipulation or were on medications that may affect total PSA levels were excluded. The Institutional Review Board of the Asan Medical Center approved all sampling and data collection procedures, and written, informed consent was obtained from all participants. 2. Baseline data information and primary end point Demographic and laboratory data regarding age, serum total PSA level, percent free PSA, DRE findings and TRUS-derived information (prostate volume and presence of hypoechoic lesions) were obtained by reviewing medical records. The serum total and free PSA values were measured using a PSA- RIACT assay system (CIS Bio International, Gif-Sur-Yvette, France). All patients underwent TRUS-guided laterally directed sextant or systematic 10 12 core biopsies of the prostate. A C9-5ec probe was used with an IU-22 ultrasonography unit (Philips Medical Systems, Bothell, WA, USA). Prostate volume was calculated by TRUS using the following ellipsoid formula: volume = (π/6) length width height. Six to 12 (median, 10) ultrasound-guided needle core biopsies were performed using an 18-gauge spring-loaded biopsy device. The primary end point was the histologic presence of adenocarcinoma of the prostate in the biopsy specimen. All grading was performed by genitourinary pathology specialists at our institute, and was based on the Gleason scoring system. 3. Statistical analysis The primary endpoint was detection of any PCa or HGPCa (Gleason score >7) in the biopsy material. Of 1,048 patients, 838 (80%) were randomly selected for model building, while the remaining 20% (n =210) were reserved for model validation. Factors considered potentially associated with an increased risk of a positive biopsy result were compared between any cancer/hgpca and controls, including age, total PSA level, percent free PSA, DRE findings and TRUS-derived information (prostate volume and TRUS findings). Age, total PSA, percent free PSA and prostate volume were analyzed as continuous variables, and DRE and TRUS findings were analyzed as categorical variables. Univariate and multivariate logistic regression analysis was used to examine whether factors alone or in combination affected the prediction of the presence of any or HGPCa. Ordinal logistic regression was used to model the probability of having any or HGPCa. The logistic regression model was the basis for constructing a nomogram. To construct nomograms predicting any or HGPCa, two outcome levels were defined: no cancer/any cancer; and no cancer + low grade cancer (Gleason score<6)/hgpca (Gleason score >7). The predictive accuracy of a nomogram not using TRUS-derived information (nomogram-1) was directly compared to that of a nomogram using TRUS-derived information (nomogram-2). Nomogram validation comprised two activities. First, using the validation data set, discrimination was quantified using the area under the receiver operating characteristic curve (AUC). Second, calibration accuracy was 70

Vol. 1 / No. 2 / June 2013 determined. All statistical analyses were performed using STATA ver. 10.1 (StataCorp LP., College Station, TX, USA). RESULTS Of the 1,048 men, 216 (20.6%) were found to have adenocarcinoma of the prostate at biopsy, while the remaining 832 patients (79.4%) showed no evidence of cancer. Of the 216 patients with cancer, 97 (44.9%) had a Gleason score > 7 (HG- PCa). Table 1 shows the comparison of factors associated with PCa between any cancer/hgpca and controls. Multivariate analysis showed that all risk factors examined were independently associated with PCa (Table 2). We constructed two nomograms to predict the presence of both any PCa and HGPCa according to biopsy results. Nomogram-1 incorporated age, total PSA, percent free PSA and DRE findings, while nomogram-2 incorporated the same factors plus TRUS-derived information (prostate volume and presence of hypoechoic lesions) (Fig. 1). For nomogram-1, the total AUC for predicting any PCa was 0.72 (95% CI, 0.68 to 0.76), and for predicting HGPCa was 0.78 (95% CI, 0.72 to 0.83). For nomogram-2, the total AUC for predicting any PCa was 0.76 (95% CI, 0.72 to 0.81), and for predicting HGPCa was 0.83 (95% CI, 0.79 to 0.88). Statistical analysis showed that nomogram-2 