Case Report Floating Knee Injury Associated with Patellar Tendon Rupture: A Case Report and Review of Literature

Similar documents
Case Report Reverse Segond Fracture Associated with Anteromedial Tibial Rim and Tibial Attachment of Anterior Cruciate Ligament Avulsion Fractures

Case Report Intra-Articular Entrapment of the Medial Epicondyle following a Traumatic Fracture Dislocation of the Elbow in an Adult

Case Report An Undescribed Monteggia Type 3 Equivalent Lesion: Lateral Dislocation of Radial Head with Both-Bone Forearm Fracture

Case Report Detached Anterior Horn of the Medial Meniscus Mimicking a Parameniscal Cyst

Case Report A Rare Case of Traumatic Bilateral Fibular Head Fractures

Case Report Bilateral Distal Femoral Nailing in a Rare Symmetrical Periprosthetic Knee Fracture

Case Report Pediatric Transepiphyseal Seperation and Dislocation of the Femoral Head

Case Report A Case Report of Isolated Cuboid Nutcracker Fracture

ACL Athletic Career. ACL Rupture - Warning Features Intensive pain Immediate swelling Locking Feel a Pop Dead leg Cannot continue to play

General Concepts. Growth Around the Knee. Topics. Evaluation

Case Report Successful Closed Reduction of a Lateral Elbow Dislocation

Anterior Cruciate Ligament Injuries

Case Report A Case of Nonunion Avulsion Fracture of the Anterior Tibial Eminence

Surgical Care at the District Hospital. EMERGENCY & ESSENTIAL SURGICAL CARE

Case Report Medial Radial Head Dislocation Associated with a Proximal Olecranon Fracture: A Bado Type V?

Original Report. The Reverse Segond Fracture: Association with a Tear of the Posterior Cruciate Ligament and Medial Meniscus

Overview Ligament Injuries. Anatomy. Epidemiology Very commonly injured joint. ACL Injury 20/06/2016. Meniscus Tears. Patellofemoral Problems

Case Report Posterolateral Corner Injury Associated with a Schatzker Type 2 Tibial Plateau Fracture

Patellofemoral Pathology

7/20/14. Patella Instability. Alignment. PF contact areas. Tissue Restraints. Pain. Acute Blunt force trauma Disorders of the Patellafemoral Joint

KNEE EXAMINATION. Tips & Tricks from an Emergency Physician Perspective. EM Physicians Less Exposed to MSK Medicine

Case Report Double-Layered Lateral Meniscus Accompanied by Meniscocapsular Separation

Rehabilitation program in type I floating knee: A case report

Original Article Clinics in Orthopedic Surgery 2011;3: doi: /cios Alaa M Hegazy, MD

OPERATIVE TREATMENT OF THE INTERCONDYLAR FRACTURE OF THE FEMUR

ASSESSMENT AND MANAGEMENT OF THE KNEE AND LOWER LIMB.

Rehabilitation Guidelines for Medial Patellofemoral Ligament Repair and Reconstruction

Research Article Relationship between Pain and Medial Meniscal Extrusion in Knee Osteoarthritis

Case Report Acute Posterior Shoulder Dislocation with Reverse Hill-Sachs Lesion of the Epiphyseal Humeral Head

Traumatic Floating Knee: A Review of a Multi-Centric Series of 172 Cases in Adult

Malunion in floating knee injuries An analysis in 30 patients presenting to a tertiary care facility and are surgically treated

Recognizing common injuries to the lower extremity

The Lower Limb II. Anatomy RHS 241 Lecture 3 Dr. Einas Al-Eisa

Eisuke Nomura, Hisatada Hiraoka, and Hiroya Sakai. 1. Introduction. 2. Case Report

Case Report Double-Layered Lateral Meniscus in an 8-Year-Old Child: Report of a Rare Case

Case Report Total Knee Arthroplasty in a Patient with Bilateral Congenital Dislocation of the Patella Treated with a Different Method in Each Knee

Case Report Arthroscopic Bony Bankart Repair Using Double-Threaded Headless Screw: A Case Report

Anterior Cruciate Ligament (ACL) Injuries

Imaging the Athlete s Knee. Peter Lowry, MD Musculoskeletal Radiology University of Colorado

Knee Contusions and Stress Injuries. Laura W. Bancroft, M.D.

