Downloaded from yafte.lums.ac.ir at 17: on Friday March 22nd 2019

Similar documents
STARS. Mini-Symposium. Skeletal Muscle: Development, Adaptation & Disease. Gain Without Pain

Histone deacetylase degradation andmef2 activation promote the formation of slow-twitch myofibers

Influence of Thyroid Status on the Differentiation of Slow and Fast Muscle Phenotypes

Topics Covered. General muscle structure non-muscle components, macro-structure, contractile elements, membrane components.

Position: Associate Professor, Department of Molecular and Integrative Physiology

Muscle Contraction & Energetics

9/16/2009. Fast and slow twitch fibres. Properties of Muscle Fiber Types Fast fibers Slow fibers

Calcineurin Does Not Mediate Exercise-Induced Increase in Muscle GLUT4

Exercise Stimulates Pgc-1 Transcription in Skeletal Muscle through Activation of the p38 MAPK Pathway*

Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC

ANSC/FSTC 607 Biochemistry and Physiology of Muscle as a Food PRIMARY, SECONDARY, AND TERTIARY MYOTUBES

Session 3-Part 2: Skeletal Muscle

PSK4U THE NEUROMUSCULAR SYSTEM

Intolerance in Heart Failure

The Effect of resistance exercise training on calcineurin signaling expression in skeletal muscle of diabetic rats

Alpha Lipoic Acid Snapshot Monograph

The Journal of Physiology

Signaling Pathways in Skeletal Muscle Remodeling

( ) Downloaded from ijem.sbmu.ac.ir at 20: on Friday March 22nd 2019 VEFG. HIIT. MICT. :.

Muscles, muscle fibres and myofibrils

The effect of endurance activity on mir-499 and sox6 genes expression in fast and slow twitch skeletal muscles

The Role of Dietary Protein Intake and Resistance Training on Myosin Heavy Chain Expression

Does Pharmacological Exercise Mimetics Exist? Hokkaido University Graduate School of Medicine Shintaro Kinugawa

Thyroidal Trophic Influence Skeletal Muscle. Myosin >>>CLICK HERE<<<

Our next questions are about Contingency Management.

Correlation Between Histochemically Assessed Fiber Type Distribution and Isomyosin and Myosin Heavy Chain Content in Porcine Skeletal Muscles 1

Comparisons of different myosin heavy chain types, AMPK, and PGC-1α gene expression in the longissimus dorsi muscles in Bama Xiang and Landrace pigs

MUSCLE FIBERS. EXSC- Std. 9

Expression of mir-146a-5p in patients with intracranial aneurysms and its association with prognosis

PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity

Thyroid hormone is required for the phenotype transitions induced by the pharmacological inhibition of calcineurin in adult soleus muscle of rats

Synthesis and Biological Evaluation of Protein Kinase D Inhibitors

How does training affect performance?

Mamofillin New aesthetic perspective

Effect of High-fat or High-glucose Diet on Obesity and Visceral Adipose Tissue in Mice

Effects of cooling on skeletal muscle recovery after exercise. Arthur J. Cheng, Ph.D.

High AU content: a signature of upregulated mirna in cardiac diseases

Polarized Training Striking a Balance Between High-Volume and High-Intensity Training

Keeping Senior Muscle Strong

Human skeletal muscle is composed of a heterogenous collection of

Overtraining in the Weight Room

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages !

Chapter 4. Muscular Strength and Endurance KIN 217 3/28/18 1

RESUME Sep National Medical License, Taiwan Oct Board of Interal Medicine, Taiwan Aug Board of Cardiology, Internal Medicine, Taiwan

Exercise Intolerance in Heart Failure: Significance of Skeletal Muscle Abnormalities

Chapter 31: Adaptations to Resistance Training

Staircase in mammalian muscle without light chain phosphorylation

GENERAL MUSCLE CHARASTARISTIC AND FIBER TYPES

Test next Thursday, the 24 th will only cover the lecture

STAT1 regulates microrna transcription in interferon γ stimulated HeLa cells

Accessing and Using ENCODE Data Dr. Peggy J. Farnham

Coupling of mitochondrial function and skeletal muscle fiber type by a mir-499/fnip1/ampk circuit

Effect of skeletal muscle fibers on porcine meat quality at different stages of growth

Definition and Diagnosis of Sarcopenia for Asian the Basic Science

CURRICULUM VITAE. Bong Sook Jhun, Ph.D. DEGREE/YR/SUBJECT

bhlh transcription factor MyoD affects myosin heavy chain expression pattern in a muscle-specific fashion

Biomechanics of Skeletal Muscle

Nutritional Strategies to Support Adaptation to High-Intensity Interval Training in Team Sports

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere...