was better than nomogram-1 at predicting the presence of both any PCa (P=0.001) and HGPCa (P<0.001). The calibration of nomogram-2 using the validation data set is shown in Fig. 2. We investigated which nomogram-2 risk factors were important for predicting PCa by removing one factor at a time and observing the effect on the AUC. We found that age was the most important predictor, with its removal resulting in an incremental decrease of 0.077 for any and 0.067 for HGPCa. The removal of percent free PSA resulted in an incremental AUC decrease of 0.003 and 0.025 for any and HGPCa, respectively. The removal of all TRUS-derived information (prostate volume and presence of hypoechoic lesions) resulted in incremental AUC decreases of 0.052 for predicting any PCa and 0.063 for predicting HGPCa (Table 3). Table 1. Comparison of factors associated with any and high grade prostate cancer Factor Any cancer (n=216) Control (n=832) P-value High grade cancer (n=97) Control (n=951) P-value Median age (yr) 67 62 <0.001 a) 69 63 <0.001 a) Mean (range) 66.8 (41 88) 61 (25 87) 67.6 (45 88) 61.7 (25 87) Median PSA (ng/ml) 6.9 6.2 <0.001 a) 7.6 6.2 <0.001 a) Mean (range) 7.0 (4.0 9.9) 6.5 (4.0 9.9) 7.3 (4.0 9.0) 6.5 (4.0 9.9) Median percent free PSA 15.4 17.4 0.03 a) 13.9 18.1 <0.001 a) Mean (range) 16.9 (4.6 43.2) 18.2 (1.2 51.1) <0.001 b) 15.5 (6.0 43.2) 18.1 (1.2 21.1) <0.001 b) Digital rectal examination, n (%) No nodule 154 (71.3) 793 (88.1) 64 (66.0) 823 (86.5) Nodule 62 (28.7) 99 (11.9) 33 (34.0) 128 (13.5) Median prostate volume 28.0 35.0 <0.001 a) 26.6 34.2 <0.001 a) Mean (range) 31.6 (11.0 92.0) 39.1 (10.0 169.3) 29.7 (13.0 78.3) 38.4 (11.0 169.9) TRUS findings, n (%) <0.001 b) <0.001 b) Hypoechoic lesion (-) 155 (71.8) 687 (82.6) 54 (55.7) 788 (82.9) Hypoechoic lesion (+) 61 (28.2) 145 (17.4) 43 (44.3) 163 (17.1) PSA, prostate-specific antigen; TRUS, transrectal ultrasound. a) Wilcoxon rank-sum test. b) Fisher s exact test. Table 2. Multivariate analysis of factors associated with any and high grade prostate cancer Factor Any cancer High grade cancer RR 95% CI P-value RR 95% CI P-value Age 1.09 1.07 1.12 <0.001 1.10 1.07 1.13 <0.001 PSA 1.15 1.06 1.25 0.001 1.22 1.09 1.36 0.001 Percent free PSA 0.97 0.95 0.99 0.028 0.94 0.90 0.97 0.001 Abnormal DRE findings 2.00 1.31 3.05 0.001 1.89 1.09 3.30 0.024 Prostate volume 0.95 0.94 0.97 <0.001 0.95 0.93 0.97 <0.001 Abnormal TRUS findings 1.51 1.01 2.24 0.043 3.45 2.09 5.71 <0.001 RR, relative risk; CI, confidence interval; PSA, prostate-specific antigen; DRE, digital rectal examination; TRUS, transrectal ultrasound. 71

Jeong, et al. Nomogram of high grade prostate cancer A B Fig. 1. Logistic-based nomogram-2 prediction model for predicting (A) any and (B) high grade prostate cancer on initial biopsy. To obtain the predicted probability of cancer, locate the patient position for each variable on the horizontal axis and determine the assigned point value. The probability value for having cancer corresponds to the summed all points scale for all variables. PSA, prostatespecific antigen; DRE, digital rectal examination; TRUS, transrectal ultrasound. Actual probability of any cancer 1.0 0.8 0.6 0.4 0.2 0.0 Actual probability of high grade cancer 1.0 0.8 0.6 0.4 0.2 0.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 Predicted probability of any cancer A Predicted probability of high grade cancer B Fig. 2. Calibration of the nomogram-2 prediction model when predicting (A) any and (B) high grade cancer. Perfect predictions correspond to the line with a slope of 1 (if the predictive model were perfect, triangles would lie on the 45 dotted line). Table 3. Incremental drops in the AUC for each predictor variables when removed from the nomogram-2 Variable Incremental drop in AUC Any cancer High grade cancer AUC for nomogram-2 (95% CI) 0.76 (0.72 0.81) 0.83 (0.79 0.88) Age 0.077 0.067 PSA 0.003 0.003 Digital Rectal Examination 0.004 0 Percent free PSA 0.003 0.025 Prostate volume 0.049 0.038 Abnormal TRUS findings 0.003 0.025 AUC, area under the receiver operating characteristic curve; CI, confidence interval; PSA, prostate-specific antigen; TRUS: transrectal ultrasound. DISCUSSION The present report describes a nomogram for predicting HG- PCa using TRUS-derived information in men with intermediate PSA levels. This is the first such nomogram reported to our knowledge. This nomogram incorporating TRUS-derived information outperformed a model not incorporating TRUSderived information in predicting any PCa as well as HGPCa. In the present nomogram, although TRUS-derived information was found to be a strong factor in predicting any PCa, it was particularly influential for predicting HGPCa. The incremental drop in AUC when TRUS-derived information was removed from the model was 0.052 for any cancer and 0.063 72