Treatment of Acute Traumatic Knee Dislocations

Periarticular knee osteotomy

Fractures of the tibia shaft treated with locked intramedullary nail Retrospective clinical and radiographic assesment

Clinical Study Rate of Improvement following Volar Plate Open Reduction and Internal Fixation of Distal Radius Fractures

Anterior Cruciate Ligament (ACL)

Case. 5 year old with 2 weeks leg pain and now refusing to walk + Fevers, lower leg swelling, warmth Denies and history of trauma or wounds

Surgery-Ortho. Fractures of the tibia and fibula. Management. Treatment of low energy fractures. Fifth stage. Lec-6 د.

Case Report Unusual Bilateral Rim Fracture in Femoroacetabular Impingement

Common Knee Injuries

Physical Examination of the Knee

Physical Examination of the Knee

Treatment of Acute Traumatic Knee Dislocations

Treatment of Acute Traumatic Knee Dislocations

STATE OF THE ART OF ACL SURGERY (Advancements that have had an impact)

Copyright 2012 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin

Case Report Bone Resection for Isolated Ulnar Head Fracture

SOFT TISSUE INJURIES OF THE KNEE: Primary Care and Orthopaedic Management

Case Report Patellofemoral Joint Replacement and Nickel Allergy: An Unusual Presentation

Case Report Arthroscopic Microfracture Technique for Cartilage Damage to the Lateral Condyle of the Tibia

BAD RESULTS OF CONSERVATIVE TREATMENT OF ACL TEARS IN CHILDREN. Guy BELLIER PARIS France

Patient Information & Exercise Folder

Jacques Menetrey, MD, PD. Uniklinik Balgrist. Unité d Orthopédie et Traumatologie du Sport (UOTS)

Anterior Cruciate Ligament (ACL) Injuries

ACL AND PCL INJURIES OF THE KNEE JOINT

Department of Orthopaedics

RN(EC) ENC(C) GNC(C) MN ACNP *** MECHANISM OF INJURY.. MOST IMPORTANT *** - Useful in determining mechanism of injury / overuse

Patellofemoral Instability

OMICS - 3rd Int. Conference & 2

Baris Beytullah Koc, 1 Martijn Schotanus, 1 Bob Jong, 2 and Pieter Tilman Introduction. 2. Case Presentation

Knee Dislocation: Spectrum of Injury, Evolution of Treatment & Modern Outcomes

Case Report Multiple Giant Cell Tumors of Tendon Sheath Found within a Single Digit of a 9-Year-Old

Case Report Combined Effect of a Locking Plate and Teriparatide for Incomplete Atypical Femoral Fracture: Two Case Reports of Curved Femurs

Femoral Shaft Fracture

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION

Muscle Testing of Knee Extensors. Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department

ACL Injury: Does It Require Surgery?-OrthoInfo - AAOS

Lateral ligament injuries of the knee

No Disclosures. Topics. Pediatric ACL Tears

Differential Diagnosis

Doron Sher. 160 Belmore Rd, Randwick Burwood Rd, Concord. MBBS, MBiomedE, FRACS FAOrthA

A Novel Technique for Fixation of a Medial Femoral Condyle Fracture using a Calcaneal Plate

Partial Knee Replacement

HANDS ON: Knee Evaluation J. Scott Delaney MD, FRCPC, FACEP, CSPQ

Figure 3 Figure 4 Figure 5

Unicompartmental Knee Resurfacing

EM Cases Course 2017 Knee Emergencies Module

Top 10 Ortho Urgent Care Injuries. J.C. Clark, M.D. ORA Orthopedics

Rehabilitation Guidelines for Patellar Tendon and Quadriceps Tendon Repair

Retinacular tear knee

40 th Annual Symposium on Sports Medicine. Knee Injuries In The Pediatric Athlete. Disclosure

Knee injuries are probably one of the most common orthopaedic problems encountered in general practice, particularly among recreational athletes.