The Role of Nutrient Timing in the Adaptive Response to Heavy Resistance Training Jose Antonio, PhD, CSCS, FNSCA Tim Ziegenfuss, PhD

The functional investigation of the interaction between TATA-associated factor 3 (TAF3) and p53 protein

Activation of the MEF2 transcription factor in skeletal muscles from myotonic mice

Selective filtering defect at the axon initial segment in Alzheimer s disease mouse models. Yu Wu

Effect of diets on bovine muscle composition and sensory quality characteristics

Yewei Liu 1, Minerva Contreras 1, Tiansheng Shen 1, William R. Randall 2 and Martin F. Schneider 1

Salt Sensitivity: Mechanisms, Diagnosis, and Clinical Relevance

Eukaryotic transcription (III)

The use of fasting and glycogen depletion to enhance skeletal muscle adaptation to training

Deep-Sequencing of HIV-1

Profiles of gene expression & diagnosis/prognosis of cancer. MCs in Advanced Genetics Ainoa Planas Riverola

Lack of training adaptation and progress; just a fatigued athlete, or are we missing something.?

Declaration of conformity Adapter

Review Article Genetic Dissection of the Physiological Role of Skeletal Muscle in Metabolic Syndrome

Key words: Branched-chain c~-keto acid dehydrogenase complex, branched-chain c~-keto acid

Chapter 10! Muscle Tissue - Part 2! Pages ! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension!

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Myoglobin A79G polymorphism association with exercise-induced skeletal muscle damage

Nutrition and the Adaptation to Endurance Training

Effect of cold treatment on the concentric and eccentric torque-velocity relationship of the quadriceps femoris

Orthopaedic Related Conditions Literature Review

PRMT BIOLOGY DURING SKELETAL MUSCLE DISUSE

FAST AND SLOW MYOSINS AS MARKERS OF MUSCLE INJURY. Key words: muscle injury, serum muscle markers, fast myosin, slow myosin.

Supplementary Material Correlation matrices on FP and FN profiles

Review. Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli

Studies of Myosin Isoforms in Muscle Cells: Single Cell Mechanics and Gene Transfer

Iso-Seq Method Updates and Target Enrichment Without Amplification for SMRT Sequencing

TITLE: MiR-146-SIAH2-AR Signaling in Castration-Resistant Prostate Cancer

Spherical Bearings Heavy Duty Equipments

Expression of HIF-1α and VEGF in Skeletal Muscle of Plateau Animals in Response to Hypoxic Stress

Implications of mitochondrial skeletal muscle metabolism on diabetes and obesity before and after weight loss

Changes in the Myosin heavy chain 2 Titleisoforms of the anterior belly of t muscle before and after weaning in

UNIVERSITY OF BOLTON SPORT AND BIOLOGICAL SCIENCES SPORT AND EXERCISE SCIENCE PATHWAY SEMESTER TWO EXAMINATIONS 2016/2017

Supplementary information

Strength and conditioning? Chapter 4 Training Techniques. Weight gain (24yr, 73kg, 177cm, takes 18% protein) Guidelines.

REGULATION BY EXERCISE OF SKELETAL MUSCLE CONTENT OF MITOCHONDRIA AND GLUT4

Effect of denervation on the regulation of mitochondrial transcription factor A expression in skeletal muscle. Liam D. Tryon

Mechanical Muscles. Mechanics 1

Genetic Analysis of Anxiety Related Behaviors by Gene Chip and In situ Hybridization of the Hippocampus and Amygdala of C57BL/6J and AJ Mice Brains

Improving Muscular Strength and Endurance

Eukaryotic Gene Regulation

Transcription:

( ) 2-!"#$! (!) 0! 67-./0#$ )#$ 12 3+454-*+ 4 3 2* 1.' +!* '( ) $ &!"#.' +!* '( ) $ &!"# (.' +!* '( & 0!"# ) & 0 & / (.' +!* '( & 0!"# ) & 0& ( 75,$$ / 97 #)& / 1 # / ' $& # /! 96/12/12: 96/10/20 : 7"8 98+ 8: 98+ 8:4 ;, 21,56 4 23!"#$ &'( )*+, - '#. )/01 : @58" 2-B"8.5 28:H>?8,548 @A @8" 8 8. B"CD E B$ "FG., > - =.53.B., ;J5 9+ : :4 K5 '#. )/01,H 4--/".H @8.C #83? N58'1 2O8$H ;-, )8"?4 -. E 4, J5. 20,5L: :J, H5 8 :83Q ;8 2-, 14 8. ;-.:3Q.3 7 S5'. @"., J5 ; @# O$ -Q R 3.3 ;, P.83 7" (. 2H) Y:4 2T (. 2H) U 2T H HV ),5 J5 2,H @,H.BT ),5!"H ;, @ H.3 ] U 2T ; E,H '] 5 ;E 8. Z 83 2T,H : @$O -,H 2::4- '01,H 4--/".H @5" @A + @" HH @$ > : 8: 28T 8 @$O -,H 2::4- '01,H 2-B".5 2:H>?,54 @A + @" B3 ;,H:D ""^ ;,Q _C 8: 28T,H 4--/"8.H @58" @A + @" 'D '01,H.H5+,H:D ;,Q _C >4 7`,'1 3 2T B+ 8: 28T,H 2-B"8.5 2:H>?,54 @A + @" a HO 2$ ;,H:D ""^ ;,Q _C - 3 2T B+.(P<0/05) B3H ;,H:D >4 ;,Q _C 3 2T,H ;8@A @8",H 8""^ e8]5 E 8 ). B"CD 4 HH @$ > d /P,56 :;"TU" c,548 @A @8" 8'D '801,H 8 HO @$O -,H 2::4- '01,H 2-B".5 2:H>?,54 4--/".H @5".$ 2$ ;""^?" 4--/".H @5" @A @" @?",H ":f B >4 2-B".5 2:H>?.9+ : :4 )/01 4--/".H @5" @A 2-B".5 2:H >?,54 @A. B"CD :;"'4 ;2A -1-2 -3-4 *.!#$ &'! " : javidfathi7@gmail.com:+ ")* 68

V> MHC'>2 :> >I( V 5.2 (9-11) B (8) J 7^2 I V IIx/d 7 4 :7 : 5 l(0 @4 >; >7 5> =>? >"H >"4 5"A# W?3 ; >; >7 >/# >` 5J W?3 ; 7 /( 5E(5 <i 72 $@A# V> >7 a089!# G.(12) 2 =/2 *;.( me2 23( $;/ 5 W?3 ; ">( 7( ;2 a089!# G n @>A# 7 7T; ` ; &2 >`.>( > D>"E2 >74 5 :; 5 (!0 7B2 om @A# 7 T; O>s; >;;2 p@i 7 q/ r?2 ' ' >;7:> > >7' B =2#.2 ]>> :>3 mirna mir-206 4-@>>( '>>B7 2-1>>(2 mir-1 mir-133 ;4 "&( 5"A# 7'+ 4 @A# 7T; G4 /t2 >7 V> >` c>c2 P> n<2 5 5C 2->(2 >;7:> > '.(10) >2 ] M5 5 ( @A# " ;;Os; 5 l(0 2 ' B W?3 ; $@A# -I>( >7 O>B" 5> 5>B v;;)>( >B2 >;2 =? B 5B7+ 7 5 P&" o>m W>?3 >; 7 /( 5 ` G.(13) > >&/7 $i5 ;2 PGC-1α (11) > 2! 2-(2 ;7: ' :>3 2->(2 >;7:> > ' IH.(6,14,15) PGC-1α '>'> ^>4 >" >7 2->(2 ;7: ' 4 >( P>&"/>; >7 B/; ' 5">(5 2-(2 ;7: ' (13) '.>>2 f>( V> 4-@>( 'B7 >> ')/7>> >>7=>>?2 "&>>( $@>>A#.>> =&> /B2 C D"E2 $F?3 >7:>3 5> (2 H "&( 5"A# :+ G '!> '> >2H G> 5>) 5"/C 6"E2 5> >/# >M5>7.(1) 5 I( $J O>B3 P>&"/; 7 B/; 7 >7GQ>0 '> 5"(5 7 7 2 >5E>B RS>( &>2 7O+ F?3 >7T>; @>A# 7.(2) 2 D4 '> U>( > >7'+ '>>2 5> ;>B7 6"E2 >7 5> > IIb I (MHC) IIx/d G>2 G);( 7! W?3 ; 7 I V V> 7.(3) / OB3 W?3 ; 7 7>B X> >B >Y '> ;2 )>>B* =>>32 >> >>B >>* Z>># X> P>&" >Y II V> 7 2 [!32 ;>B7 > 5;> I>( $>F?3 5 G> (4) >( G\>0 )>B* =>32 >7'+ 232 >7 >F?3 P>2 >7>] )/7 > $62 ;Q0 7^&2 ;7' @A# T G>>0 I G>>0 G>>2 >>;2 W>>?3! O( 5 ( G; CG0 5>"/C.(5) ;> 2 I( 5B7+ 7 $62 S> 5> '2 7! ` a8 =2# c>(+ =& 5 @A#-?b# 5:7 4 ;2 4 (6) 5dC eaj A# ' 8 #E f;m.(7) >/ > > >4 '>/7> > >F?3 @>A# 7 23( 4 72 ' $33< >7 >;2 7 W?3 ; 7 /( 5 >2 ` V5 IIx/IIb V W?3 ; >7 =? cc2 232 $;/ 5i.(1) 69

