Triptolide induces cell apoptosis in human stomach cancer cell via caspase 3-dependent cascade pathway

Similar documents
PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Effects of AFP gene silencing on Survivin mrna expression inhibition in HepG2 cells

The effect of insulin on chemotherapeutic drug sensitivity in human esophageal and lung cancer cells

Anti-inflammatory Effects of (-)-Epicatechin in Lipopolysaccharide-Stimulated Raw Macrophages

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

A novel epidermal growth factor receptor inhibitor for treating lung cancer

Impact factor: Reporter:4A1H0019 Chen Zi Hao 4A1H0023 Huang Wan ting 4A1H0039 Sue Yi Zhu 4A1H0070 Lin Guan cheng 4A1H0077 Chen Bo xuan

The Annexin V Apoptosis Assay

Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy

Salvianolic Acid-A Induces Apoptosis, Mitochondrial Membrane Potential Loss and DNA Damage in Small Cell Lung Cancer Cell Lines

http / / cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology COX-2 NTera-2 NTera-2 RT-PCR FasL caspase-8 caspase-3 PARP.

The effect of elemene reversing the multidurg resistance of A549/DDP lung cancer cells

8. CHAPTER IV. ANTICANCER ACTIVITY OF BIOSYNTHESIZED SILVER NANOPARTICLES

Inhibition of andrographolide in RAW murine macrophage osteoclastogenesis by downregulating the nuclear factor-kappab signaling pathway

Apoptosis and Altered Expression of P53, bax and bcl-2 induced by Formaldehyde in HELF cells

IN VITRO HORMESIS EFFECTS OF SODIUM FLUORIDE ON KIDNEY CELLS OF THREE-DAY-OLD MALE RATS

Research Article Ginseng Extract Enhances Anti-cancer Effect of Cytarabine on Human Acute Leukemia Cells

Epigallocatechin-3-gallate Promotes Osteoblastic Activity in Human Osteoblast-like Cells

Annals of Oncology Advance Access published January 10, 2005

Original Article Bufalin attenuates the proliferation of breast cancer MCF-7 cells in vitro and in vivo by inhibiting the PI3K/Akt pathway

Supporting Information

Key words: apoptosis, beta-amyrin, cell cycle, liver cancer, tritepenoids

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Supplementary Materials and Methods

Apoptosis Mediated Cytotoxicity of Curcumin Analogues PGV-0 and PGV-1 in WiDr Cell Line

Annexin V-APC/7-AAD Apoptosis Kit

Tanshinone l exhibits anticancer effects in human

Cryptotanshinone Induces Apoptosis of HL-60 Cells via Mitochondrial Pathway

Focus Application. Compound-Induced Cytotoxicity

Effects of metallothionein-3 and metallothionein-1e gene transfection on proliferation, cell cycle, and apoptosis of esophageal cancer cells

Marine Streptomyces sp. derived antimycin analogues. suppress HeLa cells via depletion HPV E6/E7 mediated by

Cinnamomum Essential Oil Prevents DNA Damage- Induced by Doxorubicin on CHO-K1 Cells

IN VITRO ANTICANCER ACTIVITY OF FLOWER EXTRACTS OF COUROUPITA GUIANENSIS

Antitumor effect and mechanism of action of polysaccharides extracted from Polygonum perfoliatum L whole plant in human lung carcinoma A549 cell line

Islet viability assay and Glucose Stimulated Insulin Secretion assay RT-PCR and Western Blot

Tea polyphenol decreased growth and invasion in human ovarian cancer cells

LncRNA LET function as a tumor suppressor in breast cancer development

Advances in Computer Science Research, volume 59 7th International Conference on Education, Management, Computer and Medicine (EMCM 2016)

Silibinin Is an Inhibitor of mir-24-3p Gene Expression in T47D Breast Cancer Cell Line

Clinical efficacy of paclitaxel in the treatment of mid-stage and advanced malignant gastric cancer, and effect of nursing interventions

SUPPORTING INFORMATION FOR

http / /cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology A431 . Western aza-dC FUT4-siRNA

Focus Application. Compound-Induced Cytotoxicity

B16-F10 (Mus musculus skin melanoma), NCI-H460 (human non-small cell lung cancer

Original Article Ginkgo biloba extract induce cell apoptosis and G0/G1 cycle arrest in gastric cancer cells

Johannes F Fahrmann and W Elaine Hardman *

Effect of lncrna LET on proliferation and invasion of osteosarcoma cells

Bakuchiol inhibits cell proliferation and induces apoptosis and cell cycle arrest in SGC-7901 human gastric cancer cells.