Vol. 1 / No. 2 / June 2013 for HGPCa. Conversely, when TRUS data was incorporated into the nomogram, the increase in accuracy of predicting HGPCa was greater than the increase for predicting any PCa. In addition, the AUC was very high (0.83), even though urinary voiding symptoms score and family history were not considered. The present nomogram developed in an Asian population is important given that the epidemiology and biology of PCa may differ between Western and Asian men. Therefore, it may be incorrect to directly apply nomograms developed in Western countries to Asian populations. For example, although percent free PSA is the most important prebiopsy factor in improving the specificity of PSA testing in men with intermediate PSA ranges in Western countries, it is not the most important factor in Korean men [4,11]. Although several studies have described nomograms that included prostate volume as a predictive variable, to our knowledge only two studies have also included hypoechoic lesion data [7,12]. Garzotto et al. [7] incorporated TRUS data (presence of hypoechoic lesions and PSA density) into a nomogram predicting PCa in men with PSA levels of <10 ng/ml. The AUC for that model was 0.73, in contrast to 0.62 for the prediction based on PSA alone. Kawakami et al. [12] also reported that predictive accuracy for detection of PCa was improved when TRUS-derived information was incorporated into a conventional nomogram using age, PSA and DRE (AUC=0.79 ver. 0.73, P <0.05). In our study, the AUC was 0.76 when using a nomogram incorporating all factors, including TRUSderived information, indicating a similar predictive power for any prostate cancer as that of the nomogram reported by Kawakami et al. [12]. However, they did not examine HGPCa prediction, which most urologists are desirable to detect. Needle biopsy Gleason grade is routinely used to plan PCa patient counseling and management [13]. Many studies reveal an association between an increased biopsy Gleason score and decreased disease-free survival after radical prostatectomy or radiation therapy [14-17]. In this context, predicting HGPCa is very important on initial biopsy in men with increased serum PSA levels to help identify patients at high risk for aggressive PCa. Few studies have directly investigated predicting HGPCa in men undergoing prostate biopsy for elevated PSA. Thompson et al. [18] developed a predictive model of PCa from the placebo group of the Prostate Cancer Prevention Trial who underwent prostate biopsies to assess HGPCa risk. They found that higher serum PSA levels, abnormal DRE results, advanced age at biopsy and African American race were predictive of high grade disease (Gleason score > 7). Nam et al. [19] also constructed a nomogram to predict both the probability of any PCa as well as the probability of high grade cancer using age, ethnicity, family history, urinary voiding symptom score, percent free PSA and DRE findings. However, neither of these two studies incorporated TRUS-derived information into the nomogram for predicting the HGPCa. The association between TRUS-derived information and PCa aggressiveness remains unclear. Because small prostate volume has been reported to be associated with HGPCa after radical prostatectomy for PCa, we hypothesized that incorporation of prostate volume into the nomogram would increase the accuracy of the nomogram predicting HGPCa on initial prostate biopsy [20,21]. In addition, because we found that men with HGPCa were found to have more hypoechoic lesions compared with those with any PCa (44.3% ver. 28.2%), we also tested whether