e>< G)>2 5>"J2 G> '0. t) >>)+.>>270±23 >>7>>2' >>( G>5> {+ 23( $;/72 (; + =>2> '>>;> + > 14 4 53H553H29) 'C zbe2 72 (; + $B"C '0. $i( ^; ';#5 ( 10) 2 5 b $i5.> O>B3(> > '>;#5 ) ( 10 5> 5>2 B 2 ( 2 72 >( 8) >( 16 5> >72 4 G; [;( '0.:7 ( (8^; : G>/ 5>2P> >"?H $>4S2 6>( > 5>2.(17,18) > >JM >7>2 > 23( 8 =2 FJ :7]0 6( 2 23( G/ > > 23>( 4 5B"C 5 >7 $> '>2.(19) > 'C zbe2 '.( '1 ^C ;/ 5B"C &'( ;E,H :!# ;H1 >.1 Y] O7 50 23 O67 45 23 O 40 20 O;0 35 20!ty 30 15!( 25 15 53H 210#( 53H5 53H 29#( 53H5! 20 10 ^ 15 10 (53H) G/ $2 ' #( (53H 2) '! ' ( g/p )L/!>"# )> Z@* 5/ r( :7]0 G 2.(LUMS.REC.1395.172) > i '( & 0 ;>B>/ 5> >72 2/ $;/ '2!>);7.> 5> a >; >;7 5>2 >;/ o> G>@ G2>?(;2 32 72 G ' '!" 7 5!"2 50 G2) ('>'!>" >7 5>!>>"25G>@ G2 *( 89 om 4-@( 'B7 >x& c>c2 >B =2# * 4 f( 5> H 4-@( 'B7.(15) 2 ^"( / 2->(2 >;7: GQ0 ' ' t2.(9) > >/7 @A#?t 5 'B7 mrna 5 mir-1 5 72 ' * 7 >;>2 >t2 '+'> > =>b24-@>(.(16) 2 @A# 7^"( / cc2 5 >"H 23>( $>;/ 5>&; G s 5>&; (8) 5> >; V> >75y 4 :7 >7 T; G4 ' v;;)( 7B2 >7' =>2# $>` *;> > ><2 :3 4-@>( 'B7 2-(2 ;7: 23>( $>;/ >8 W?3 ; ; 7 T>; >` >&2 7>( ( G&/2 e7g.( G 23( 4 8 7 23( 4 7 89 ( FJ :7]0 2->(2 >;7:> > >7' '> > >; >; V> "&( $@A# 4-@( 'B7.( B <i 72 J, H5 '> > 23>( 4 8 8 FJ :7]0 '>B7 2->(2 >;7:> > 7' 5> W>?3 >; ; "&( $@A# 4-@( >2 >( 20 >s;2 G>.> > (!>110±10) G>( 5>67 4 > >B <i.> >* '>( & 0!"# ) 2 >(() 7)>2+ c(;2 r 7'+ 2/ &> ;> > >2 zbe2 a{ f+ 5 + (>>( 5>C24±3 2 G)2 #( 12:12 8) }>"G>(5'( )2+ 'B& $i 5 '>B& ~6H572 $2 G. O7( 70

