SUPPLEMENTARY INFORMATION

Similar documents
Lack of Visual Orienting to Biological Motion and Audiovisual Synchrony in 3-Year-Olds with Autism

Typical Gesture Development

IQ Predicts Biological Motion Perception in Autism Spectrum Disorders

Altered face scanning and impaired recognition of biological motion in a 15-month-old infant with autism

! Introduction:! ! Prosodic abilities!! Prosody and Autism! !! Developmental profile of prosodic abilities for Portuguese speakers!

Autism Diagnostic Observation Schedule Second Edition (ADOS-2)

Diagnosis Advancements. Licensee OAPL (UK) Creative Commons Attribution License (CC-BY) Research study

Review Copy Only. Development of motion processing in children with autism. Developmental Science

Bringing science to the community: A new system of healthcare delivery for infants & toddlers with autism spectrum disorders

Applying models of visual attention to gaze patterns of children with autism

Factors Influencing How Parents Report. Autism Symptoms on the ADI-R

PSYCHOLOGICAL SCIENCE. Research Article

SHORT REPORT Comparison of Visual Sensitivity to Human and Object Motion in Autism Spectrum Disorder

University of East London Institutional Repository:

SUPPLEMENTARY INFORMATION

Discernment. Symptoms are a bit different before 2 years. Autism Spectrum Disorder. Pamela R. Rollins, Ed.D. UTD/Callier Center TARRC Conference, 2018

Thank You: Developmental social neuroscience meets public health challenge: The next generations of children with autism spectrum disorder

CLINICAL BOTTOM LINE Early Intervention for Children With Autism Implications for Occupational Therapy

Short Report: The Role of Emotion Perception in Adaptive Functioning of People with Autism Spectrum Disorders

PERCEPTUAL DISTORTIONS OF VISUAL ILLUSIONS IN CHILDREN WITH HIGH-FUNCTIONING AUTISM SPECTRUM DISORDER

RUNNING HEAD: Socio-Communication Deficits Of Children With Williams. Socio-Communication Deficits of children with Williams Syndrome: Overlap with

2019 Gatlinburg Conference Symposium Submission SS 19

Supplementary Information. Enhancing studies of the connectome in autism using the Autism Brain Imaging Data Exchange II

Diagnostic Evaluation

Today s goals. Today s reading. Autistic Spectrum Disorder. INF1-CG 2014 Lecture 27

Early Screening of ASD & The Role of the SLP

DSM-5 Autism Criteria Applied to Toddlers with DSM-IV-TR Autism

Neuroscience Tutorial

Current Symptoms of Autism in Fragile X Syndrome

AUTISM SPECTRUM DISORDER: DSM-5 DIAGNOSTIC CRITERIA. Lisa Joseph, Ph.D.

The use of Autism Mental Status Exam in an Italian sample. A brief report

The Nuts and Bolts of Diagnosing Autism Spectrum Disorders In Young Children. Overview

Grace Iarocci Ph.D., R. Psych., Associate Professor of Psychology Simon Fraser University

USE OF THE MULLEN SCALES OF EARLY LEARNING FOR THE ASSESSMENT OF YOUNG CHILDREN WITH AUTISM SPECTRUM DISORDERS

DSM 5 Criteria to Diagnose Autism

Comparison of Clinic & Home Observations of Social Communication Red Flags in Toddlers with ASD

Brief Report: Parental Child-Directed Speech as a Predictor of Receptive Language in Children with Autism Symptomatology

Daily living skills in individuals with autism spectrum disorder from 2 to 21 years of age

Audiovisual speech perception in children with autism spectrum disorders and typical controls

controlled conditions. However, they may fail to exploit them adequately during real-life social interactions.