RESEARCH ARTICLE. Comparative Evaluation of Silibinin Effects on Cell Cycling and Apoptosis in Human Breast Cancer MCF-7 and T47D Cell Lines

Effects of Kanglaite Injedction on Reversing Multiple Drug Resistance (MDR) of Tumor Cells

Z.-L. LIU 1, B.-J. JIN 1, C.-G. CHENG 1, F.-X. ZHANG 1, S.-W. WANG 1, Y. WANG 1, B. WU 2. Introduction. Abstract. OBJECTIVE: To observe the reversal

- 1 - Cell types Monocytes THP-1 cells Macrophages. LPS Treatment time (Hour) IL-6 level (pg/ml)

Thea viridis extract inhibits growth and invasion of colorectal cancer via MAPK/ERK signaling pathway suppression.

Effects of COX-2 Inhibitor on the Proliferation of MCF-7 and LTED MCF-7 Cells

Juglans regia Hexane Extract Exerts Antitumor Effect, Apoptosis Induction and Cell Circle Arrest in Prostate Cancer Cells In vitro

Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells

Effect of Survivin-siRNA on Drug Sensitivity of Osteosarcoma Cell Line MG-63

Enhanced Anti-cancer Efficacy in MCF-7 Breast Cancer Cells by Combined Drugs of Metformin and Sodium Salicylate

A549 and A549-fLuc cells were maintained in high glucose Dulbecco modified

Department of General Surgery, The Third People s Hospital of Dalian, Dalian Medical University, Dalian, Liaoning, China,

Inhibition of TGFβ enhances chemotherapy action against triple negative breast cancer by abrogation of

Li et al. Received: 28 August 2015 Revised accepted: 10 February 2016

MOLECULAR MEDICINE REPORTS 14: , 2016

Nature Neuroscience: doi: /nn Supplementary Figure 1

Anti-cancer activity of Aya Thambira Chendooram (ATC) in in-vitro cell line against Breast Carcinoma

Supplementary Figure S I: Effects of D4F on body weight and serum lipids in apoe -/- mice.

Ethanolic Extract of Moringa oleifera L. Increases Sensitivity of WiDr Colon Cancer Cell Line Towards 5-Fluorouracil

CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer

C-Phycocyanin (C-PC) is a n«sjfc&c- waefc-jduble phycobiliprotein. pigment isolated from Spirulina platensis. This water- soluble protein pigment is

ORIGINAL ARTICLE. Hang Huang 1,2, Lin-Jin Li 3, Hai-Bo Zhang 4, An-Yang Wei 4. Summary. Introduction

Annexin V-FITC Apoptosis Detection Kit

Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei,

Effect of quercetin on the proliferation of the human ovarian cancer cell line SKOV-3 in vitro

A Thai Herbal Recipe Induces Apoptosis in T47D Human Breast Cancer Cell Line

Comparison of Cytotoxic Activity of Anticancer Drugs against Various Human Tumor Cell Lines Using In Vitro Cell-Based Approach

For the rapid, sensitive and accurate measurement of apoptosis in various samples.

School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, , People s Republic of China; 2

Instructions for Use. APO-AB Annexin V-Biotin Apoptosis Detection Kit 100 tests

This article is downloaded from.