^b<2 74 84 137 =>J2!/. 6( (cdna Synthesis kit k1621. $i ( =/4( o?m ;( @A @" -, Real Time PCR)>( ' ' tc > 6>( ~&2>B2. 6( Corbett.> >2+ >t >& > 5> o"42 5"J2 G '>2 >( > =/4>( o>?m ~&2>B2 >? 5/ P e7 ~ 7' 0/4) >>> >>>/0 (>>>&2 10) ~&2>>>B2 1) cdna (>&20/4) > /0 (&2 5> >s (&28/2) ~ f+ (&2.> >?>B 6( ' >6;2 ^>; '>;#5> 5/ P("&( 36) ' '2 Run =/4>( o>?m) ~&2>B2 >+ G>4 > > '+ NTCAmplification >? Corbett >"* ^>; >7' > 5> >s (> 1 4-@('B7 (^; )?x2 ^; (Beta) P> ) '>2O>7 2->(2 >;7:>. 5( $i575/. 7 (Run 2 '2+ 5 2 * ( d 5!X. & $i 5 & >,H 2HE.H,5 ; )V($.2 Y] IC2 NCBI NM 017008.4 XM 003749164.1 NM 053449.1 5 `-3`! GATCAAGATCATTGCTCCTCCTG F BetaActin AGGGTGTAAAACGCAGCTCA R AGTGCAGGTAACACAGGTGG F MEF2 GGTTACCAGGTGAGACCAGC R AACCTAACCTGAAATTACGGTC F HADC4 ACATGCGGAGTCTGTAACATC R >7P>< 5> 7@272 5M5. R ~ ( ;7 l(0 B - RNA h(. 1000 5>> >>!>>>>"2 50-100 r>( ~ >( > 5>F '+ 5> ^> &2 300'+ >4 ' >/7 P>( >& )>( >s >2 ^>"<2 > 5>F!>">&2 l 53H15$25 ~ ( ( 0) "E2 *5 =>* s>2 ^"<2 $2 G 4 t) H('/+ *( Tlettich) 6( )( 4.(( 5C 42 12000 53H 15) 5 OB3 /BH 3 5 ^"<2 6( )( " />( 5"(5 2+5 RNA( e6 5X ^>3 >) a f&2 5 (BRAND) 5>>F '+ 5>> ^>>00 >>&2 500 >> l> 5>3H 10 $2 5 ( 0) "E2 *5 (RNA) f>&2 5 v6( f(. t) )+ B X 1000 '25 i 70 =& 5>C475005>3H 10 $>2 5> 6>( =>* 53H 10 $2 5 ~ ( H( 5> a(uv > i 75 =& =() 7 ~> f+ >X 20 17 4 5"J2. P* =* \H tc =J f&2 5 f( '2. 5 a (BiowaveII) WPA )(?>B > )>( 6>( > RNAz>"* >7?>B 5> 280nm 260nm ƒ2^m.(20) ; H1/81/6 5;2 2+ (5 CDNA?:. 5>!>H s>2 >7 RNA ƒe( 4 CDNA ;>( > > G. Revert Aid first Strand CDNA;( )>2+ >t >& > 97 / 71

'>>B7 '?>>B '>> '>>2 >>"4 5">>A# O>{"# 7 5?B G/ 4-@(.>( 5> >;42 >` 2+ < 5 :7 > '?>B '> '>2 5"A# G/7 G; /7 5?B ;/ 2-(2 ;7: '> >;42 :7> >2+ >< 5> 7>.(P<0/05) ;"TU" c "&>( 5">A# &>2 >Y G/ :> >(/7 >?t c>c2 >7>2 : >4 '> > >?t G>.> >2 2@( >4/2 >&2 RS>(.>( &2 7O+ >7;; 4/2 * 5"(5 7' G o>m II V> 4-@( 'B7 ' ;4 B $>i 2->(2 ;7: ' '"24 ' 5> >( "&> 5 ' G =24.(21) 2 ' 4 "C # 4-@( 'B7 >>'.>> >>2 2->>(2 >>;7:>> > >" >;;O>s; 2->(2 >;7: W>?3 ; $@A# ] M5 5 (1) ( @A# > ' 89> 5 5C(22) 2 ' B >Y >?t > ^>4 2->(2 >;7: '>>>>2 "&>>( $@>>A# >>B 23>>( >7/ '2 7?0 7i >) M (10) t2 "&( $@A# r?2 5 - - - ;,Q?"CQ Real Time PCR )>( >2+(5 7 >!> 5> ~ >( Os;2 Excel. ^3! 6( RG-Rest 2009 @" @?" - Rest-RG,?N - ]P )1/6.3 Y] 2:H >?,54 4--/".H @5" @A + P(H1) 0/61 0/08 0/82 @$O -,H 2::4- '01,H 2-B".5 42 S* 6/033-0/198 10/762-0/461 4/07-0/207 '2 ' 1/20 1/94 0/93 :; 0/82 0/73 0/75 ' V 54S22 ~ e7 e7 ~> ' AJ ') ;; 5"A# > 4-@>( '>B7'?>B ' '2 ' 'B7 4-@( ;7: 2-(2 Beta < 5 : O{"# 7 5B32 G/. 72 ;42 ` 2+ ->(2 ;7: '?B ' '2 ' AJ ;/ ') ;; 5"A# 2 < 5 :7 O{"# 7 5B32 ~. 72 ;42 ` 2+ @" @?" - Rest-RG,?N - ]P )1/6.4 Y] 2:H>?,54 4--/".H @5" @A + 'D '01,H 2-B".5 $@A# 7@( 'B7 Ot2 ; P PKD >7; GQ0 G E ' ( "&( 5 P(H1) 42 S* '2 ' :; ' V 54S22 ' '>B7 > =>24 5> @>A# >7>( > - 0/61 3/75-0/33 1/31 0/82 ~ 7( t;5?b 7@( q 23>( >4 5> +) P>2 ^>4!># - 0/47 3/35-0/21 0/81 0/75 e7 'B7 4-@( >7 >) > =>24 5>&" > (>72.(23) Ot( 5"A# *( B :7 0/00 1/41-0/27 0/62 0/78 e7 ;7: 2-(2 72