Autism and Related Disorders:

Slow Motor Responses to Visual Stimuli of Low Salience in Autism

Include Autism Presents: The Volunteer Handbook

Thank You. Conflicts of Interest. Marcus Autism Center

Background on the issue Previous study with adolescents and adults: Current NIH R03 study examining ADI-R for Spanish speaking Latinos

Brief Report: An Independent Replication and Extension of Psychometric Evidence Supporting the Theory of Mind Inventory

Brief Report: Perception of Body Posture What Individuals With Autism Spectrum Disorder might be Missing

Supplementary Online Content

University of Connecticut. University of Connecticut Graduate School

Cross-syndrome, cross-domain. comparisons of development trajectories

Age of diagnosis for Autism Spectrum Disorders. Reasons for a later diagnosis: Earlier identification = Earlier intervention

Research in Autism Spectrum Disorders

ORIGINAL ARTICLE. Validation of the Phenomenon of Autistic Regression Using Home Videotapes

Patterns of Growth in Verbal Abilities Among Children With Autism Spectrum Disorder

Brain Advance Access published November 3, doi: /brain/awp272 Brain 2009: Page 1 of 12 1

Joanna Bailes M.Cl.Sc (SLP) Candidate University of Western Ontario: School of Communication Sciences and Disorders

Diagnosing Autism, and What Comes After. Natalie Roth, Ph. D. Clinical Psychologist, Alternative Behavior Strategies

Cover Page. The handle holds various files of this Leiden University dissertation.

Optic Nerve Hypoplasia Part 2: Clinical Problems

2018 Gatlinburg Conference Symposium Submission SS-20

Down Syndrome and Autism

Ch 5. Perception and Encoding

These slides may also be found within the Comprehensive Overview Training PowerPoint, which provides guidance on every eligibility category.

Language Comprehension Predicts Later Cognitive Ability and Symptom Severity in Toddlers with ASD

Shape-Independent Processing of Biological Motion

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

Understanding One s Own Emotions in Cognitively-Able Preadolescents with Autism Spectrum Disorder

Procedia Social and Behavioral Sciences 5 (2010) WCPCG-2010

Ch 5. Perception and Encoding

Diagnostic Evaluation of Autism Spectrum Disorders

BAR ILAN UNIVERSITY. Peer Collaboration Intervention for Minimally. Verbal Children with Autism Spectrum

Peer Perception in Autism. Kathryn McVicar, MD Assistant Professor Clinical Pediatrics and Neurology Albert Einstien College of Medicine

Online resource 2. Gluten- and Casein-free diet and autism spectrum disorders in children:

Melissa Heydon M.Cl.Sc. (Speech-Language Pathology) Candidate University of Western Ontario: School of Communication Sciences and Disorders

Mullen Scales of Early Learning: AGS Edition

School of Public Health

Orientation Specific Effects of Automatic Access to Categorical Information in Biological Motion Perception

Brief Report: Imitation of Meaningless Gestures in Individuals with Asperger Syndrome and. High-Functioning Autism

Autism in the Wild. Examination

T he ability to quickly recognize the motion of biological entities in the environment is extremely important for

Autism Symptomology: Subtleties of the Spectrum

center 300 N. Fifth Ave., Suite 21 Ann Arbor, MI

UC Merced UC Merced Undergraduate Research Journal

EDGE DETECTION. Edge Detectors. ICS 280: Visual Perception

Red flag signs for Autism

1/30/2018. Adaptive Behavior Profiles in Autism Spectrum Disorders. Disclosures. Learning Objectives

AUTISM SCREENING AND DIAGNOSIS PEARLS FOR PEDIATRICS. Catherine Riley, MD Developmental Behavioral Pediatrician

Update in Diagnosis of Autism พญ. จ ฑามาส (ว โรจน อน นต ) วรโชต ก าจร ภาคว ชาก มารเวชศาสตร ม.สงขลานคร นทร 21 กรกฎาคม 2554

Impact of Behavioral Aspects of Autism on Cognitive Abilities in Children with Autism Spectrum Disorder

INFORMATION PAPER: INTRODUCING THE NEW DSM-5 DIAGNOSTIC CRITERIA FOR AUTISM SPECTRUM DISORDER

Deconstructing the DSM-5 By Jason H. King

(Visual) Attention. October 3, PSY Visual Attention 1

Hearing Loss and Autism. diagnosis and intervention

An Introduction to Translational Neuroscience Approaches to Investigating Autism

Docket No CMH Decision and Order

What Do We Know: Autism Screening and Diagnosis and Supporting Families of Young Children

Young infants detect the direction of biological motion in point-light displays

Consciousness The final frontier!