Linderalactone inhibits human lung cancer growth b

RESEARCH ARTICLE. Ginsenoside-Rh2 Inhibits Proliferation and Induces Apoptosis of Human Gastric Cancer SGC-7901 Side Population Cells

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 34: , Faculty of Medicine, Kuwait University, Safat 13060, Kuwait

Berberine inhibits Wilms' tumor cell progression through upregulation of Wilms' tumor gene on the X chromosome

Quantification of Bcl-2/Bax genes in A549 Lung Cancer Cell Lines Treated with Heptamethoxy Flavones

HEK293FT cells were transiently transfected with reporters, N3-ICD construct and

Supporting Information

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 34: , 2014

RayBio Annexin V-FITC Apoptosis Detection Kit

Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer

Apoptosis induced by (di-isopropyloxyphoryl-trp) 2

Realgar quantum dots induce apoptosis and necrosis in HepG2 cells through endoplasmic reticulum stress

Original Article Brucella outer membrane protein Omp25 induces microglial cells in vitro to secrete inflammatory cytokines and inhibit apoptosis

ONCOLOGY LETTERS 7: , 2014

Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA 2

Effect of ST2825 on the proliferation and apoptosis of human hepatocellular carcinoma cells

Anti-tumor effect of polysaccharides from rhizome of Curculigo orchioides Gaertn on cervical cancer

MG132 reverse the malignant characteristics of hypopharyngeal cancer

Effect of EGCG in combination with gemcitabine on β-catenin expression in PANC-1 human pancreatic cancer cells * Research Article

Respiratory and Critical Care Discipline, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning,110024, China

Transcription:

Tropical Journal of Pharmaceutical Research September 2016; 15 (9): 1853-1858 ISSN: 1596-5996 (print); 1596-9827 (electronic) Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Original Research Article Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v15i9.6 Triptolide induces cell apoptosis in human stomach cancer cell via caspase 3-dependent cascade pathway Shuai Liu 1,2, Jing Zhang 3, Xiao-Zhan Zhang 1, Hui-Hui Zhang 1, Xing-Wu Li 1 and Shi-Jie Zhang 1 * 1 Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 2 Key Laboratory of Clinical Laboratory Medicine of Henan Province, 3 Zhengzhou Traditional Chinese Medical Hospital, Zhengzhou, China *For correspondence: Email: zhangshijie2001@126.com; Tel: +86-371-66295013 Received: 23 April 2016 Revised accepted: 14 August 2016 Abstract Purpose: To evaluate the effect of triptolide on the induction of cell apoptosis in human gastric cancer BGC-823 cells. Methods: The cytotoxicity of triptolide was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay. The effect of triptolide on cell proliferation was measured using lactate dehydrogenase (LDH) assay. Cell apoptosis was determined by Annexin V/propidium iodide (PI) double-staining assay. Results: MTT results indicate that triptolide significantly decreased cancer cell numbers in dose- and time-dependent manners in MTT assay. Data from LDH assay showed that triptolide markedly induced cytotoxicity in gastric cancer cells. Triptolide also remarkably induced both early and late apoptotic process in BGC-823 cells. In addition, the compound down-regulated the expression of anti-apoptotic B- cell lymphoma-2 (bcl-2) and up-regulated the expression of pro-apoptotic BCL-2-associated X (bax) in a dose-dependent manner. Furthermore, the pro-apoptotic activity of triptolide was involved in the activation of caspase-3 pathway in BGC-823 cells. Conclusion: Taken together, the findings strongly indicates that the pro-apoptotic activity of triptolide is regulated by caspase 3-dependent cascade pathway, and thus needs to be further developed for cancer therapy. Keywords: Triptolide, Gastric cancer therapy, Apoptosis, Cytotoxicity, Caspase Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts INTRODUCTION Gastric cancer is now ranking the second leading cause of cancer-related deaths worldwide [1]. Surgery combined with chemotherapy is the current option for most patients diagnosed with advanced gastric cancer [2]. Due to the high rates of side effects and rapid therapeutic resistance, the efficacy of traditional chemotherapeutic drugs in the cancer treatment has declined [3]. Therefore, it is necessary and urgent to develop novel therapeutic agents which have higher efficacy but with limited side effects and low resistance. Emerging evidences have shown that natural compounds from medicinal plants exhibit promising results in controlling various diseases, including cancers [4,5]. The root of Trypterigium wilfordii Hook L, also known as Thunder of God Vine is one traditional Chinese medicine that has been reported to have diverse biological activities including anti-arthritis, anti-alzheimer and anti-cancer effects [6-8]. Triptolide is one of Trop J Pharm Res, September 2016; 15(9): 1853

