Model for measurement of water layer thickness under lipid bilayers by surface plasmon resonance

Similar documents
Global Journal of Engineering Science and Research Management

Chemical Surface Transformation 1

AFM In Liquid: A High Sensitivity Study On Biological Membranes

Coupled Plasmon-Waveguide Resonators: A New Spectroscopic Tool for Probing Proteolipid Film Structure and Properties

The Transport and Organization of Cholesterol in Planar Solid-Supported Lipid Bilayer Depend on the Phospholipid Flip-Flop Rate

Hishida, M.; Seto, H.; Kaewsaiha, P Yoshikawa, K. Citation Colloids and Surfaces (2006),

Methods and Materials

Phosphatidylcholines are a class of glycerophospholipids which along with other phospholipids

8 Influence of permeation modulators on the behaviour of a SC lipid model mixture

ORGANIZATION OF ANTIBIOTIC AMPHOTERICIN B IN MODEL LIPID MEMBRANES. A MINI REVIEW

Supplementary Materials for

Photochemical Applications to the Study of Complexity Phospholipid Bilayer Environments

Polyoxometalate Macroion Induced Phase and Morphology

Protein directed assembly of lipids

Plasmon resonance spectroscopy: probing molecular interactions at surfaces and interfaces

Electronic Supporting Information

SAXS on lipid structures

CHAPTER 4. Tryptophan fluorescence quenching by brominated lipids

Raman spectroscopy methods for detecting and imaging supported lipid bilayers

List of Figure. Figure 1.1. Selective pathways for the metabolism of arachidonic acid

Supplementary Figure S1 Black silicon and dragonfly wing nanotopography.

MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC. Monolayer and Bilayer Interfaces. Supporting Information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Barotropic Phase Transitions of Dilauroylphosphatidylcholine Bilayer Membrane

Surface- Plasmon Optical and Electrochemical Characterization of Biofunctional Surface Architectures

Fluid Mozaic Model of Membranes

ก Chirality Control on Lipid Nanotubule Morphology Investigated by Circular Dichroism 1, 1, 2, 2,,

Phase Transition Behaviours of the Supported DPPC Bilayer. Investigated by Sum Frequency Generation (SFG) and Atomic Force

Binding of aromatic anion amphiphile to phospholipid vesicles: a fluorescence study

A new approach to characterize exosomes and study their interactions with biomolecules. Silvia Picciolini PhD student 30 th May 2016

Supplementary Figure 1. EL spectral characteristics. (a)

Supplementary Information: Liquid-liquid phase coexistence in lipid membranes observed by natural abundance 1 H 13 C solid-state NMR

X-ray diffraction study on interdigitated structure of phosphatidylcholines in glycerol

Supporting Information

Neutron reflectivity in biology and medicine. Jayne Lawrence

Optical and Electrical Characterization of Lipid Bilayers on Various Substrates

Protein Lipid Interactions in Zein Films Investigated by Surface Plasmon Resonance

Definition of Lipid Membrane Structural Parameters from Neutronographic Experiments with the Help of the Strip Function Model

MIT transition, particularly the influences of lipids favoring

Biology. Membranes.

RETINOID-PHOSPHOLIPID INTERACTIONS AS STUDIED BY MAGNETIC RESONANCE. Stephen R. Wassail* and William Stillwellt

Supplementary information for Effects of Stretching Speed on. Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular

Diffusion, Osmosis and Active Transport

Nanoplasmonic and Fluorescence Microscopy Studies of Cell Membrane Mimics. Björn Johansson. Thesis for the Degree of Master of Science

What is superhydrophobicity? How it is defined? What is oleophobicity?

Rate Dependent Rupture of Solid-Supported Phospholipid Bilayers. Sarah S Ng

SUPPLEMENTARY INFORMATION

The Interaction between Lipid Bilayers and Biological Membranes. Chapter 18

Millicient A. Firestone, Amanda C. Wolf, and Sonke Seifert. Chris Bianchi 4/30/12

TUTORIAL IN SMALL ANGLE X-RAY SCATTERING ANALYSIS

Development of lysolipid-based thermosensitive liposomes for delivery of high. molecular weight proteins

Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems

Phospholipid Component Volumes: Determination and Application to Bilayer Structure Calculations

Hybrid Bilayer Membranes in Air and Water: Infrared Spectroscopy and Neutron Reflectivity Studies