> ' '> :> 7>2!># O>{"# a2 23>( >4 >8 2->(2 >;7:> 23>( >;/ >{ > 5?B 72+ ;/ =&0 O7 5M5 '> > 53H 2 23 #( 53H 50 '>&/7 ˆ?;) >( $>33< > 5> >>2.(2) E/7 >< 2->(2 >;7:> ' Os; '>>B7 AMPK v;;)>>( >>B2 >>+ ^>>; G>/ 5> /s; l(0 $2 PGC-1 5-@( ` V ` " =2#.(24) ( 23( $> O 2!2 :.( OB" 'C '2 '>> ^>>4 c>>c2 ">>(' O>>B" '>>2 '>(@6B c?( GB. 2 GB 5"6>B NFAT ~ >( > NFAT B o>m >+ > >J 5>B7 =>* 5 >> ' >>* >>B >>>>(^>>4 >7 >B >{+ cc2 2-(2 ;7: '>2 >; :> 2 [(22) 2 W?3 ; NFAT > G> >B (^4 cc2 OB" c> G> >2H> > 5"6>B >J W?3 ; 7 ' 52 5B7 / $>;/ >8 O> >"*! O>B&2.22 c{ 5> > t; 5.2 Z6 V> />( 5> 7 =? 2 @A# " y G>/ >212>J q p>f5> W>?3 >; :> 5> >;2 >&& P>< >(5*y MHC-IIx :7> > '/7 5 MHC- >E/7 >FJ :7]0 75 5 (16) ( 5">A# 4-@>( 'B7' ' `!#. 5> > => G> 5 ( G&/2 :7]0 G "4 > f>b<2 "&( $@A# G; "4 5"A# '>>B7 ' '>> '>> :7]>>0 G>> >> >;/ ') ;; 5"A# 4-@( '> >& >;42 ` 7 5B32 >;; 5">A# 2-(2 ;7: ' ;/ { 5B32 ;/ ').>? >;42 >2+ >< >2 :7> O>{"# 4-@>( 'B7' ' "45"A# G; /7 >;42 >` 7> > 5>?>B ;/ >;7:> > ' '>>2 >) 7>2 7> > 5B32 ;/ 2-(2 > '. ' ;42 :7 2+ < II V> U@>4-@>( '>B7 >7GQ>0 5> >;7:> > >B > ;; 4/2) > 5>B32 (>; 5">A#) "4 5"A# (2-(2 5(19) ; I/ ;/(; 5"A#)?C Gt0 =&> 5> >. 3S2 FJ 54S2 $@>A# 2->(2 ;7: ' 4 >7 =& cc2 P ~ 72 "&( 5>(12) > >2 >7'+ 23( : W?3 ; '/7?3 (2 H 72 '>B7 >E f>( G>; [> >* # cc2( G&/2; $@A# II V U@ @( 232 C : 5 /B&2 >;7:> 4 : 5"(5 )B*.(22) 5 ^? 5 2-(2 c>>c2 >> >>4 5>> '>> $>>4S2 7 G 5 2 B 7 ` 5>? >;7>2 l>(0 23( 74 5 ibe2 :7> : 2 $` G 5 + B~0 7=4 2 5&" (2) B ' ' >7GQ>0 '>(@6B '(@6B ;2 o>3< 72+ 72 (1) C2 97 / 73