the active diterpene triepoxide compound identified from Trypterigium wilfordii Hook L. To date, triptolide has been found to exert potent immunosuppressive and anti-inflammatory properties [9]. Triptolide is also demonstrated to have anti-cancer effects in several cancer types including lung cancer [10], liver cancer [11], pancreatic cancer [12], and colon cancer [13]. In addition, triptolide is also able to cause pancreatic cancer cell death through induction of apoptosis via inhibition of HSP70 [12]. Triptolide has also been demonstrated to abrogate cell growth of colon cancer and induce cell cycle arrest through inhibiting transcriptional activation of E2F [14]. A recent study also suggests that the induction of cell death by triptolide is modified by autophagy in cardiomyocytes [15]. In order to extend the usage of triptolide for cancer treatment, we will evaluate the potent cytotoxic effects of triptolide in human gastric BGC-823 cells, and also explore the possible underlying mechanisms of this action in the current study. EXPERIMENTAL Chemicals and reagents Cell culture BGC-823 human gastric cancer cells were purchased from the Cell Storehouse of the Chinese Academy of Science (Shanghai, China). The cells were maintained in DMEM medium supplemented with 10 % FBS and 1 % PS, and incubated in a humidified incubator at 37 C with 5 % CO 2. Cell viability assay In order to investigate the anti-cancer actions of triptolide, MTT assay was performed in BGC823 gastric cancer cells. The cells at a density of 5 10 4 cells/ml were seeded in 96-well plates and treated with various concentrations of triptolide (10, 20, and 40 nm) or vehicle solution (0.1 % DMSO) for 48 or 72 h. Then, 20 μl of MTT (5 mg/ml) solution was added into each well and incubated for another 4 h. After replacing the culture medium with 100 μl of DMSO, the optical density (OD) was collected at the wavelength of 540 nm using a microplate reader (TECAN, Austria). LDH leakage assay Cell cytotoxicity was tested by LDH leakage assay according to the manufacturer s instructions. Briefly, after triptolide treatments, cell-free supernatants (50 μl) were collected from each well and transferred into a new 96-well plate, and gently mixed with 50 μl of CytoTox 96 non-radioactive cytotoxicity assay reagents. The plate was kept in the dark at room temperature for 30 min. Stop solution (50 μl of each well) was added into the wells, before the OD value was examined at 492 nm using a microplate reader (TECAN, Austria). Annexin V/PI double-staining assay Annexin V/PI double-staining assay and flow cytometry (FACSalibur, BD) were performed to quantify the apoptotic cells after triptolide treatment. In brief, BGC-823 cells were seeded in 6-well plates at a density of 1 10 5 cells/ml and treated with different concentrations of triptolide or DMSO for 48 or 72 h. The cells were then harvested, rinsed twice with PBS, resuspended in binding buffer and incubated with fluorescein isothiocyanate (FITC)-conjugated Annexin V (5 μl) and PI (5 μl) in the dark for 15 min at room temperature. Then, the cells were washed with PBS twice, before subjecting to flow cytometry for data collection. Quantitative real-time polymerase chain reaction (q-pcr) Total RNA was extracted with TRIzol reagent, according to the manufacturer s instructions. One microgram of RNA from each sample was used for the reverse transcription reaction using Oligo dt (18T) (Omega, NY, USA). The cdna products were amplified for bcl-2, bax, and gapdh gene expression via qrt-pcr using specific primers. PCR was performed with SYBR Green PCR Master Mix using a 7900HT qpcr system thermal cycler (Applied Biosystems, CA). The Ct values for each sample were normalized to GAPDH mrna, which was used as an internal control. Data from three independent experiments were collected and calculated. Triptolide, 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT), dimethyl sulfoxide (DMSO), and propidium iodide (PI) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). All other reagents, supplements for cell culture and assay kits were obtained from Life Technologies (NY, USA), otherwise stated. The primers used for q-pcr were: bax, forward (5 -TGGAGCTGCAGAGGATGATTG-3 ) and reverse (5 -GAAGTTGCCGTCAGAAAACATG- 3 ); bcl-2, forward (5 -CTGCACCTGACGCCCTT CACC-3 ) and reverse (5 -CACATGACCCCACC Trop J Pharm Res, September 2016; 15(9): 1854