LIQUID CRYSTAL DISPERSIONS

Electron-Transfer Properties of Cytochrome c Langmuir-Blodgett Films and Interactions of Cytochrome c with Lipids

triplelayered unit for the plasma cell membrane component; two such Model parameters are assigned to three varieties of peripheral nerve

Pressure Modulation of the Enzymatic Activity of. Phospholipase A2, a Putative Membraneassociated

LIPOSOME STABILITY VERIFICATION BY ATOMIC FORCE MICROSCOPY

Association of Gold Nanoparticles with Bacterial Lipopolysaccharides

Enhanced Sensitivity of Anti-Symmetrically Structured Surface Plasmon Resonance Sensors with Zinc Oxide Intermediate Layers

Supporting Information

Chapter 12: Membranes. Voet & Voet: Pages

0.5 nm nm acyl tail region (hydrophobic) 1.5 nm. Hydrophobic repulsion organizes amphiphilic molecules: These scales are 5 10xk B T:

THE continuous growth in data storage is met by the

Structure-Transport Relationship in Organized Soft Matter Systems by Diffusion NMR. Sergey Vasenkov

Lecture 15. Membrane Proteins I

Magneto-orientation of lecithin crystals (lipid single crystal/diamagnetic susceptibility/polar head)

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect

Selective removal of octadecylphosphonic acid (OPA) molecules from their self-assembled monolayers (SAMs) formed on a Si substrate

Shape Transformations of Lipid Bilayers Following Rapid Cholesterol

Solution range. Superior accuracy in surface interaction analysis

CS612 - Algorithms in Bioinformatics

Single nanoparticle analytics: from viruses via exosomes to drug delivery carriers

Second harmonic spectroscopy: detection and orientation of molecules at a biomembrane interface

Reduction of In Vivo Oxidation induced by Lipid Absorption by Phospholipid Polymer Grafting on Orthopedic Bearings

PRE-LAB QUESTIONS: 1. What molecule makes up the bilayer of a cell s plasma membrane?

Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants

Chem Lecture 8 Lipids and Cell Membranes

Supporting information: Engineering the Edges of MoS 2 (WS 2 ) Crystals for Direct Exfoliation into Monolayers in Polar Micromolecular Solvents

Biology. Slide 1 / 74. Slide 2 / 74. Slide 3 / 74. Membranes. Vocabulary

Chapter 7 Membrane Structure And Function

CHARACTERIZATION OF THE ADHESION OF CALCIUM OXALATE MONOHYDRATE CRYSTALS ON PHOSPHOLIPID MEMBRANES BY ELLIPSOMETRY

Micropatterned Composite Membranes of Polymerized and Fluid Lipid Bilayers

Cellular membranes are fluid mosaics of lipids and proteins.

Effects of DNA Adsorption on the Phase Cycling of a Supported Mixed Phospholipid Bilayer

Antibiotic assisted molecular ion transport across a membrane in real time

The Cell Membrane (Ch. 7)

GAFCHROMIC DOSIMETRY MEDIA TYPE MD-V3

Singlet Oxygen Production Photosensitized by Fluorescein in Reversed Micellar Solutions. Norio Miyoshi and Giiti Tomita*

Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten Solution

7-2 : Plasma Membrane and Cell Structures

BIOMOLECULES IMMOBILIZATION ON ZIRCONIUM PHOSPHONATE SURFACES STUDIED BY SURFACE PLASMON RESONANCE ENHANCED ELLIPSOMETRY

Supplement 2 - Quantifying sample mosaicity

WEDNESDAY 10/18/17. Why is the cell/plasma membrane important? What is the cell/plasma membrane made of? Label the cell membrane on your notes.

Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling

On Different Wavelengths: The Spectrum of Retinal Imaging. On Different Wavelengths: The Spectrum of Retinal Imaging. Wavelength Specific Imaging

Phospholipid-assisted formation and dispersion of aqueous nano-c 60

Metal-enhanced phosphorescence (MEP)

1.4 Page 1 Cell Membranes S. Preston 1

Transcription:

Model for measurement of water layer thickness under lipid bilayers by surface plasmon resonance Koyo Watanabe Unit of Measurement Technology, CEMIS-OULU, University of Oulu, PO Box 51, 87101 Kajaani, Finland kouyouwatanabe@gmail.com Abstract: A multilayered-substrate model is proposed for surface plasmon resonance (SPR)-based measurement of the thickness of a water layer sandwiched between a lipid bilayer and an underlying support. To calculate sensitivity, a 473 nm-wavelength excitation source and a silver layer are used for the SPR sensor. It is theoretically shown that the multilayered substrate design achieves sufficient sensitivity for such measurements and that sensitivity is enhanced with a SiO 2 layer of appropriate thickness and a buffer solution of high refractive index. 2011 Optical Society of America OCIS codes: (240.6680) Surface plasmons; (310.4165) Multilayer design; (120.6650) Surface measurements, figure. References and links 1. K. Morigaki, T. Baumgart, A. Offenhäusser, and W. Knoll, Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid, Angew. Chem. Int. Ed. Engl. 40(1), 172 174 (2001). 2. M. Tanaka and E. Sackmann, Polymer-supported membranes as models of the cell surface, Nature 437(7059), 656 663 (2005). 3. K. Watanabe, M. Ryosuke, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy, Appl. Opt. 49(5), 887 891 (2010). 4. W. C. Lin, C. D. Blanchette, T. V. Ratto, and M. L. Longo, Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study, Biophys. J. 90(1), 228 237 (2006). 5. E. Sackmann, Supported membranes: scientific and practical applications, Science 271(5245), 43 48 (1996). 6. B. W. Koenig, H. H. Strey, and K. Gawrisch, Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation, Biophys. J. 73(4), 1954 1966 (1997). 7. B. Rothenhäusler, C. Duschl, and W. Knoll, Plasmon surface polariton fields for the characterization of thin films, Thin Solid Films 159(1-2), 323 330 (1988). 8. W. Hickel and W. Knoll, Surface plasmon microscopy of lipid layers, Thin Solid Films 187(2), 349 356 (1990). 9. E. Kretschmann and H. Raether, Radiative decay of nonradiative surface plasmons excited by light, Z. Naturforsch. Tiel A 23A, 2135 2136 (1968). 10. C. Nylander, B. Liedberg, and T. Lind, Gas detection by means of surface plasmon resonance, Sens. Actuators 3, 79 88 (1982). 11. B. Liedberg, C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing, Sens. Actuators 4, 299 304 (1983). 12. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films, Langmuir 14(19), 5636 5648 (1998). 13. J. S. Shumaker-Parry and C. T. Campbell, Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy, Anal. Chem. 76(4), 907 917 (2004). 14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988). 15. K. Tawa and K. Morigaki, Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy, Biophys. J. 89(4), 2750 2758 (2005). 16. J. F. Nagle and S. Tristram-Nagle, Structure of lipid bilayers, Biochim. Biophys. Acta 1469(3), 159 195 (2000). 17. C. Huang and T. E. Thompson, Properties of lipid bilayer membranes separating two aqueous phases: determination of membrane thickness, J. Mol. Biol. 13(1), 183 193 (1965).</jrn> (C) 2011 OSA 1 May 2011 / Vol. 2, No. 5 / BIOMEDICAL OPTICS EXPRESS 1115