CS/NEUR125 Brains, Minds, and Machines. Due: Friday, April 14

A research perspective on (some of) the many components of ASD

Transcription:

Supplementary Movie 1 complements Figure 1 in the main text. It shows: Top left quadrant: sample of a point-light animation presented to children; Top right quadrant: sample visual scanning data from a 2-year-old toddler with autism; Bottom left quadrant: sample visual scanning data from a 2-year-old, typicallydeveloping toddler; Bottom right quadrant: sample visual scanning data from a 2-year-old, developmentally-delayed but nonautistic toddler. Note: In these coded examples, Upright point-light animations are in red and Inverted point-light animations are in green. Stimuli were presented to children as white point lights against the black background as can be seen in the top left quadrant. Supplementary Movie 2 complements Figure 2 in the main text. It shows: Top left quadrant: sample of the pat-a-cake animation presented to children; Top right quadrant: sample visual scanning data from a 2-year-old toddler with autism watching the pat-a-cake animation; Bottom left quadrant: sample visual scanning data from a 2-year-old, typicallydeveloping toddler watching the pat-a-cake animation; Bottom right quadrant: sample visual scanning data from a 2-year-old, developmentally-delayed but nonautistic toddler watching the pat-a-cake animation. Note: In these coded examples, Upright point-light animations are in red and Inverted point-light animations are in green. Stimuli were presented to children as white point lights against the black background as can be seen in the top left quadrant. Supplementary Video 3 complements Figure 3 in the main text. More information about the method for measuring this effect is given below in the section, Quantification of Audiovisual Synchrony. Supplementary Video 3 shows the pat-a-cake animation, with color scaled values showing the level of audiovisual synchrony at each point-light. www.nature.com/nature 1

Dark blue values correspond to little audiovisual synchrony or no audiovisual synchrony (e.g., in the area that would be the black background of the original animation). Red corresponds to the highest level of synchrony. The movie is played with audio at half-speed. Note that some point-lights are very synchronous (the hands, shown here during claps), while others are hardly synchronous (e.g., the feet). Participant Characterization Participants in the Main Study: 76 toddlers participated in the main study, comprising three groups (Supplementary Table 1): 21 toddlers with autism spectrum disorders (ASD), 39 typically-developing toddlers (TD), and 16 toddlers with developmental delays but without autism (DD). The ASD and TD groups were matched on chronological and nonverbal mental age equivalents obtained with the Visual Reception subtest of the Mullen Scales of Early Learning 1. The ASD and DD groups were matched on chronological and verbal mental age equivalents as obtained through the average of Receptive and Expressive Language subtests of the Mullen Scales of Early Learning 1. All children completed a comprehensive set of behavioral assessments as well as a physical exam and clinical genetics protocol. Toddlers were included in the ASD group to the extent that they (1) met criteria for autistic disorder or autism spectrum disorder (ASD) on the Autism Diagnostic Interview - Revised (ADI-R) 2 (all ASD participants met criteria for autistic disorder); (2) met criteria for autistic disorder or ASD on the Autism Diagnostic Observation Schedule, Module 1 (ADOS) 3 (17 out of 21 met criteria for autistic disorder); (3) received a clinician-assigned diagnosis (independently, by two experienced clinicians upon review of available data including standardized testing and videotaped material of diagnostic examination) of either autistic disorder (14 of 21) or ASD (7 of 21); (4) had no known genetic syndrome; and (5) had neither hearing nor visual impairments. www.nature.com/nature 2