GAACTCAAAGA-3 ); GAPDH, forward (5 - AACGGGAAGCTTGTCATCAATGGAAA-3 ) and reverse (5 -GCATCAGCAGAGGGGGCAGAG-3 ) Assessment of caspase-3 activity After treatment with triptolide, caspase-3 activity was assessed using a commercial colorimetric activity assay kit (Beyotime, China), according to the manufacturer s instruction. Statistical analysis Data are expressed as mean ± standard deviation (SD, n = 3). One-way ANOVA analysis was performed for statistical analysis using GraphPad Prism software, version 6.0. In all comparisons, p < 0.05 was considered statistically significant. RESULTS Triptolide decreased cell proliferation in human gastric cancer BGC-823 cells As shown in Figure 1, treatment with triptolide (10, 20 and 40 nm) significantly decreased cell proliferation and cell viability in both time- and concentration-dependent manner. Cell viability of BGC-823 cells were inhibited by 44 and 64 % with triptolide treatment of 20 and 40 nm, respectively, for 48 h, and 51 and 69 % respectively for 72 h. Triptolide induced cell cytotoxicity in human gastric cancer BGC-823 cells The cytotoxicity was examined by LDH leakage assay. Our results showed that toxic effects were increased in BGC-823 cells by triptolide treatment (10, 20, and 40 nm) in a dosedependent manner (Figure 2). Triptolide induced cell apoptosis in human gastric cancer BGC-823 cells Cell apoptosis was measured by Annexin V and PI double-staining assays using flow cytometry. As shown in Figure 3, the total apoptotic cells were increased 10.3 and 42.6 % by challenging Figure 1: Cell viability of BGC-823 cells treated with triptolide. BGC-823 cells were treated with triptolide (10, 20 and 40 nm) for 48 h (A) or 72 h (B). Data were expressed from three different experiments; ** p < 0.01, *** p< 0.001 compared to vehicle control Figure 2: Cell cytotoxicity of BGC-823 cells treated with triptolide. BGC-823 cells were treated with triptolide (10, 20 and 40 nm) for 48 h (A) or 72 h (B). Data were expressed from three different experiments; ** p < 0.01, *** p < 0.001 compared to vehicle control Trop J Pharm Res, September 2016; 15(9): 1855

with 20 nm and 40 nm of triptolide for 48 h (Figure 3A), 14.5 and 48.3 % for 72 h (Figure 3B), respectively. These results suggested triptolide significantly increased both early apoptosis and late apoptosis in a dose-and timedependent manner. Triptolide modulated the expression of apoptosis-related genes In order to study the underlying mechanisms for triptolide-induced apoptosis, apoptosis related genes including Bax and Bcl-2 mrna were quantified by qpcr. As shown in Figure 4, the expression of Bax mrna was markedly upregulated by triptolide treatment (20 and 40 nm) for 48 and 72 h, with over-expression of 50-110 %. However, the expression of Bcl-2 mrna was significantly inhibited by triptolide (40 nm) for both 48 h and 72 h, with inhibitory rate of over 50 %. Triptolide activated caspase-3 activity in human gastric cancer BGC-823 cells To confirm the involvement of caspase-3 in triptolide-induced cell apoptosis, caspase-3 activity was measured by colorimetric activity assay. The results showed that caspase-3 activity was increased by 5.3, 7.4 and 10.2 times by treatment with 10, 20 and 40 nm of triptolide in BGC-823 cells for 72 h (Figure 5A). The activation of caspase-3 activity was also increased by triptolide (40 nm) in a timedependent manner (Figure 5B). DISCUSSION Triptolide is one of the active ingredients of Tripterygium wilfordii, which possesses a broad spectrum of biological activities such as antiinflammatory, anti-neoplastic and anti-cancer effects [15]. Triptolide exerts potent anti-cancer effects in several cancer types including lung Figure 3: Cell apoptosis of BGC-823 cells treated with triptolide. BGC-823 cells were treated with triptolide (20 and 40 nm) for 48 h (A) or 72 h (B). Data were expressed from three different experiments; * p < 0.05, ** p < 0.01, *** p < 0.001 compared to vehicle control Figure 4: Apoptosis-related genes expression of BGC-823 cells treated with triptolide. BGC-823 cells were treated with triptolide (20 and 40 nm) for 48 h (A) or 72 h (B). Data were expressed from three different experiments; ** p < 0.01, *** p < 0.001 compared to vehicle control Trop J Pharm Res, September 2016; 15(9): 1856