incorporating data regarding the presence of hypoechoic lesions improved the predictive accuracy of the nomogram predicting HGPCa. We found that removal of TRUS findings resulted in a small decrease in the AUC for predicting any cancer, but a larger decrease when predicting HGPCa (0.004 ver. 0.025). Further study is required to understand the apparent link between the presence of hypoechoic lesions and HGPCa. We found that percent free PSA, which is accepted as a standard adjunct PSA test, had minimal predictive value in our study [4]. This finding is consistent with previous study showing that percent free PSA did not have better specificity than total PSA in Korean men aged <65 years with a palpably benign prostate gland and a PSA level of 4.0 10.0 ng/ml [11]. We found that age was the strongest factor in predicting both any cancer and HGPCa. The incremental drop in AUC when age was removed from the model was 0.077 for any cancer and 0.067 for HGPCa. Interestingly, these findings are similar to those of a study examining subjects with normal PSA levels ( <4.0 ng/ml) [19]. In that study, age was a more powerful predictor than percent free PSA in the subset of men with healthy serum PSA levels, which differs from the findings in men with increased PSA (>4 ng/ml). In addition, the detection rate of PCa observed in our study (20.6%) is similar to that reported in men with a healthy PSA level (24.3%), and is much lower than that observed in men with elevated PSA (44.6%) [19]. It is not clear why the present findings are similar to those in Western men with normal PSA levels. Further prospective comparative studies on the detection rate and detailed clinico-pathologic characteristics of detected PCa between Korean men with intermediate PSA ranges and Western populations with normal PSA levels are needed. The present findings indicate that TRUS-derived informa- 73

Jeong, et al. Nomogram of high grade prostate cancer tion should be incorporated into nomograms predicting HGPCa in men with a PSA range of 4.0 9.9 ng/ml. Some clinicians are reluctant to perform TRUS in men with increased PSA levels as they feel it is an invasive procedure. However, considering that curative therapy results in significantly improved life expectancy even in older men with moderately or poorly differentiated localized PCa, physicians should be assessing the advantages and disadvantages of TRUS in men with intermediate PSA levels to assess the individualized risk for HGPCa [22]. Previous study showed that extended biopsy-based nomograms have greater accuracy than 6 10 core biopsy-based nomograms in predicting PCa [23]. However, we did not include the method of prostate biopsy into our nomogram because a previous study showed that biopsy cores made no difference in the detection rate of PCa in Korean men with PSA levels of 4.0 9.9 ng/ml [24]. A limitation of the present study was that model validation was internal. Ideally, the predictive accuracy of a model should be tested using an external cohort. Therefore, greater understanding of the power of the present nomogram using TRUS-derived information awaits external validation in another cohort. In conclusion, we developed a new nomogram using TRUS-derived information for predicting any cancer and HG- PCa on initial biopsy in men with PSA levels 4.0 9.9 ng/ml. The nomogram using TRUS information had a high predictive accuracy for HGPCa. Our results indicate that TRUS-derived information should be included in predictive nomograms for HGPCa which most physicians are desirable to detect on initial biopsy. CONFLICT OF INTEREST No potential conflict of interest relevant to this article was reported. REFERENCES 1. National Cancer Institute. Surveillance Epidemiology and End Results. SEER Stat Fact Sheets: Prostate [Internet]. Bethesda: National Cancer Institute; [cited 2009 Jan 2]. Available from: http://seer.cancer.gov/statfacts/html/prost.html. 2. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 2009;360:1320-8. 3. Welch HG, Schwartz LM, Woloshin S. Prostate-specific antigen levels in the United States: implications of various definitions for abnormal. J Natl Cancer Inst 2005;97:1132-7. 