Prognostic Factors of Atypical Meningioma : Overall Survival Rate and Progression Free Survival Rate

Similar documents
Meningiomas are the most common type of primary. Atypical meningiomas: is postoperative radiotherapy indicated?

Meningiomas represent between 13 and

Stereotactic Radiosurgery of World Health Organization Grade II and III Intracranial Meningiomas

Title. CitationPLOS One, 9(5): e Issue Date Doc URL. Rights(URL) Type.

Rapid recurrence of a malignant meningioma: case report

Treatment outcomes and prognostic factors of gallbladder cancer patients after postoperative radiation therapy

Analysis of the outcome of young age tongue squamous cell carcinoma

Survival and Intracranial Control of Patients With 5 or More Brain Metastases Treated With Gamma Knife Stereotactic Radiosurgery

Original Article The potential risk factors for atypical and anaplastic meningiomas: clinical series of 1,239 cases

11/27/2017. Modern Treatment of Meningiomas. Disclosures. Modern is Better? No disclosures relevant to this presentation

Characterization of morphologically benign biologically aggressive meningiomas

Treatment Strategy of Intracranial Hemangiopericytoma

Clinicopathological Factors Affecting Distant Metastasis Following Loco-Regional Recurrence of breast cancer. Cheol Min Kang 2018/04/05

Relation between the Peripherofacial Psoriasis and Scalp Psoriasis

Laboratory data from the 1970s first showed that malignant melanoma

Factors associated with survival in patients with meningioma

Ependymomas: Prognostic Factors and Outcome Analysis in a Retrospective Series of 33 Patients

Prognostic factors in atypical meningioma

Postoperative LINAC-Based Stereotactic Radiotherapy for Grade I Intracranial Meningioma in Subtype Classification

Radiotherapy for intracranial meningiomas SAMO Interdisciplinary Workshop on Brain Tumors and Metastases November 2016

WHO [2007] GRADING OF MENINGIOMA

Malignant Transformation of Craniopharyngioma without Radiation Therapy: Case Report and Review of the Literature

PROCARBAZINE, lomustine, and vincristine (PCV) is

Histopathology and MIB-1 Labeling Index Predicted Recurrence of Meningiomas. A Proposal of Diagnostic Criteria for Patients with Atypical Meningioma

Although meningiomas are the most common primary. Survival in patients treated for anaplastic meningioma

Factors associated with survival in patients with meningioma

ASJ. Myxopapillary Ependymoma of the Cauda Equina in a 5-Year-Old Boy. Asian Spine Journal. Introduction

Neurological Change after Gamma Knife Radiosurgery for Brain Metastases Involving the Motor Cortex

Collection of Recorded Radiotherapy Seminars

Adjuvant radiation therapy, local recurrence, and the need for salvage therapy in atypical meningioma

Postoperative Radiotherapy for Completely Resected Stage II or III Thymoma

Only Estrogen receptor positive is not enough to predict the prognosis of breast cancer

ASJ. Surgical Outcomes of High-Grade Spinal Cord Gliomas. Asian Spine Journal. Introduction

Dynamic Contrast-Enhanced Perfusion MR Imaging Measurements of Endothelial Permeability: Differentiation between Atypical and Typical Meningiomas

Prognostic value of visceral pleura invasion in non-small cell lung cancer q

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES

Meningiomas account for approximately 4% of all

Outcomes Following Negative Prostate Biopsy for Patients with Persistent Disease after Radiotherapy for Prostate Cancer

The Younger Patients Have More Better Prognosis in Limited Disease Small Cell Lung Cancer

Rare Small Cell Carcinoma in Genitourinary Tract: Experience from E-Da Hospital

Treatment and prognosis of type B2 thymoma

Coexistence of parathyroid adenoma and papillary thyroid carcinoma. Yong Sang Lee, Kee-Hyun Nam, Woong Youn Chung, Hang-Seok Chang, Cheong Soo Park

After primary tumor treatment, 30% of patients with malignant

The effect of delayed adjuvant chemotherapy on relapse of triplenegative

Efficacy of Treatment for Glioblastoma Multiforme in Elderly Patients (65+): A Retrospective Analysis

IAP XXVI International Congress Slide Seminar 07 (SS07)

A Population-Based Study on the Uptake and Utilization of Stereotactic Radiosurgery (SRS) for Brain Metastasis in Nova Scotia

INTRODUCTION. Tae Yong Park, Young Chul Na, Won Hee Lee, Ji Hee Kim, Won Seok Chang, Hyun Ho Jung, Jong Hee Chang, Jin Woo Chang, Young Gou Park

Patient age and cutaneous malignant melanoma: Elderly patients are likely to have more aggressive histological features and poorer survival

Xiang Hu*, Liang Cao*, Yi Yu. Introduction

A Study of relationship between frailty and physical performance in elderly women

Clinical analysis of 29 cases of nasal mucosal malignant melanoma

Anaplastic Meningioma Presenting as a Left Parietal Mass: A Case Report

Radiation Therapy for Liver Malignancies

Locoregional treatment Session Oral Abstract Presentation Saulo Brito Silva

Clinical Study Mucosal Melanoma in the Head and Neck Region: Different Clinical Features and Same Outcome to Cutaneous Melanoma

Introduction ORIGINAL RESEARCH

Local radiotherapy for palliation in multiple myeloma patients with symptomatic bone lesions

A survey of dental treatment under general anesthesia in a Korean university hospital pediatric dental clinic

Bone Metastases in Muscle-Invasive Bladder Cancer

NON MALIGNANT BRAIN TUMOURS Facilitator. Ros Taylor Advanced Neurosurgical Nurse Practitioner Southmead Hospital Bristol

As with other brain tumors, patients with meningiomas

Rapid Regrowth of Intracranial Clear Cell Meningioma After Craniotomy and Gamma Knife Radiosurgery

Risk Factors and Tumor Recurrence in pt1n0m0 Gastric Cancer after Surgical Treatment

Peritoneal Involvement in Stage II Colon Cancer

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

A retrospective analysis of survival and prognostic factors after stereotactic radiosurgery for aggressive meningiomas

A study on clinicopathological features and prognostic factors of patients with upper gastric cancer and middle and lower gastric cancer.

Lower lymph node yield following neoadjuvant therapy for rectal cancer has no clinical significance

ORIGINAL ARTICLE. Clinical Node-Negative Thick Melanoma

ORIGINAL PAPER. Marginal pulmonary function is associated with poor short- and long-term outcomes in lung cancer surgery

Intra-cranial malignant peripheral nerve sheath tumor of olfactory nerve: a case report and review of literature

The Impact of Adjuvant Chemotherapy in Pulmonary Large Cell Neuroendocrine Carcinoma (LCNC)

Are there the specific prognostic factors for triplenegative subtype of early breast cancers (pt1-2n0m0)?

Poor Outcomes in Head and Neck Non-Melanoma Cutaneous Carcinomas

Evidence Based Medicine for Gamma Knife Radiosurgery. Metastatic Disease GAMMA KNIFE SURGERY

Prognostic Factors for Node-Negative Advanced Gastric Cancer after Curative Gastrectomy

Biomedical Research 2017; 28 (21): ISSN X

Elective neck treatment in clinically node-negative paranasal sinus carcinomas: impact on treatment outcome

Prediction of Cancer Incidence and Mortality in Korea, 2018

Characteristics and prognostic factors of synchronous multiple primary esophageal carcinoma: A report of 52 cases

An Updated Nationwide Epidemiology of Primary Brain Tumors in Republic of Korea, 2013

Implications of Progesterone Receptor Status for the Biology and Prognosis of Breast Cancers

Advances in gastric cancer: How to approach localised disease?

NON-SURGICAL STRATEGY FOR ADULT EPENDYMOMA

Giant wing sphenoid meningioma with principal manifestation depression

Rare case of multiple meningiomas in nonneurofibromatosis

Recurred Intracranial Meningioma: A Retrospective Analysis for Treatment Outcome and Prognostic Factor

We have previously reported good clinical results

Clinical Concerns about Recurrence of Non-Functioning Pituitary Adenoma

Long-term Follow-up for Patients with Papillary Thyroid Carcinoma Treated as Benign Nodules

Jinsil Seong, MD 1 Ik Jae Lee, MD, PhD 2 Joon Seong Park, MD 3 Dong Sup Yoon, MD 3 Kyung Sik Kim, MD 4 Woo Jung Lee, MD 4 Kyung Ran Park, MD 5

Regression of Advanced Gastric MALT Lymphoma after the Eradication of Helicobacter pylori

Case Report Multiple Intracranial Meningiomas: A Review of the Literature and a Case Report

Radiotherapy and Conservative Surgery For Merkel Cell Carcinoma - The British Columbia Cancer Agency Experience

Significance of Ovarian Endometriosis on the Prognosis of Ovarian Clear Cell Carcinoma

Prognostic significance of stroma tumorinfiltrating lymphocytes according to molecular subtypes of breast cancer

Tumor necrosis is a strong predictor for recurrence in patients with pathological T1a renal cell carcinoma

Research Article Have Changes in Systemic Treatment Improved Survival in Patients with Breast Cancer Metastatic to the Brain?

Comparison of prognosis between patients with renal cell carcinoma on hemodialysis and those with renal cell carcinoma in the general population

Transcription:

Clinical Article J Korean Neurosurg Soc 60 (6) : 661-666, 2017 https://doi.org/10.3340/jkns.2017.0303.008 pissn 2005-3711 eissn 1598-7876 Prognostic Factors of Atypical Meningioma : Overall Survival Rate and Progression Free Survival Rate Jae Ho Lee, M.D., 1 Oh Lyong Kim, M.D., 1 Young Beom Seo, M.D., 1 Jun Hyuk Choi, M.D. 2 Departments of Neurosurgery, 1 Pathology, 2 Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea Objective : Atypical meningioma is rare tumor and there is no accurate guide line for optimal treatment. This retrospective study analyzed the prognostic factors, the effect of different methods of treatments and the behavior of atypical meningioma. Methods : Thirty six patients were diagnosed as atypical meningioma, among 273 patients who were given a diagnosis of meningioma in the period of 2002 to 2015. Age, gender, tumor location, Ki 67, Simpson grade and treatment received were analyzed. We studied the correlation between these factors with recurrence, overall survival rate and progression free survival. Results : Median overall survival time and progression free survival time are 60 and 53 (months). Better survival rate was observed for patients less than 50 years old but with no statistical significance (p=0.322). And patients with total resection compared with subtotal resection also showed better survival rate but no statistical significance (p=0.744). Patients with a tumor located in skull base compared with patients with a tumor located in brain convexity and parasagittal showed better progression free survival (p=0.048). Total resection is associated with longer progression-free survival than incomplete resection (p=0.018). Conclusion : We confirmed that Simpson grade was significant factor for statistically affect to progression free survival in univariate analysis. In case of skull base atypical tumor, it is analyzed that it has more recurrence than tumor located elsewhere. Overall survival was not affected statistically by patient age, gender, tumor location, Ki 67, Simpson grade and treatment received in this study. Key Words : Malignant meningioma Mortality Progression free survival. INTRODUCTION Meningiomas are relatively slow-growing benign lesions arising from the arachnoid cells that form the meninges and account for 1326% of intracranial tumors. The World Health Organization (WHO) Classification of Tumors of the Central Nervous System recognizes three grades of meningiomas. The choroid, clear cell, and common atypical meningiomas correspond to a WHO grade II classification. WHO grade III meningiomas are associated with aggressive growth patterns that reflect their clinical and histopathological features of malignancy and spread by metastatic dissemination. WHO grade I meningiomas most often occur in women and are associated with a relatively good outcome 2,5,6,9,16). Accord- Received : March 31, 2017 Revised : June 29, 2017 Accepted : July 3, 2017 Address for reprints : Jae Ho Lee, M.D. Department of Neurosurgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea Tel : +82-53-620-3790, 3792, Fax : +82-53-620-3770, E-mail : sasimi9332@naver.com This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright 2017 The Korean Neurosurgical Society 661

J Korean Neurosurg Soc 60 November 2017 ing to the current WHO classification, between 5% and 15% of meningiomas are atypical (grade II), whereas 12% are anaplastic meningiomas (grade III) 13). Because of the rarity and discordant pathologic criteria of atypical meningioma, the literature on the natural history and treatment of atypical meningioma is relatively scarce 7,11). In comparison with the relatively good prognosis of benign meningiomas, atypical meningiomas are more locally aggressive and progress more rapidly. The distinction between benign and atypical or malignant meningioma represents important surgical information because surgical and treatment planning as well as prognostication will depend on the pathologic type 20). Gross total removal is the accepted standard of care for benign meningiomas; however, an optimal surgical management for atypical meningiomas has yet to be established 10,12). In addition, despite optimal surgery, local recurrences occur frequently. Putative predictive factors of tumor recurrence and overall survival (OS) in high-grade meningiomas are age, extent of resection, histological grade, and proliferative markers 8,14,15,19). This retrospective study analyzed the prognostic factors, effect of different treatment methods, and behavior of atypical meningioma. (MRI) scans. Information on postoperative courses was obtained from records of outpatient clinics, phone contacts, and questionnaire by mail. Methods Patients were considered recurrent if there was a pathological documentation of recurrence, radiological documentation of recurrence or progression, or specific exacerbation of presenting symptoms. The indicated time to survival and absence of disease or recurrence/progression were calculated from the day of surgery. The median follow-up period was 63.9 months (range, 12158 months). Age at diagnosis was defined according to the date of first surgery for atypical meningioma. Surgical resection was evaluated according to the Simpson grading scale using the operative records and post-operative images. We defined total resection as Simpson grades I and II and incomplete resection or subtotal resection as Simpson grades III, IV or V. Complete resection (Simpson grade I or II) was achieved in 30 patients; the remaining 6 patients had incomplete resection (Simpson grade III, IV, or V). In addition, 6 patients received postoperative adjuvant conventional radiotherapy. Among them, 3 received whole brain radiotherapy (60 Gy, 50 Gy, and 45 Gy) and 3 received gamma knife radiosurgery. MATERIALS AND METHODS Clinical material We retrospectively reviewed the records of all patients who were treated for atypical meningioma between 2002 and 2015 at Yeungnam University Medical Center. Among 273 patients who were diagnosed with meningioma, atypical meningioma was diagnosed in 41 patients. Subsequently, 36 patients were enrolled in this study; the other 5 patients were either lost to follow-up or had incomplete records and were excluded from this evaluation. Histology slides were not reviewed but all pathology reports were carefully examined. Data were collected from reviews of clinical records and neuroradiological investigations. Information on age, gender, tumor location, the presence or absence of postoperative radiotherapy, extent of surgical resection, and treatment received were individually obtained (Table 1). We studied the correlation between these factors and recurrence, OS, and progression-free survival (PFS). The extent of surgical resection was determined from operative notes or postoperative magnetic resonance imaging Table 1. Clinical characteristics Characteristic Frequency Age <50 9 (25.0) 50 27 (75.0) Sex Male 16 (44.4) Female 20 (55.6) Location Skull base 11 (30.6) Parasagittal 12 (33.3) Convexity 13 (36.1) Surgery Total (Simpson grade I II) 30 (83.3) Subtotal (Simpson grade III V) 6 (16.7) Ki-67 >15% 14 (46.6) 15% 22 (53.4) RTx. (+) 6 (16.7) (-) 30 (83.3) Values are presented as number (%). RTx. : radiation therapy 662 https://doi.org/10.3340/jkns.2017.0303.008

Prognostic Factors of Atypical Meningioma Lee JH, et al. Recurrence was defined as a radiological recurrence that corresponds to the radiological evidence of tumor regrowth in case of total resection, or to a residual tumor progressing, in case of incomplete resection. Recurrence was defined as radiological relapse, corresponding to radiological evidence of whether there was tumor progression in cases of incomplete resection (progression-free survival). Statistical analysis Cumulative survival 1.0 0.8 0.6 0.4 0.2 0.0 Subtotal Total 0 50 100 150 200 Fig. 1. The extent of surgical resection had a significant impact on PFS. PFS : progression free survival, Total : total removal of mass, Subtotal : subtotal removal of mass. PFS Statistical analysis was performed using SPSS software (Microsoft Windows, Chicago, IL, USA). Survival statistics were based on time to death, measured from the age at diagnosis to the date of last follow-up or decease when related to meningioma surgery or progression. Survival function was assessed by the Kaplan-Meier method, and the Mantel-Cox log-rank test was used to compare different survival functions according to clinical and therapeutic factors. A p value of <0.05 was considered as statistically significant. For the analysis, we considered radiotherapy as any form of radiation therapy. RESULTS Between 2002 and 2015, 273 meningiomas were operated on at our institute: of these, 232 (84.9%) were benign, 41 (15.1%) were atypical. Among 41 patients who diagnosed at atypical meningioma, 36 patients (5 patients were follow up loss) survived until the end of the follow-up period, and the 5-year OS rate was 100%. In our study, there was female predominance in atypical meningioma, and numbers of male and female were 16 (44%) and 20 (56%), respectively. The mean duration of preoperative symptoms and signs was 7 months. There were no differences between atypical and other meningiomas in relation to their typical symptoms and signs. The location of tumor were as follows : convexity of the skull 13 (36.1%) patients; parasagittal 12 (33.3%) patients; skull base 11 (30.6%) Table 2. Statistical analysis of prognostic factors affecting PFS and OS Factor PFS OS Univariate HR Multivariate HR Univariate HR Age 50 0.243 0.456 ND 0.322 34.541 Sex Female 0.465 0.612 ND 0.315 2.322 Skull base 0.017 5.422 0.048 4.297 0.450 1.784 Parasagittal 0.373 0.489 ND 0.261 0.297 Convexity 0.155 0.220 ND 0.641 1.428 Surgery Subtotal 0.018 5.531 0.074 4.046 0.744 0.703 Ki-67 >15% 0.316 1.966 ND 0.377 1.966 RTx. Yes 0.296 2.115 ND 0.715 0.674 PFS : progression free survival, OS : overall survival, HR : hazard ratio, ND : not done, RTx. : radiation therapy J Korean Neurosurg Soc 60 (6): 661-666 663

J Korean Neurosurg Soc 60 November 2017 patients. Total resection (Simpson grade I II) was achieved for 30 (80.3%) patients and subtotal resection (Simpson grade III V) for 6 (16.7%) patients. There were no definite treatment guidelines; a small subgroup of patients underwent adjuvant radiotherapy treatment (n=6). Mean patients age was 57.8± 13.4 (27 to 80 years), and mean follow-up period was 63.9± 55.4 (12 to 158 months). Median OS and PFS times were 60 (12 to 160 months) and 53 (8 to 160 months), respectively. Although the OS rate was better for patients less than 50 years old, it did not contribute significantly to PFS (p=0.096). The extent of surgical resection had a significant impact on PFS; PFS was 65.1±55.1 in patients with gross total resection compared with 40.0±32.9 in patients with subtotal resection (p=0.008) (Fig. 1). The survival rate of patients with total resection (Simpson grade I II) was also better compared with that of patients with subtotal resection (Simpson grade III V); however, there was no statistical significance (p=0.744). Patients with skull base tumors had more recurrence rate and there was statistical significance (p=0.048). No relationship was between Ki-67 labeling index and OS or PFS was observed (p=0.377, p=0.316). Although not statistically significant, OS was longer in younger patients (Table 2). All specimens were reviewed by one neuropathologist and confirmed as atypical meningioma. DISCUSSION Atypical meningioma is rare tumor and there is no accurate guideline for optimal treatment. Despite its methodological limitations, this study is the largest series in the literature on the outcome and prognostic factors that affect the survival rates of atypical meningioma. Of all meningioma subtypes, atypical meningioma represents 4 to 7% 10,14). This was a retrospective study; thus, one of the limitations of this study could be random bias. In addition, we could not provide the same level of evidence as a prospective study or randomize control trial. Since these were the results of a single center and single surgeon, there could also be a selection bias. Furthermore, there were insufficient cases to compare for different variables because of a rare atypical meningioma. The future direction of this prospective study is expected to be challenging in identifying several prognostic factors of atypical meningioma, as patients with atypical meningioma are rare. Nevertheless, in comparison with previous studies in Korea, our study focused on recent patients in the past 10 year. Therefore, it would have the advantage of utilizing more advanced imaging equipment and surgical equipment. Consequently, surgical removal can be considered easier, and information such as tumor proliferation index (Ki-67) levels and brain invasion on MRI can potentially be new prognostic factors. These would be more efficient in reflecting the latest trends of atypical meningioma After a review of previous studies prognostic factors associated with OS, PFS are the age at the time diagnosis, surgical removal, tumor proliferation index, tumor location, and adjuvant radiotherapy. We performed a comparison of these factors in our study. Age There was no statistical significance of recurrence when compared with age and different factors at the same time. However, age at diagnosis was significantly meaningful as prognostic factors for OS and PFS were lower than the average. Champeaux et al. 5) reported that those younger than 57 years had fewer operations than those above 57 years old since recurrence and OS were shown to be associated with age at diagnosis. Aghi et al. 1) found that age at diagnosis has already been reported to be associated with the overall survival of atypical meningioma. Extent of resection According to the Zaher et al. 22) there is a general agreement about the importance of resection completeness, and it is clear that subtotally removed meningiomas may continue to grow. The extent of resection (Simpson grading) is the most powerful prognostic factor of recurrence for all grades of meningiomas. Total resection is associated with better local control than incomplete resection. Cao et al. 4) recommended that total resection of the tumors under relatively safe conditions remains the suitable strategy of treatment. In this study, we investigated the statistical significance of PFS and OS with various factors. The results suggest that the PFS of total removal was increased compared with that of subtotal removal. Although the pathological type of tumor is very important for prognosis but the extent of tumor resection is also very important factor. 664 https://doi.org/10.3340/jkns.2017.0303.008

Prognostic Factors of Atypical Meningioma Lee JH, et al. Tumor proliferation index The Ki-67 protein is a cellular marker for proliferation. There is a strong correlation in meningioma between histology and Ki-67 antigen expression, which can be detected using the Ki-67 monoclonal anti body 3). However, the relationship between proliferation and clinical outcome is still controversial. Certain studies indicate that there is no correlation between clinical outcomes and proliferation 17,21). Nevertheless, Park et al. 18) confirmed that Ki-67 levels greater than 15% are a useful predictor of recurrence. And Bruna et al. 3) demonstrated that Ki-67 labeling index level is the only independent predictor of both tumor recurrence and overall survival. However, experience as well as the literature indicates interlaboratory variability in staining reproducibility and labeling index assessment. Tumor location Hug et al. 11) found that the majority of atypical meningiomas occurred in the cerebral convexity. In this paper, in the comparison between convexity atypical meningioma and skull base, recurrence rate was increased in skull base meningioma. However, when comparing between convexity lesion and skull base, we could not determine which is more biologically malignant. Skull base lesions are more difficult for total resection than convexity lesion, as shown in these results. Further studies would be necessary in the future. CONCLUSION Atypical meningioma is rarely reported intracranial tumor. In our study, atypical meningioma shows aggressive nature and we confirmed that Simpson grade and tumor location were a significant factor that statistically affected PFS. This was similar to the results of a previous study. With long-term follow up period, it would be able to observe more independent prognostic factors clearly. We conclude that surgical complete resection may have a significant impact on PFS and may be helpful in determining the direction of treatment for future atypical meningioma patients. References 1. Aghi MK, Carter BS, Cosgrove GR, Ojemann RG, Amin-Hanjani S, Martuza RL, et al. : Long term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery 64 : 56-60; discussion 60, 2009 2. Akeyson EW, McCutcheon IE : Management of benign and aggressive intracranial meningiomas. Oncology (Williston Park) 10 : 747-756; discussion 756-759, 1996 3. Bruna J, Brell M, Ferrer I, Gimenez-Bonafe P, Tortosa A : Ki-67 proliferative index predicts clinical outcome in patients with atypical or anaplastic meningioma. Neuropathology 27 : 114-120, 2007 4. Cao X, Hao S, Wu Z, Wang L, Jia G, Zhang L, et al. : Treatment response and prognosis after recurrence of atypical meningiomas. World Neurosurg 84 : 1014-1019, 2015 5. Champeaux C, Wilson E, Brandner S, Shieff C, Thorne L : World Health Organization grade III meningiomas. A retrospective study for outcome and prognostic factors assessment. Br J Neurosurg 29 : 693-698, 2015 6. Chen WY, Liu HC : Atypical (anaplastic) meningioma: relationship between histologic features and recurrence--a clinicopathologic study. Clin Neuropathol 9 : 74-81, 1990 7. Coke CC, Corn BW, Werner-Wasik M, Xie Y, Curran WJ Jr : Atypical and malignant meningiomas: an outcome report of seventeen cases. J Neurooncol 39 : 65-70, 1998 8. Condra KS, Buatti JM, Mendenhall WM, Friedman WA, Marcus RB Jr, Rhoton AL : Benign meningiomas: primary treatment selection affects survival. Int J Radiat Oncol Biol Phys 39 : 427-436, 1997 9. Dziuk TW, Woo S, Butler EB, Thornby J, Grossman R, Dennis WS, et al. : Malignant meningioma: an indication for initial aggressive surgery and adjuvant radiotherapy. J Neurooncol 37 : 177-188, 1998 10. Goyal LK, Suh JH, Mohan DS, Prayson RA, Lee J, Barnett GH : Local control and overall survival in atypical meningioma: a retrospective study. Int J Radiat Oncol Biol Phys 46 : 57-61, 2000 11. Hug EB, Devries A, Thornton AF, Munzenride JE, Pardo FS, Hedley- Whyte ET, et al. : Management of atypical and malignant meningiomas: role of high-dose, 3D-conformal radiation therapy. J Neurooncol 48 : 151-160, 2000 12. Jo K, Park HJ, Nam DH, Lee JI, Kong DS, Park K, et al. : Treatment of atypical meningioma. J Clin Neurosci 17 : 1362-1366, 2010 13. Louis D, Scheithauer B, Budka H, Von Deimling A, Kepes J, Kleihues P, et al. : Pathology and genetics of tumors of the nervous system in Kleihues P, Cavenee WK (eds) : World Health Organization Classification of Tumours: Pathology and Genetics: Tumors of the Nervous System, ed 2. Lyon : IARC Press, 2000, Vol 1, pp176-184 14. Mahmood A, Caccamo DV, Tomecek FJ, Malik GM : Atypical and malignant meningiomas: a clinicopathological review. Neurosurgery 33 : 955-963, 1993 15. McCarthy BJ, Davis FG, Freels S, Surawicz TS, Damek DM, Grutsch J, et al. : Factors associated with survival in patients with meningioma. J Neurosurg 88 : 831-839, 1998 J Korean Neurosurg Soc 60 (6): 661-666 665

J Korean Neurosurg Soc 60 November 2017 16. Modha A, Gutin PH : Diagnosis and treatment of atypical and anaplastic meningiomas: a review. Neurosurgery 57 : 538-550; discussion 538-550, 2005 17. Palma L, Celli P, Franco C, Cervoni L, Cantore G : Long-term prognosis for atypical and malignant meningiomas: a study of 71 surgical cases. J Neurosurg 86 : 793-800, 1997 18. Park HJ, Kang HC, Kim IH, Park SH, Kim DG, Park CK, et al. : The role of adjuvant radiotherapy in atypical meningioma. J Neurooncol 115 : 241-247, 2013 19. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM : Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol 21 : 1455-1465, 1997 20. Tomura N, Takahashi S, Sakuma I, Omachi K, Watarai J, Sasajima T, et al. : Neuroradiological findings of atypical meningiomas. CMIG Extra: Cases 28 : 33-39, 2004 21. Torp SH, Lindboe CF, Granli US, Moen TM, Nordtømme T : Comparative investigation of proliferation markers and their prognostic relevance in human meningiomas. Clin Neuropathol 20 : 190-195, 2001 22. Zaher A, Abdelbari Mattar M, Zayed DH, Ellatif RA, Ashamallah SA : Atypical meningioma: a study of prognostic factors. World Neurosurg 80 : 549-553, 2013 666 https://doi.org/10.3340/jkns.2017.0303.008