Toddlers were included in the TD group to the extent that they (1) exhibited no developmental delays; (2) had no family history of ASD; (3) had no known genetic syndrome; and (4) had neither hearing nor visual impairments. Toddlers were included in the DD group to the extent that (1) their developmental testing (as measured by the Mullen Scales of Early Learning 1 ) exhibited either delays in two areas of development, each greater than 1.5 SDs below the mean, or a delay in one area of development, itself greater than 2 SDs below the mean; (2) had no family history of ASD; (3) had no known genetic syndrome; and (4) had neither hearing nor visual impairments. Supplementary Table 1 Autism Group 1 Typically Developing Group 1 N 21 39 16 Age 2 2.21 (.54) 1.99 (.66) 2.02 (.62) Nonverbal 2.00 (.95) function 4 2.10 (.81) 1.73 (.76) Verbal function 5 1.29 (.85) 2.10 (.77) 1.25 (.90) Developmentally Delayed Group 1 F 2,73 values 0.852 3 1.102 9.988 p <.001 Pairwise Comparisons ASD & TD = ASD & DD = ASD & TD = ASD & DD = ASD & TD = p<.001 ASD & DD = 1 Autism Group = ASD, Typical Controls TD, Developmentally Delayed Controls DD 2 - Years; 3 = Not statistically significant. 4 Nonverbal function corresponds to age equivalent scores (in years) as obtained in the Visual Reception subtest of the Mullen Scales of Early Learning. 5 - Verbal function corresponds to the average age equivalent scores (in years) of the Receptive and Expressive Language subtests of the Mullen Scales of Early Learning. www.nature.com/nature 3

Participants in the Follow-up Experiments: There were two additional groups of participants recruited for the follow-up experiments. The first group was a new sample of 10 toddlers with ASD who completed follow-up experiments intended to test our audiovisual synchrony model in an a priori fashion. The protocol for recruitment and characterization was identical to that employed for the original sample of toddlers with ASD. The second sample of toddlers with ASD did not differ from the first sample in any of the characterization variables (Supplementary Table 2). The second group was a new sample of 12 typically-developing toddlers (TD). They completed the experiments in order for us to ensure that normative performance on the new tasks was comparable to results obtained for the original tasks (60.0% upright in the new animations, with t 49 = 0.72 and p =.48 for comparison of these results with those of the original TD sample on the original animations). The two samples of TD toddlers also did not differ in any of the characterization variables (Supplementary Table 3). Supplementary Table 2 Autism Group 1 1 Autism Group 2 1 t 29 values Significance N 21 10 Age 2 2.21 (.54) 2.10 (.32) Nonverbal function 4 2.00 (.95) 1.68 (.54) Verbal function 5 1.29 (.85) 1.13 (.67) ADOS (Social) 6 8.86 (3.36) 10.38 (2.87) 0.683 3-1.126 0.942 0.488 1 Autism Group 1= ASD participants who completed the main study; Autism Group 2 = ASD participants who completed the follow-up experiments 2 - Years; 3 = Not statistically significant. 4 Nonverbal function corresponds to age equivalent scores (in years) as obtained in the Visual Reception subtest of the Mullen Scales of Early Learning. 5 - Verbal function corresponds to the average age equivalent scores (in years) of the Receptive and Expressive Language subtests of the Mullen Scales of Early Learning. 6 - ADOS (Social): Scores for Social Cluster of the Autism Diagnostic Observation Schedule www.nature.com/nature 4

Supplementary Table 3 TD Group 1 1 TD Group 2 1 t 49 values Significance N 39 12 Age 2 1.99 (.66) 1.97 (.25) 0.410 3 Nonverbal function 4 2.10 (.81) 2.13 (.26) Verbal function 5 2.10 (.77) 1.88 (.41) -0.229 1.254 1 TD Group 1 = Typical Controls who completed the main study; TD Group 2 = Typical controls who completed the follow-up experiments 2 - Years; 3 = Not statistically significant. 4 Nonverbal function corresponds to age equivalent scores (in years) as obtained in the Visual Reception subtest of the Mullen Scales of Early Learning. 5 - Verbal function corresponds to the average age equivalent scores (in years) of the Receptive and Expressive Language subtests of the Mullen Scales of Early Learning Motion Processing and Visual Integration Another interpretation of our results relates to the process of integrating visual stimuli of any kind: bringing fragments of information into coherent wholes 4. Following this interpretation, failure to perceive biological motion might be a byproduct of deficits in configural processing. Studies of motion coherence 5,6 have shown that children with autism require roughly 10% more motion signal before being able to discern a global direction of motion within a field of otherwise random motion, and this evidence should be considered alongside our results. Several lines of evidence weaken the possibility that the present results are driven by difficulties in motion coherence thresholds. The primary evidence against this interpretation stems from the fact that detection of rigid coherent motion and biological motion are dissociable, and that impairment of the former does not imply that the latter will suffer. First, scrambling of point-light displays of humans and animals in which www.nature.com/nature 5