1. Introduction Lipids are amphiphilic molecules: they consist of both hydrophobic and hydrophilic sections. For this reason, they have the unique ability to self-assemble into bilayers on the surface of polar solvents such that the hydrophilic end is exposed to the solvent and substrate and the hydrophobic end is hidden. The cell membrane is, most famously, a lipid bilayer that plays an important role as a selective barrier for concentrating nutrients and excreting waste, as well as, in supporting receptor proteins that process biological signals from the environment. The membrane is thus a key chemical system in maintaining homeostasis. A common approach to the study of the cell membrane is to use the bilayer form as a model to explore membrane functionality and behavior on a substrate. Such substratesupported planar lipid bilayers find use in a wide range of biotechnology applications and scientific investigations [1 3]. Elucidation of the properties and behavior of a lipid bilayer on a substrate, such as the thickness, distribution, and fluidity of the lipid molecules, constitutes a crucial part of basic biophysical research because the functionality of the bilayer determines protein behavior [4]. In fluidity measurements, in particular, the thickness of the water layer between the substrate and bilayer is an especially important parameter because it indicates the fluid retention capacity of native cellular membranes [5]. In previous studies, the thickness of the water layer localized at the hydrocarbon region was estimated using the combined techniques of neutron and X-ray scattering and NMR measurement [6]. Although this approach provided the estimated water layer thickness and structural information of lipids, it is unfavorable for the further evaluation of lipid fluidity on the substrate because the measurement time is too long. A successful method to observe the water layer thickness on the substrate requires the following: (a) sufficient sensitivity for film thicknesses on the order of a few nanometers; (b) a noncontact measurement technique, given that the water layer is sandwiched between the bilayer and substrate; (c) the capability for use in an aqueous environment with real-time measurement. Surface plasmon resonance (SPR) sensors satisfy all of these requirements and have even been used to detect lipid layer properties such as distribution and thickness [7,8]. This makes SPR sensors good candidates for application to practical systems to measure the water layer thickness. Here, we calculate the measurement sensitivity achievable with a multilayered-substrate model to identify the optimal model parameters for SPR-based measurement of the thickness of a water layer sandwiched between a lipid bilayer and an underlying support. We also discuss methods to control the appropriate SiO 2 thickness and the refractive index of the buffer solution to maximize measurement sensitivity. 2. SPR sensor 2.1. Configuration and measurement principle SPR sensors are typically based on the Kretschmann configuration [9] and consist of a glass prism, metallic thin film, and dielectric medium, as shown in Fig. 1(a). In this configuration, surface plasmons are excited when the metal surface is illuminated at an excitation angle θ sp with p-polarized light that has been passed through the prism. Here, θ sp is the angle of minimum reflection and maximum absorption of incident light because the energy of incident light is used to excite surface plasmons, as shown in Fig. 1(b). In the present calculations, we assume excitation at 632.8 nm, a refractive index of 1.72314 for glass, a 44-nm-thick gold layer with a complex refractive index of 0.300 + 3.089i, and a refractive index of 1.3300 for the dielectric medium. From curve A in Fig. 1(b), the value of θ sp is 58.8. (C) 2011 OSA 1 May 2011 / Vol. 2, No. 5 / BIOMEDICAL OPTICS EXPRESS 1116

Fig. 1. (a) Configuration for excitation of surface plasmons. (b) Reflected light intensity as a function of incident angle θ. Curves A and B represent plots for dielectric media with refractive indices of 1.3300 and 1.3356, respectively. θ sp is strongly dependent on the refractive index at the metallic surface. Therefore, even small changes in the refractive index can be detected as shifts (δθ sp ) in the excitation angle. These shifts are large enough to detect the adsorption of gases and proteins and to characterize thin film samples [10,11]. As shown by curve B in Fig. 1(b), an increase in the refractive index of the dielectric medium by just 5.6 10 3, consistent with the refractive index of a lipid bilayer [3], produces a clear shift δθ sp. The relationship between θ sp and the effective refractive index n eff [12,13] can be approximately expressed by the following equation: 2 2 1/2 1 nmn eff sin sp Real, 2 2 ng nm n eff where n g and n m denote the refractive index of glass and the complex refractive index of the metal, respectively [14]. The effective refractive index can be described as a weighted average of n a plus n b where n a and n b are the refractive indices within and above a thinly adsorbed film [12]. The weighting factor, which is the sensitivity at distance d from the metallic surface, decreases exponentially with increasing d. 3. Methodology The measurement model for lipid bilayers deposited on a substrate can be assumed to consist of six layers: glass substrate, Ag film, SiO 2, the target water layer, lipid bilayer, and buffer solution (Fig. 2). The model is based on the experimental configuration where the lipid bilayers are deposited on the substrate [15]. The SiO 2 layer is necessary to preserve the hydrophilic nature of the lipids. In this multilayered model, all layers are extremely thin relative to measurement depth, and the obtained n eff value is an average across the four layers from the Ag surface. The thickness of the water layer surrounded by the lipid bilayer is on the order of a few nanometers [16]. Therefore, any thickness changes reflected in n eff would be too small to detect. Thus, it is necessary to design a substrate to achieve the greatest possible sensitivity. Here, the calculation procedure to determine the sensitivity for measuring the water layer thickness is shown. The procedure can be divided into four steps: (1) calculation of the reflected light intensity as a function of the incident angle for the model shown in Fig. 2 without the water layer; (2) estimation of n eff from the excitation angle, using Eq. (1); (3) incorporation of a 0.2-nm-thick water layer into the model; and (4) repetition of steps (1) (3) until the water layer thickness is 2.0 nm. The detected effective refractive index is normalized by the refractive index of water (1.33821). (1) (C) 2011 OSA 1 May 2011 / Vol. 2, No. 5 / BIOMEDICAL OPTICS EXPRESS 1117