>.>2>2 H> >` '> 4 =?H ' >B7 >7GQ >0O>(@0( 5>B7 > > G> 5>C > 3S;2 t;0 5/4@( 5> l>(0 3> 7; (^4 '+ ~0.( > 5/4@( 'B7 e7 ( G&/2 5 >H > 2 7GQ0 5B7 ƒ* II '>(@6B >;42 :> 5> '> >J 23( G/ 5B"C P 4 AMPK camk '>B7 '>(@6B c>c2 ;;.72 q 5 5B7 7'+ ƒ* cc2 U@ @( >7'+ >4 $>ig (24) 2 O(@0( > ' >4 > i G; 72 :7. 2 O7 2-(2 ;7: 5> '> >FJ :7]>0 > 5>i@* M5 ' ` cc2 8 $2 5 23( 4 >;7:> > 4-@>( '>B7 >7' 2 ) ') ;; 5"A# 2-(2 :7> 2->(2 ;7: ' "4 5"A# 4-@>( '>B7' ' '2 M GQ>0 '>2:7]0 G. 72 ` >;+ $>33< 2 t;0 a >4 >( >2 >7' >B~>0 $>` ') ;; $@A# 23( 74. ( "4 H,g #$ ></<2 'H+ /;7 '0 7 $33< 2 '; /J GBJ >0 7 ' O* ( zbe"# 7.2 H &/(F 2~ 4( ' :>7 >` cc2 4-@( 'B7 ' `. 2 6;2 ^; 2-(2 ;7: -(2 ;7: ' ' 5 M'/7 >3 > '+ '> : 5 ( 7 5"/C 2 ; V 5 @A# 7 4-@( 'B7 ' /.(11) ( /7 X> >i $ >"4 5">A# 5>>+ >i 11 I V 7 i 89) W?3 ; 7 =>? >` >Y (2 s 5 ( V 7 >( O> >B >; V> >7 />( 5> 7 G >E/7 >FJ :7]>0 >75> 5 (19,23,25) RS( G ' ` (2 s 5. 5>&; >) 5>& 5> >F ~> :>0 >7:E G; /7 B~0 $@4 5 B2 > 5>C O>7 5>B7 O>(@0( ;2 "( >(5>*y 7]0 '&/7 P2.(26) '> #>( P> > VO2Peak i 75?3 '>2 >(5>*y 5>3H 60 ^>? 5> 5> '>B7 >975 4>7!>!> 8 G/?C Gt0 5"A# ' mrna U@ @( [ E/7 FJ :7]0 75 5 22 H >>2 :7> '+ 5B7 5 4 7! '2 2 =>&0 5">A# V 72+ 75/;y7.(26) >75> >2 >( $>62 >7:7]0 G ;/ 5">A# 2 :7]0 G (26) P2 :7]0 > >7>4 5> ' 5 *O7 "4 G>&/2 > >7' >* ' : 5 ;2 2 > >` '> &"/# >7'+ '> C ( '>B7 '>2 5> >) >7]0 G>; /7.; > > 5>?B 5B7 U@ @( '>>B7?>>B >>t; >>4 >> 7>>2 >7'+ GQ>0 '>2 5:7 5B7 5/4@( 74

References 1. Cohen TJ, Choi MC, Kapur M, Lira VA, Yan Z, Yao TP. HDAC4 regulates muscle fiber type-specific gene expression programs. Mol Cells. 2015; 38(4): 343-348. 2. Spangenburg EE, Booth FW. Molecular regulation of individual skeletal muscle fibre types. Acta Physiol Scand. 2003; 178(4): 413-424. 3. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011; 91(4): 1447-1531. 4. Claflin DR, Larkin LM, Cederna PS, Horowitz JF, Alexander NB, Cole NM, et al. Effects of high- and low-velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. J Appl Physiol (1985). 2011; 111(4): 1021-1030. 5. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996; 76(2): 371-423. 6. Talmadge RJ. Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve. 2000; 23(5): 661-679. 7. Pette D. The adaptive potential of skeletal muscle fibers. Can J Appl Physiol. 2002; 27(4): 423-448. 8. Bigard XA, Janmot C, Merino D, Lienhard F, Guezennec YC, D'Albis A. Endurance training affects myosin heavy chain phenotype in regenerating fast-twitch muscle. J Appl Physiol (1985). 1996; 81(6): 2658-2665. 9. Naya FJ, Olson E. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol. 1999; 11(6): 683-688. 10. Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slowtwitch myofibers. J Clin Invest. 2007; 117(9): 2459-2467. 11. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slowtwitch muscle fibres. Nature. 2002; 418(6899): 797-801. 12. Wynne B. Encyclopedia of Global Health. American College of Sports Medicine (ACSM). SAGE Publications, Inc. 2015. 13. Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, et al. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J. 2001; 20(22): 6414-6423. 14. Akimoto T, Sorg BS, Yan Z. Real-time imaging of peroxisome proliferatoractivated receptor-gamma coactivator- 1alpha promoter activity in skeletal muscles of living mice. Am J Physiol Cell Physiol. 2004; 287(3): C790-796. 15. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 2004; 119(4): 555-566. 16. Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol. 2011; 195(3): 403-415. 17. Sturgeon KM, Ky B, Libonati JR, Schmitz KH. The effects of exercise on cardiovascular outcomes before, during, and after treatment for breast cancer. Breast Cancer Res Treat. 2014; 143(2): 219-226. 18. Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S. Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of 97 / 75

mitochondrial targeting nutrients. Life Sci. 2010; 86(1): 39-44. 19. Fathi M, Gharakhanlu R. The Effect of one Session Resistance Exercise on Hdac4 gene Expression in Slow and Fast Twitch Muscles of Male Wistar Rats. Journal Ilam Univ Med Sci. 2016; 24(2): 149-157. 20. Rio DC, Ares M, Jr., Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010; 12(6): 39-54. 21. McGee SL. Exercise and MEF2-HDAC interactions. Appl Physiol Nutr Metab. 2007; 32(5): 852-856. 22. Harridge SD. Plasticity of human skeletal muscle: gene expression to in vivo function. Exp Physiol. 2007; 92(5): 783-797. 23. Vissing K, McGee SL, Roepstorff C, Schjerling P, Hargreaves M, Kiens B. Effect of sex differences on human MEF2 regulation during endurance exercise. Am J Physiol Endocrinol Metab. 2008; 294(2): E408-415. 24. Saleem A, Safdar A. Exercise-induced histone acetylation - playing tag with the genome. J Physiol. 2010; 588(6): 905-906. 25. Putman CT, Xu X, Gillies E, MacLean IM, Bell GJ. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol. 2004; 92(4): 376-384. 26. McGee SL, Fairlie E, Garnham AP, Hargreaves M. Exercise-induced histone modifications in human skeletal muscle. J Physiol. 2009; 587(24): 5951-5958. 76

The effect of endurance activity on the HDACA4 and MEF2 gene expression in skeletal muscles of male Wistar rats Bahrami F 1, Fathi M * 2, Ahmadvand H 3, Pajohi N 4 1.PhD student in physiology, Department of Physical Education and Sport Sciences, Lorestan University,khorammabad,Iran. 2. Assistant professor, Department of Physical Education and Sport Sciences, Lorestan University, khorammabad,iran, javidfathi7@gmail.com 3. Full Professor, Biochemistry, Faculty of Medical Sciences, Lorestan University of Medical Sciences, khorammabad,iran. 4. Assistant Professor, physiology, Faculty of Medical Sciences, Lorestan University of Medical Sciences, khorammabad,iran. Received: 10 Jun 2018 Accepted: 3 March 2018 Abstract Background : Skeletal muscles are composed of various contracted fibrils, which are mainly divided into fast-twitch and slow-twitch. This study aimed to investigate 8 weeks endurance activity on the MEF2 and HDACA4 gene expression in fast-twitch and slow-twitch skeletal muscles in male Wistar rats. Materials and Methods: in order to carry out this study, 20 heads of male Wistar rats, age 4 weeks (110± 10), were bought from the Razi Institute of Lorestan Medical University. The same laboratory conditions were provided for the rats for the completion of 14 days of an endurance familiarization course to teach running on treadmill. At the end of this course, the rats were randomly divided into 2 groups. Experimental group (n=10 head) and control group (n= 10 head). An eight week endurance program, 5 sessions per week, was performed for the experimental group. Results: this study showed that there was no significant change in the relative gene expression of HDACA4 and MEF2 in EDL muscle in either group (P>0.05). However, the relative gene expression of MEF2 in the experimental group was not statically significant in comparison to the control group (P>0.05). In sol muscles, there was no statically significant changes in either group s gene expression. The relative gene expression of MEF2 in the experimental group showed a statistically significant reduction in comparison to the control group (P>0.05). Conclusion: in summary, the results of this research have shown that doing 8 weeks endurance exercises did not cause any changes in HDAC4 and MEF2 gene expression in EDL muscle. Although in the SOL muscle, MEF2 gene expression decreased, no changes in the level of HDAC4 gene expression were observed. Keywords: Endurance activity, MEF2 gene, HDACA4 gene, Slow twitch and fast- twitch muscles *Citation: BahramiF, Fathi M, Ahmadvand H, Pajohi N. The effect of endurance activity on the HDACA4 and MEF2 gene expression in skeletal muscles of male Wistar rats. Yafte. 2018; 20(1):68-77. 97 / 77