4. Catalona WJ, Partin AW, Slawin KM, Brawer MK, Flanigan RC, Patel A, et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA 1998;279:1542-7. 5. Kamoi K, Babaian RJ. Advances in the application of prostate-specific antigen in the detection of early-stage prostate cancer. Semin Oncol 1999;26:140-9. 6. Djavan B, Remzi M, Zlotta A, Seitz C, Snow P, Marberger M. Novel artificial neural network for early detection of prostate cancer. J Clin Oncol 2002;20:921-9. 7. Garzotto M, Hudson RG, Peters L, Hsieh YC, Barrera E, Mori M, et al. Predictive modeling for the presence of prostate carcinoma using clinical, laboratory, and ultrasound parameters in patients with prostate specific antigen levels < or = 10 ng/ ml. Cancer 2003;98:1417-22. 8. Suzuki H, Komiya A, Kamiya N, Imamoto T, Kawamura K, Miura J, et al. Development of a nomogram to predict probability of positive initial prostate biopsy among Japanese patients. Urology 2006;67:131-6. 9. Albertsen PC, Fryback DG, Storer BE, Kolon TF, Fine J. Longterm survival among men with conservatively treated localized prostate cancer. JAMA 1995;274:626-31. 10. Schroder F, Kattan MW. The comparability of models for predicting the risk of a positive prostate biopsy with prostatespecific antigen alone: a systematic review. Eur Urol 2008; 54:274-90. 11. Jeong IG, Lee KH; Korean Urological Oncologic Society Prostate Cancer Study Group. Percent free prostate specific antigen does not enhance the specificity of total prostate specific antigen for the detection of prostate cancer in Korean men 50 to 65 years old: a prospective multicenter study. J Urol 2008;179:111-6. 12. Kawakami S, Numao N, Okubo Y, Koga F, Yamamoto S, Saito K, et al. Development, validation, and head-to-head comparison of logistic regression-based nomograms and artificial neural network models predicting prostate cancer on initial extended biopsy. Eur Urol 2008;54:601-11. 13. Humphrey PA. Gleason grading and prognostic factors in carcinoma of the prostate. Mod Pathol 2004;17:292-306. 14. Han M, Partin AW, Pound CR, Epstein JI, Walsh PC. Longterm biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15-year Johns Hopkins experience. Urol Clin North Am 2001; 28:555-65. 15. Roach M 3rd, Lu J, Pilepich MV, Asbell SO, Mohiuddin M, Terry R, et al. Long-term survival after radiotherapy alone: ra- 74

Vol. 1 / No. 2 / June 2013 diation therapy oncology group prostate cancer trials. J Urol 1999;161:864-8. 16. Roach M, Lu J, Pilepich MV, Asbell SO, Mohiuddin M, Terry R, et al. Four prognostic groups predict long-term survival from prostate cancer following radiotherapy alone on Radiation Therapy Oncology Group clinical trials. Int J Radiat Oncol Biol Phys 2000;47:609-15. 17. Epstein JI, Partin AW, Sauvageot J, Walsh PC. Prediction of progression following radical prostatectomy. A multivariate analysis of 721 men with long-term follow-up. Am J Surg Pathol 1996;20:286-92. 18. Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS, et al. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer Inst 2006; 98:529-34. 19. Nam RK, Toi A, Klotz LH, Trachtenberg J, Jewett MA, Appu S, et al. Assessing individual risk for prostate cancer. J Clin Oncol 2007;25:3582-8. 20. Freedland SJ, Isaacs WB, Platz EA, Terris MK, Aronson WJ, Amling CL, et al. Prostate size and risk of high-grade, advanced prostate cancer and biochemical progression after radical prostatectomy: a search database study. J Clin Oncol 2005;23:7546-54. 21. Briganti A, Chun FK, Suardi N, Gallina A, Walz J, Graefen M, et al. Prostate volume and adverse prostate cancer features: fact not artifact. Eur J Cancer 2007;43:2669-77. 22. Alibhai SM, Naglie G, Nam R, Trachtenberg J, Krahn MD. Do older men benefit from curative therapy of localized prostate cancer? J Clin Oncol 2003;21:3318-27. 23. Chun FK, Briganti A, Graefen M, Montorsi F, Porter C, Scattoni V, et al. Development and external validation of an extended 10-core biopsy nomogram. Eur Urol 2007;52:436-44. 24. Seo HK, Chung MK, Ryu SB, Lee KH; Korean Urological Oncologic Society Prostate Cancer Study Group. Detection rate of prostate cancer according to prostate-specific antigen and digital rectal examination in Korean men: a nationwide multicenter study. Urology 2007;70:1109-12. 75