Fig. 2. Calculation model to determine the sensitivity of measurement of water layer thickness. Moreover, in order to investigate the influence of the SiO 2 layer thickness and the refractive index of the buffer solution, the procedure is extended to include changes in the SiO 2 thickness and refractive index as well. 4. Results and discussion 4.1. Sensitivity for water layer thickness by controlling SiO 2 thickness Using the method described above, the variation in n eff /nm as a function of SiO 2 thickness is calculated. In the calculation, changes in the SiO 2 thickness were measured in 1 nm steps from 0 to 80 nm. The excitation wavelength is assumed to be 473 nm, and the refractive indices of Ag, SiO 2, and water are set to 0.13464 + 2.68475i, 1.55062, and 1.33821, respectively. The thickness of the Ag film is assumed to be 42 nm. The lipid bilayer is assumed to be made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and have a thickness of 4.78 nm [16] and a refractive index of 1.49 [17]. As shown in Fig. 3, the sensitivity is maximal at 14 nm, and n eff becomes asymptotic at 0 as the SiO 2 thickness increases. The result shows that with an appropriate SiO 2 thickness, the sensitivity is 13% higher than without a SiO 2 layer. Fig. 3. Plot of n eff /nm as a function of SiO 2 thickness. To better understand the sensitivity enhancement mechanism in relation to the refractive index differences between the target layer and other layers, the three-layer model shown in inset of Fig. 4 is assumed. The sensitivity, n eff /nm, for detecting the second layer is calculated by controlling the refractive indices of the first and third layers. These layers are assumed to (C) 2011 OSA 1 May 2011 / Vol. 2, No. 5 / BIOMEDICAL OPTICS EXPRESS 1118

have the same refractive index of n 1, whereas the refractive index of the second layer is assumed to be 1.338. The thickness of first layer is assumed to be 10 or 20 nm. Figure 4 shows the calculated plots. The result shows that the sensitivity increases as the difference in the refractive indices, n 1-1.338, increases. In addition, an increase in the thickness of first layer leads to lower sensitivity for detecting second layer because of the increased distance from the metal surface. From these results, the plots in Fig. 3 can be understood to show that increasing the thickness of the SiO 2 layer increases the difference between the effective refractive index of the target water layer and the sum of the effective refractive indices of the SiO 2 layer, lipid bilayer, and buffer solution, whereas a large increase in SiO 2 thickness increases the distance from the metal surface and leads to lower sensitivity. Fig. 4. Plots of n eff /nm as a function of n 1. 4.2. Sensitivity for water layer thickness by controlling refractive index of buffer solution We plotted n eff /nm as a function of SiO 2 thickness for buffer solutions of different refractive indices. The SiO 2 thickness is increased in 1-nm steps from 0 to 50 nm, and the refractive index of the buffer solution in steps of 1.0 10 3 from 1.334210 to 1.343210. As shown in Fig. 5, the optimal SiO 2 thickness decreases with an increase in the refractive index of the Fig. 5. Calculated plots of n eff /nm as a function of SiO 2 thickness for buffer solutions of various refractive indices increased in steps of 1.0 10 3. (C) 2011 OSA 1 May 2011 / Vol. 2, No. 5 / BIOMEDICAL OPTICS EXPRESS 1119

buffer solution. In addition, the sensitivity to detect water layer thickness increases with the refractive index of the buffer solution. Consequently, it is better to have a buffer solution of high refractive index and the thinnest possible SiO 2 layer. It should be noted that the lipid bilayers on the substrate are difficult to control, even under the same protocol and conditions. In order to achieve more reliable sensitivity, statistical analyses of lipid bilayers would be required to determine thicknesses and refractive indices with standard deviations. Considering this variability would allow us to better evaluate the sensitivity. 5. Conclusion It is theoretically revealed that the sensitivity for the detection of water layer thickness is enhanced by increasing the refractive index of the buffer solution and selecting an appropriate thickness for the SiO 2 layer. Acknowledgments This work was supported in part by the Finnish Funding Agency for Technology, the Fuji Foundation for Protein Research, the Scandinavia Japan Sasakawa Foundation, and the Department of Education and Culture of the former State Provincial Office of Oulu. (C) 2011 OSA 1 May 2011 / Vol. 2, No. 5 / BIOMEDICAL OPTICS EXPRESS 1120