What to Expect from your Anterior Cruciate Ligament (ACL) Reconstruction Surgery A Guide for Patients

Evaluation of the Hip and Knee

42 nd Annual Symposium on Sports Medicine. Knee Injuries In The Pediatric Athlete. Disclosure

Orthopaedic Surgeon. ACL Surgery Informed Consent MARTHA S VINEYARD

Case Study: Christopher

ANTERIOR CRUCIATE LIGAMENT INJURY

Ligamentous and Meniscal Injuries: Diagnosis and Management

W. Dilworth Cannon, M.D. Professor of Clinical Orthopaedic Surgery University of California San Francisco

CASE ONE CASE ONE. RADIAL HEAD FRACTURE Mason Classification. RADIAL HEAD FRACTURE Mechanism of Injury. RADIAL HEAD FRACTURE Imaging

Transcription:

Case Reports in Orthopedics Volume 2012, Article ID 913230, 5 pages doi:10.1155/2012/913230 Case Report Floating Knee Injury Associated with Patellar Tendon Rupture: A Case Report and Review of Literature Singaravadivelu Vaidyanathan, 1 Jagannath Panchanathan Ganesan, 2 and Mugundhan Moongilpatti Sengodan 3 1 Stanley Medical College, Chennai, Tamilnadu, India 2 ESI Hospital, KK Nagar, Chennai, Tamilnadu, India 3 Department of Orthopaedics, Coimbatore Medical College, Tamilnadu, Coimbatore 641036, India Correspondence should be addressed to Mugundhan Moongilpatti Sengodan, mugundhan@yahoo.com Received 18 November 2011; Accepted 28 December 2011 Academic Editor: K. Erler Copyright 2012 Singaravadivelu Vaidyanathan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Floating knee injuries are frequently associated with other concomitant injuries to the ipsilateral limb or other parts of body of which injury to the ipsilateral knee ligaments carries significance for various reasons. A middle-aged man sustained a floating knee injury following RTA. DCS fixation by bridge plating technique for the distal femur and lateral buttress plating by MIPO technique for proximal tibia were planned and executed under spinal anesthesia with image intensifier. In addition, there were patellar tendon rupture along with avulsion of VMO from the medial border of patella and torn MPFL, which we have missed initially. To the best of our knowledge no similar case has been reported in English literature so far. We have reviewed the literature and proposed a different interpretation of Blake and McBride classification. 1. Introduction Ipsilateral fracture shafts of femur and tibia cause a floating knee injury. They are almost always due to high-energy trauma. Hence, they are frequently associated with other concomitant injuries to the ipsilateral limb or other parts of body of which injury to the ipsilateral knee ligaments carries significance for various reasons. We are reporting a case of floating knee injury associated with rupture of patellar tendon, vastus medialis obliques (VMOs), and medial patellofemoral ligament (MPFL). To the best of our knowledge, no similar case has been reported in English literature so far. 2. Case Report A male patient aged 35 years presented to our emergency OPD following RTA, who while riding a two-wheeler was hit by another. The front bumper hit his knee. On examination, there were no external injury. There were swelling, tenderness, and deformity of distal thigh, knee, and proximal leg on the right side. There was no distal neurovascular deficit. X-ray of the right knee revealed fracture distal femur OTA A3 and fracture proximal tibia OTA A2 (Figure 1). According to Blake and McBryde classification, it can be classified as type I floating knee injury. DCS fixation by bridge plating technique for the distal femur and lateral buttress plating by MIPO technique for proximal tibia were planned and executed under spinal anesthesia with image intensifier (Figure 2). While closing the surgical wounds, the knee was kept in flexed position, and the second author noticed the absence of patellar tendon prominence. The incision was extended to expose the patella and its tendon. We were surprised to find the torn patellar tendon (Figure 3) along with avulsion of VMO from the medial border of patella and torn MPFL (Figure 4). All the three injured structures were repaired. The patellar tendon was protected by a figure of 8 tension band through patella and tibial tuberosity (Figure 5). Limb was supported with a long knee brace, and a nonweight-bearing mobilization was started from day 2. Weight