Figure 5: Caspase-3 activity of BGC-823 cells treated with triptolide. BGC-823 cells were treated with triptolide (10, 20 and 40 nm) for 48 h (A). BGC-823 cells were treated with 40 nm of triptolide for 24, 48 or 72 h (B). Data were expressed from three different experiments. *** p < 0.001 compared to vehicle control cancer [10], liver cancer [11], pancreatic cancer [12], and colon cancer [13]. In our present study, we demonstrated that triptolide exhibited promising anti-cancer potential in human gastric BGC-823 cells. In addition, we also elucidated that the anti-cancer action of triptolide might be due to the induction of cell apoptosis in gastric cancer and the involvement of activation of caspase-3 pathway. In our study, we used different method to evaluate the effects of triptolide in gastric BGC- 823 cells including MTT, LDH leakage, Annexin V and PI double staining assays. The MTT assay can detect both normal cells and necrotic cells. Therefore, we further used LDH leakage assay to detect the cytotoxic effects of triptolide in BGC cells. In order to confirm the pro-apoptotic effects induced by triptolide, we performed flow cytometry with Annexin V and PI double staining. Our results showed that triptolide significantly increased LDH in the cultured medium and increased apoptotic cells in flow cytometric analysis, which strongly suggested that triptolide was able to induce both cytotoxic and proapoptotic effects in human gastric BGC-823 cells. Cancer is fundamentally a disease of dysregulation of tissue growth, in which programmed cell death is interfered with and blocked by tissue microenvironment. Apoptosis is the main form of programmed cell death that maintains tissue and cell hemostasis [16]. During the development of apoptosis, both anti-apoptotic proteins such as Bcl2 and pro-apoptotic proteins such as Bax are involved in the initiation and modulation of the process of apoptosis [17]. The expression of Bcl2, Bax or the ratio of Bcl2 and Bax are normally used as index of apoptosis [18]. In our current study, we observed that triptolide induced a remarkable up-regulation of Bax mrna and a significant decrease of Bcl2 mrna, which consequently lead to an increase of the Bax/Bcl2 ratio. These results indicate that triptolide-induced apoptosis employs both anti-apoptotic and proapoptotic proteins. The mitochondrial apoptotic pathway includes two alternate pathways, typically caspase-8 and caspase-9. Caspase-3 is a downstream molecule in caspase-9 pathway [19]. In our study, treatment with triptolide significantly stimulated the activation of caspase- 3, suggesting that a caspase-9 pathway may be involved in the triptolide-induced cell apoptosis in gastric cancer. CONCLUSION Treatment with triptolide remarkably induces both early and late apoptotic process. Triptolide also down-regulates the expression of anti-apoptotic B-cell lymphoma-2 (bcl-2) and up regulates the expression of pro-apoptotic BCL-2-associated X (bax) in a dose-dependent manner. This process is accompanied by activation of caspase-3 in BGC-823 cells using caspase-3 activity assay. Thus, these findings indicate that the apoptotic activity of triptolide is probably regulated by caspase-3-dependent cascade way. The demonstrated pro-apoptotic effects of triptolide will shed some light on application of this drug in cancer treatment especially in gastric cancer. Trop J Pharm Res, September 2016; 15(9): 1857