configural information is entirely disrupted does not reduce inversion effects in the perception of biological motion 7. Other studies have experimentally dissociated motion coherence from biological motion tasks in normal observers 8. Second, sensitivity to the adaptive value of biological motion has been shown in much simpler organisms than humans 9,10, and is thought to facilitate learning via imprinting about the more specific features of motion of conspecifics as well as of a wide range of vertebrates 11. Third, as noted earlier, successful perception of biological motion is possible in the face of severe impairments of other kinds of motion perception 12-14, even during disruptions of cortical activity in areas MT+/V5 by means of repetitive transcranial magnetic stimulation 15. Fourth, the mechanisms that analyze biological motion do not integrate linearly over space and time with constant efficiency, as in other forms of complex motion, but instead adapt to the nature of the stimulus, making this form of motion quite different from others 16. And fifth, in a study of 8-year-old children with autism 17, their deficits on a biological motion task contrasted with their preserved abilities in a motion integration task. Collectively, these and other studies highlight the uniqueness of biological motion as a class of motion stimuli relative to other forms of motion. References for Supplementary Information 1. Mullen, E. (1995). Mullen Scales of Early Learning. AGS Edition. Circle Pines, MN: American Guidance Service, Inc. 2. Rutter, M., LeCouteur, A., & Lord, C. (2003). Autism Diagnostic Interview Revised. Los Angeles, CA: Western Psychological Services. www.nature.com/nature 6

3. Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (1999). Autism Diagnostic Observation Schedule WPS (ADOS-WPS). Los Angeles, CA: Western Psychological Services. 4. Happé, F. & Firth, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5-25. 5. Milne, E., Swettenhan, J., Hansen, P., Campbell, R., Jeffires, Hl., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43, 255-263. 6. Spencer, J., O Brien, J., Riggs, K., Braddick, O., Atkinson, J., & Wattam-Bell, J. (2000). Motion processing in autism: evidence for a dorsal stream deficiency. Neuro Report, 11, 2765-2767. 7. Troje, N.F., & Westhoff, C. (2006). The inversion effect in biological motion perception: evidence for a life detector? Current Biology, 16(8), 821-4. 8. Grossman, E., & Blake, R. (1999). Perception of coherent motion, biological motion, and form-from-motion under dim-light conditions. Vision Research, 39, 3721-3727. 9. Regolin, L., Tommasi, L., & Vallortigara, G. (2000). Visual perception of biological motion in newly hatched chicks as revealed by an imprinting procedure. Animal Cognition, 3, 53-60. 10. Vallortigara, G., & Regolin, L. (2006). Gravity bias in the interpretation of biological motion by inexperienced chicks. Current biology, 16(8), R279-80. 11. Vallortigara, G., Regolin, L., Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. Plos Biology, 3(7), e208. www.nature.com/nature 7

12. Jordan, H., Reiss, J.E., Hoffman, J.E., & Landau, B. (2002). Intact perception of biological motion in the face of profound spatial deficits: Williams syndrome. Psychological Science, 13, 162-167. 13. Jokisch, D., Troje, N.F., Koch, B., Schwarz, M., & Daum, I. (2005). Differential involvement of the cerebellum in biological and coherent motion perception. European Journal of Neuroscience, 21(12), 3439-46. 14. McLeod, P. (1996). Preserved and Impaired Detection of Structure From Motion by a 'Motion-blind" Patient. Visual Cognition, 3 (4), 363-392. 15. Grossman, E.D., Battelli, L., Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 45(22), 2847-53. 16. Neri, P., Morrone, M.C., & Burr, D.C. (1998). Seeing biological motion. Nature, 395(6705), 894-6. 17. Blake, R., Turner, L.M., Smoski, M.J., Pozdol, S.L., & Stone, W.L. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14(2), 151-157. www.nature.com/nature 8