2 Case Reports in Orthopedics Figure 1: Preoperative X-ray of the right knee AP and lateral views showing fracture distal femur and proximal tibia. Figure 3: Intraoperative picture showing torn ends of patellar tendon. Figure 2: Fracture distal femur being fixed with DCS by MIPO. Figure 4: Patella tilted 90 laterally (white arrow points to articular surface) to show the bare medial border (green arrow) from where VMO and MPFL were torn. bearing was allowed after radiological union of both the fractures after 3 months. 90 degrees of knee flexion was achieved by 6 months and the figure of 8 TBW was removed at that time (Figure 6). At 2-year followup, the patient has got a stable knee with the ROM of 0 to 100 degrees without any extensor lag or lateral patellar subluxation (Figures 7, 8, 9,and10). 3. Discussion Floating knee is a term coined by Blake and McBryde to describe ipsilateral fractures of femur and tibia [1]. Floating knee injury is often due to high-velocity trauma. Hence, it is usually associated with multiple injuries to the same limb or to other parts of the body. Rethnam et al. emphasized a thorough secondary survey to assess the associated injuries. He described floating knee injury as more than what meets the eye. The grossly deformed limb that one encounters in the floating knee can act as a major distracting factor, and it is not unusual to miss other significant injuries [2, 3]. In our case, we would have missed the associated injuries to the patellar tendon, VMO, and MPFL if we had sutured the surgical wound with the knee in extension. Of the associated injuries to floating knee injuries, involvement of ipsilateral knee ligaments is particularly significant because they are most often the missed ones and contributed to poorer outcome in most of the studies [2 7]. Szalay et al. observed demonstrable knee ligament laxity in 18 out of 34 cases (53%) of floating knee injury at followup, and 6 (18%) of them complained of instability. Injury to ACL was the most common finding. And they advocated careful assessment of the knee in all cases of fracture femur and especially when tibia is also fractured [4]. In a retrospective study by van Raay et al., 15 out of 47 (31%) patients with ipsilateral fractures of femoral and tibial diaphyses proved to have instability of the knee at the time of followup of which only 3 cases had been diagnosed to have the knee ligament injury at the time of initial treatment [5]. Schiedts et al. encountered late diagnosis of ipsilateral knee ligamentous injury: anterior and posterior in three and lateral isolated in one. All the four patients out of 18 in their series had poor functional outcome. They concluded that knee instability is the major cause of poor results [6]. Kao et al., in their retrospective study, noticed 44 cases of knee ligament injury out of 419 cases (10.5%) of floating knee injury, 23 PCL, and 18 ACL [8].

Case Reports in Orthopedics 3 Figure 5: Patellar tendon repaired and protected with a figure of 8 wiring. Figure 7: X-ray right femur AP and lateral views at 2-year followup showing fracture union. Table 1: Blake and McBryde classification for floating knee injuries. Type 1 true floating knee Type 2 variant floating knee Type2A Type 2B The knee joint is isolated completely and not involved, with either shaft fractured Involves one or more joints with either shaft fractured Thekneejointaloneisinvolved Involves the hip or ankle joints Figure 6: 3-month followup X-ray of the right knee AP showing fracture union. In a series of 29 patients reported by Rethnam et al., they encountered knee ligament injury in 4 patients (2 ACL, 1 PCL, and 1 medial meniscus). All the ligamentous injuries were detected and repaired at the time of fracture fixation itself [2, 3]. Dickob and Mommsen observed ipsilateral knee ligamentous damage in 37.2% of 43 cases with extra-articular fractures near the knee. They opined that restoration of knee joint motion is more important than joint stability. And therefore, ligamentous repair has to be performed secondarily if necessary [7]. In our case, there was a midsubstance tear of the patellar tendon. In addition, there was avulsion of VMO from the medial border of the patella and midsubstance tear of MPFL. We could not find a case of floating knee injury in association with rupture of patellar tendon, VMO, and MPFL being reported in English literature even after extensive search. The classification system by Blake and McBryde [1] was found to be the most comprehensive and widely used (Table 1). Our case is classified as type I radiologically. But we would like to propose a different interpretation of the classification. Karlstrom and Olerud score was used for assessing the outcome in almost all the studies [9]. In our case, the functional outcome was good according to K Oscore. There has been consistent correlation between poor clinical outcome and the associated ligament injury in a case