DECLARATIONS Acknowledgement This study was financially supported by Education Department of Henan Province Science and Technology Research Projects (no. 14A320026), and Medical Science and Technology Project of Henan Province (no. 201503029). Conflict of Interest No conflict of interest associated with this work. Contribution of Authors The authors declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by them. REFERENCES 1. Hou YC, Deng JY. Role of E3 ubiquitin ligases in gastric cancer, World J Gastroenterol 2015; 21: 786-793. 2. Wagner AD, Moehler M. Development of targeted therapies in advanced gastric cancer: promising exploratory steps in a new era, Curr Opin Oncol 2009; 21: 381-385. 3. Thiel A, Ristimaki A. Targeted therapy in gastric cancer. APMIS 2015; 123: 365-372. 4. Lee HW, Jang KS, Choi HJ, Jo A, Cheong JH, Chun KH. Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy, BMB Rep 2014; 47: 697-702. 5. Ji YB, Chen, N, Zhu HW, Ling N, Li WL, Song DX, et al. Alkaloids from beach spider lily (Hymenocallis littoralis) induce apoptosis of HepG-2 cells by the fas-signaling pathway, Asian Pac J Cancer Prev 2014; 15: 9319-9325. 6. Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease, Prog Neuropsychopharmacol Biol Psychiatry 2001; 25: 1341-1357. 7. Ushiro S, Ono M, Nakayama J, Fujiwara T, Komatsu Y, Sugimachi K, et al. New nortriterpenoid isolated from anti-rheumatoid arthritic plant, Tripterygium wilfordii, modulates tumor growth and neovascularization, Int J Cancer 1997; 72: 657-663. 8. Wong KF, Yuan Y, Luk JM. Tripterygium wilfordii bioactive compounds as anticancer and antiinflammatory agents, Clin Exp Pharmacol Physiol 2012; 39: 311-320. 9. Yang F, Bai XJ, Hu D, Li ZF, Liu KJ. Effect of triptolide on secretion of inflammatory cellular factors TNF-alpha and IL-8 in peritoneal macrophages of mice activated by lipopolysaccharide, World J Emerg Med 2010; 1: 70-74. 10. Jiang N, Dong XP, Zhang SL, You QY, Jiang XT, Zhao XG. Triptolide reverses the Taxol resistance of lung adenocarcinoma by inhibiting the NF-kappaB signaling pathway and the expression of NF-kappaB-regulated drug-resistant genes, Mol Med Rep 2016; 13: 153-159. 11. Li Y, Hu S. Triptolide sensitizes liver cancer cell lines to chemotherapy in vitro and in vivo, Panminerva Med 2014; 56: 211-220. 12. Phillips PA, Dudeja V, McCarroll JA, Borja-Cacho D, Dawra RK, Grizzle WE, et al. Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70, Cancer Res 2007; 67: 9407-9416. 13. Liu Y, Xiao E, Yuan L, Li G. Triptolide synergistically enhances antitumor activity of oxaliplatin in colon carcinoma in vitro and in vivo, DNA Cell Biol 2014; 33: 418-425. 14. Oliveira AR, Beyer G, Chugh R, Skube SJ, Majumder K, Banerjee S, et al. Triptolide abrogates growth of colon cancer and induces cell cycle arrest by inhibiting transcriptional activation of E2F, Lab Invest 2015; 95: 648-659. 15. Zhou J, Xi C, Wang W, Yang Y, Qiu Y, Huang Z. Autophagy plays an important role in triptolide-induced apoptosis in cardiomyocytes, Toxicol Lett 2015; 236: 168-183. 16. Festjens N, Vanden BT, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response, Biochim Biophys Acta 2006; 1757: 1371-1387. 17. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer, Biomed Res Int 2014; 2014: 150845. 18. Kwegyir-Afful AK, Ramalingam S, Purushottamachar P, Ramamurthy VP, Njar VC. Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome c release and suppress growth of castration resistant prostate cancer xenografts in vivo, Oncotarget 2015; 6: 27440-27460. 19. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and datpdependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell 1997; 91: 479-489. Trop J Pharm Res, September 2016; 15(9): 1858