4 Case Reports in Orthopedics Figure 8: X-ray right leg AP and lateral views at 2-year followup showing fracture union. Figure 9: Clinical picture at 2-year followup after figure of 8 wire removal showing active SLR. of floating knee injury more than any other individual variability in almost all the studies [2, 3, 10, 11]. Yokoyama et al. stated the involvement of knee joint and soft tissue injury in the tibia as the major risk factors responsible for the poor outcome in floating knee injuries in a multivariate analysis in 68 cases [10]. Hung et al. also found that the intra-articular knee involvement is the most important factor contributing to poorer outcome [11]. Rethnam et al. had poor functional outcome in 3 patients out of 4, those who had knee ligament injury even after repair [2, 3]. Schiedts et al. reported poor outcome in all the 4 cases with knee ligament injury [6]. As per the description, Blake and McBryde classification type II A denotes fracture involving the knee joint. But even if the fracture is juxta-articular and not involving the knee joint, if there is an associated knee ligamentous injury, it significantly changes the outcome. Hence, we feel the radiological classification system should be revised intraoperatively, and if there is a knee ligament injury, it can be classified under type II A. 4. Conclusion We have presented this case for its rarity and emphasizing the importance of thorough secondary survey for knee ligamentous injury which is quite often missed. We have also reviewed the literature to bring out the different perspective of the Blake and McBryde classification system when there is an associated knee ligament injury in a case of floating knee injury. Disclosure Figure 10: Clinical picture at 2-years followup after figure of 8 wire removal showing knee flexion up to 100. The institution to which this work is attributed is Noble Hospital, Chennai.

Case Reports in Orthopedics 5 References [1] R. Blake and A. McBryde Jr., The floating knee: ipsilateral fractures of the tibia and femur, Southern Medical Journal, vol. 68, no. 1, pp. 13 16, 1975. [2] U. Rethnam, R. S. Yesupalan, and R. Nair, Impact of associated injuries in the floating knee: a retrospective study, BMC Musculoskeletal Disorders, vol. 10, article 7, 2009. [3] U. Rethnam, R. S. Yesupalan, and R. Nair, The floating knee: epidemiology, prognostic indicators & outcome following surgical management, Trauma Management & Outcomes, vol. 1, article 2, 2007. [4] M. J. Szalay, O. R. Hosking, and P. Annear, Injury of knee ligament associated with ipsilateral femoral shaft fractures and with ipsilateral femoral and tibial shaft fractures, Injury, vol. 21, no. 6, pp. 398 400, 1990. [5] J. J. van Raay, E. L. Raaymakers, and H. W. Dupree, Knee ligament injuries combined with ipsilateral tibial and femoral diaphyseal fractures: the floating knee, Archives of Orthopaedic and Trauma Surgery, vol. 110, no. 2, pp. 75 77, 1991. [6] D. Schiedts, M. Mukisi, D. Bouger, and H. Bastaraud, Ipsilateral femoral and tibial fractures, Revue de Chirurgie Orthopedique et Reparatrice de l Appareil Moteur, vol. 82, no. 6, pp. 535 540, 1996. [7] M. Dickob and U. Mommsen, Extra-articular fractures near the knee joint and concomitant ligamentous damage, Aktuelle Traumatologie, vol. 22, no. 5, pp. 183 188, 1992. [8]F.C.Kao,Y.K.Tu,K.Y.Hsu,J.Y.Su,C.Y.Yen,andM. C. Chou, Floating knee injuries: a high complication rate, Orthopedics, vol. 33, no. 1, article 14, 2010. [9] G. Karlstrom and S. Olerud, Ipsilateral fracture of the femur and tibia, Bone and Joint Surgery A, vol. 59, no. 2, pp. 240 243, 1977. [10] K. Yokoyama, T. Tsukamoto, S. Aoki et al., Evaluation of functional outcome of the floating knee injury using multivariate analysis, Archives of Orthopaedic and Trauma Surgery, vol. 122, no. 8, pp. 432 435, 2002. [11] S. H. Hung, Y. M. Lu, H. T. Huang et al., Surgical treatment of type II floating knee: comparisons of the results of type IIA and type IIB floating knee, Knee Surgery, Sports Traumatology, Arthroscopy, vol. 15, no. 5, pp. 578 586, 2007.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity